FET
 Design Catalog

NOVEMBER

1979
INTRODUCTION Index 1
How to use the FET Cross Reference and Index 1-T
FET Cross Reference and Index 1-2
Product Information 1-14
Process Option Flaw Chart 1-15
SELECTOR GUIDES Index 2
Tips on Selecting the Right FET for your Application 2-1
How to Choose the Correct FET for your Application 2.2
JFET Geometry Selector Guide 2-3
Useful JFET Parameter Relationships 2-3
N-Channel 2-4
P-Channel 2-5
Product Specifications
Nand P-Channel Single JFETs 2-6
N-Channel Dual JFETs 2-12
Low Leakage Diodes 2.14
Voltage Controlled Resistors 2-14
P-Channel MOSFETs 2-14
Current Regulator Diodes 2-15
VMOS Power FETs 2.16
Die Process Information 2-17
PC Board Layout and Construction for Low Leakage Applications 2-18
DATA SHEETS, METAL CAN (In Numeric-Alpha Order) Index 3
Refer to FET Cross Reference and Index
DATA SHEETS, PL، (in Numeric-Alpha Order) Index 4
Refer to FET Cross Reference and Index
GEOMETRY CHARACTERISTICS Index 5
Refer to FET Cross Reference and Index
APPLICATION NOTES Index 6
AN73-7 An Introduction to FETs 6-1
AN74-4 Audio-Frequency Noise Char. of JFETs. 6-13
AN70-2 FETs for Video Amplifiers 6-21
AN72-1 FETs in Balanced Mixers. 6-29
AN73-1 FETs as Voltage Controlied Resistors 6-39
DI71-1 The FET Constant Current Source 6-49
D171-9 Wideband UHF Amplifiers with High-Performance FETs. 6-51
DI73-2 High-Performance FETs in Low-Noire VHF Oscillators. 6-55
TA70.2 FET Biasing 6-59
AN77-2 VMOS - A Solution to High Speed. High Current. Low Resistance Analog Switches. 6-67
AN79-4 Driving VMOS Power FETs 6-73
Publications Index. 6-77
Glossary of Terms and Abbreviations 6.79
MECHANICAL DATA \& SALES OFFICES Index 7
Mechanical Data 7-1
Sales Offices. 7-3

PARTS NOT READILY AVAILABLE IN EUROPE

The following device types are classified as specials (non-preferred parts). These devices are not readily available through European Sales Outlets. For further details and availability contact the Siliconix Sales Office or Franchised Distributor nearest you.

2N3368169170	J230/31/32	PN4416
2N3684/85/86/87	K114-18	PN5163
2N3909	K1837-18	U1837
2N4867A/68A/69A	K210/11/12(-18)	U1994
2N5078	KK4416-18	
2N5515-24	MFE823	
2N5555	MPF102	
2N5556/57/58	MPF108	
2N5653/54	MPF109	
2N5669/70	MPF111	
JAN/JANTX Series	MPF112	

EUROPEAN HI-REL PARTS

The Following Devices Have Been Approved to BS CECC European Standards:

Type Number	BS CECC Specification
$2 N 3970 / 1 / 2$	BS CECC $50012-001$ (ISSUE 1, JUNE 1978)
2N4091/2/3	BS CECC $50012-002$ (ISSUE 1, JUNE 1978)
2N4391/2/3	BS CECC $50012-004$ (ISSUE 1, APRIL 1978)
2N4856/7/8	BS CECC $50012-005$ (ISSUE 1, JUNE 1978)
2N4859/60/61	BS CECC $50012-005$ (ISSUE 1, JUNE 1978)
2N4856A/7A/8A	BS CECC $50012-006$ (ISSUE 1, JUNE 1978)
2N4859A/60A/61A	BS CECC $50012-006$ (ISSUE 1, JUNE 1978)

For Details on Other Products Submitted for Approval, Contact Your Nearest Siliconix Sales Office or Franchised Distributor.

FET Design Catalog

© 1979 Siliconix incorporated Printed in U.S.A.

Sificonix incorporated reserves the right to make changer in the circuitry or specifications in this book at any time without notice.

Siliconix incorporated assumes no responsibility for the use of any circuits described herein and maker no representations that they are free from patent infringement.

how to use the FET Cross Reference and Index

The following examples illustrate how the FET Cross Reference and Index should be used:
Case (1) Recommended replacement offered by Siliconix is identical to Industry Part Number.
Industry Part Number
2N3458
Type and Classification
N JFET
Recommended Replacement
2N3458

Case (2) Recommended replacement offered by Siliconix is not identical to Industry Part Number.

Industry Part Number
2N3457

Type and Classification
N JFET

Recommended Replacement 2N4338

The recommended replacement may be exact, tighter or looser on electrical characteristics, and may be a different package or pin-out. Data sheets for both parts should, if possible, be reviewed for a completecomparison. Refer to appropriate page number listed under Data Sheet or Geometry column.

Type and classification abbreviations are described as follows:

CR (Current Limiter)
D (Dual)
DPAD (Dual Pico Ampere Diode)
ENH (Enhancement-Mode Normally-Off1 G (Gate)

JPAD (Plastic Pico Ampere Diode)
N (N-Channel)
P (P-Channel)
PAD (Pico Ampere Diode)
VMOS (Vertical MOSFET)
Eiliconix

Industry Part Number	Type and Classification	Recommended Replacement	Date Shept Pege	Gemmotry Page	tndustry Part Number	Type and chassification	Recommended Replacement	Date Sheet Page	Geometry Page
1N5283	CL N JFET	CR022	3.45	5.12	2N3071	N JFET	2N4338		
1N5284	CL N JFET	CR024	3-45	5-12	2N3084	N JFET	2N3459		
1N5285	CL N JFET	CR027	3-45	5-12	2N3085	N JFET	2N3459		
1N5286	CL N JFET	Cr030	3-45	5-12	2N3086	N JFET	2 N 3459		
1N5287	CL N JFET	CR033	3-45	5-12	2N3087	N JFET	2N3459		
1~5288	CL N JFET	CRO39	3-45	5-12	2N3088	N JFET	2N3460		
1N5289	CL N JFET	CR043	3-45	5-12	2N3088A	N JFET	2N3460		
1N5290	CL N JFET	CR047	3-45	5-12	2N3089	N JFET	2N3460		
1N5291	CL N JFET	CR056	3-45	5-12	2N3089A	N JFET	2N3460		
1N5292	CL N JFET	CR062	3-45	5-12	2N3113	P JFET	2N2843		
1N5293	CL N JFET	CR068	3-45	5-13	2N3277	P JFET	2N2608		
1N5294	CL n JFET	CRO75	3-45	5-13	2N3278	P JFET	2N2608		
1N5295	CL N JFET	CR082	3-45	5-13	2N3328	P JFET	2N3438		
1N5296	CL N JFET	CR091	3-45	5-13	2N3329	P JFET	2N3329	3-3	5-36
1N5297	CL N JFET	CR100	3-45	5-13	2N3330	P JFET	2N3330	3-3	5-36
1N5298	CL N JFET	CR110	3-45	5-13	2N3331	P JFET	2N3331	3-3	5-36
1N5299	CL N JFET	CR120	3-45	5-13	2N3332	P JFET	2N3332	3-3	5-36
1N5300	CL N JFET	CR130	3-45	5-13	2N3365	N JFET	2N4340		
1N5301	CL N JFET	CR140	3-45	5-13	2N3366	N JFET	2N4338		
1N5302	CL N JFET	CR150	3-45	5-13	2N3367	N JFET	2N4338		
1N5303	CL N JFET	CR160	3-45	5-14	2N3368	N JFET	2N3368	3-4	5-19
1N5304	CL N JFET	CR180	3-45	5-14	2N3369	N JFET	2N3369	3-4	5-19
1 N5305	CL N JFET	CR200	3-45	5-14	2N3370	N JFET	2N3370	3-4	5-19
1N5306	CL N JFET	CR220	3-45	5-14	2N3376	P JFET	2N3329		
1N5307	CL N JFET	CR240	3-45	5-14	2N3378	P JFET	2N3330		
1N5308	CL N JFET	CR270	3-45	5-14	2N3380	P JFET	2N3331		
1N5309	CL N JFET	CR300	3-45	5-14	2N3382	P JFET	2N3382	3-5	5-38
1N5310	CL N JFET	CR330	3-45	5-14	2N3384	P JFET	2N3384	3-5	5-38
1N5311	CL N JFET	CR360	3-45	5-14	2N3386	P JFET	2N3386	3-5	.5-38
1N5312	CL N JFET	CR390	3-45	5-14	2N3436	N JFET	2N3436	3-6	5-19
1N5313	CL N JFET	CR430	3-45	5-14	2N3437	N JFET	2N3437	3-6	5-19
1N5314	CL N JFET	CR470	3-45	$5 \cdot 14$	2N3438	N JFET	2N3438	3-6	5-19
2N2386	P JFET	2N608			2N3452	N JFET	2N4340		
2N2386A	P JFET	2N609			2N3453	N JFET	2N4338		
2N2497	P JFET	2N3329			2N3454	N JFET	2N4338		
2N2498	P JFET	2N3330			2N3455	N JFET	2 N 4340		
2N2499	P JFET	2N3331			2N3456	N JFET	2N4338		
2N2500	P JFET	2N3332			2N3457	N JFET	2N4338		
2N506	P JFET	2N2608			2N3458	N JFET	2N3458	3-7	5-19
2N2606JAN	P JFET	2N2608JAN			2N3459	N JFET	2N3459	3-7	5-19
2N2607	P JFET	2N2608			2N3460	N JFET	2N3460	3.7	5-19
2N2607JAN	P JFET	2N2608JAN			2N3574	P JFET	2N2843		
2N2608	P JFET	2N2608	3-1	5-36	2N3575	P JFET	2N2843		
2N2608JAN	P JFET	2N2608JAN			2N3578	P JFET	2N2608		
2N2609	P JFET	2N2609	3-1	5-37	2N3608	PMOS ENH	3N163		
2N2609JAN	P JFET	2N2609JAN			2N3684	N JFET	2N3684	3-8	5-6
2N2841	P JFET	2N2843			2N3685	N JFET	2N3685	$3-8$	5-6
2N2842	P JFET	2N2843			2N3686	N JFET	2N3686	3-8	5-6
2N2843	P JFET	2N2843	3-2	5-36	2N3687	N JFET	2N3687	3.8	5-6
2N2844	P JFET	2N2844	3-2	5-37	2N3819	N JFET	2N3819	4-1	5-25
2N3066	N JFET	2N4340			2N3820	P JFET	J270		
2N3067	N JFET	2N4338			2N3821	N JFET	2N3821	3.9	5-25
2N3068	N JFET	2N4338			2N3822	N JFET	2N3822	3-9	5-25
2N3069	N JFET	2N4341			2N3823	N JFET	2N3823	3-10	5-25
2N3070	N JFET	2N4339			2N3824	N JFET	2N3824	3-11	5-25

Industry Part Number	Typo and Classiftcallon	Recommended Replacement	Date Sheet Page	Geometry Pade	Industry Part Numbar	Typo and Classillcation	Recommended Replacement	Date Sheet 5 -	$\begin{gathered} \text { Geometry } \\ \text { Page } \end{gathered}$
2N3909	P JFET	2N3909	$3-12$	5-36	2N4340	N JFET	2N4340	3-24	5-19
2N3909A	P JFET	2N3909			2N4341	N JFET	2N4341	3-24	5-19
2N3921	D N JFET	2N3921	3-13	5-17	2N4352	PMOS ENH	3N163		
2N3922	D N JFET	2 N 3922	3-13	5-17	2N4381	P JFET	2 N 2609		
2N3954	D N JFET	2N3954	3-14	5-6	2N4382	P JFET	2N5115		
2N3954A	O N JFET	2N3954A	3-14	$5 \cdot 6$	2N439t	N JFET	2N4391	3-26	$5 \cdot 3$
2N3955	O N JFET	2N3955	3-14	5-6	2N4392	N JFET	2N4392	3-26	$5 \cdot 3$
2N3955A	O N JFET	2N3955A	3-14	$5 \cdot 6$	2N4393	N JFET	2 N 4393	3-26	$5 \cdot 3$
2N3956	D N JFET	2N3956	3-15	$5 \cdot 6$	2N4416	N JFET	2N4416	3-27	5-8
2N3957	D N JFET	2N3957	3-15	5-6	2N4416A	N JFET	2N4416A	3-27	5-8
2N3958	D N JFET	2N3958	3-15	5-6	2N445	N JFET	2N5432		
2N3966	N JFET	2N3966	3-16	5-8	2N446	N JFET	2N5433		
2N3967	N JFET	2N4221			2 N 448	N JFET	2N5432		
2N3967A	N JFET	2N4221			2 N 448	N JFET	2N5433		
2N3968	N JFET	2N3685			2N4856	N JFET	2 N 4856	3-28	$5-3$
2N3968A	N JFET	2N3685			2N4856A	N JFET	2N4856A	3-29	5-3
2N3969	N JFET	2N3686			2N4856JAN	N JFET	2N4856JAN		5-3
2N3969A	N JFET	2N3686.			2N4856JANTX	N JFET	2 N4856JANTX		$5-3$
2N3970	N JFET	2N3970	3-17	5-3	2N4856JANTXV	N JFET	2N4856JANTXV		5-3
2N3971	N JFET	2N3971	3-17	5-3	2N4857	N JFET	2N4857	3-28	5-3
2N3972	N JFET	2N3972	3-17	5-3	2N4857A	N JFET	2N4857A	3-29	5-3
2N3993	P JFET	2N3386			2N4857,AAN	N JFET	2N4857JAN		5-3
2N3993A	P JFET	2N3386			2N4857JANTX	N JFET	2N4857, ANTX		5-3
2N3994	P JFET	2N3382			2N4857.jANTXV	N JFET	2N4857JANTXV		5-3
2N3994A	P JFET	2N3382			2N4858	N JFET	2N4858	3-28	$5 \cdot 3$
2N4084	D N JFET	2N4084	3-13	5-17	2N4858A	N JFET	2N4858A	3-29	5-3
2 N 4085	- N JFET	2N4085	3-13	5-17	2N4858.JAN	N JFET	2N4858JAN		5-3
2 N 4091	N JFET	2N4091	3-19	5-3	2N4858JANTX	N JFET	2N4858JANTX		5-3
2N4091A	N JFET	2 N 4091			2N4858JANTXV	N JFET	2N4858JANTXV		5-3
2N4092	N JFET	2N40S2	3-99	5-3	2N4859	N JFET	2N4859	3-28	5-3
2N4092A	N JFET	2N4092			2N4859A	N JFET	2 N 4859 A	3-79	$5 \cdot 3$
2 N 4093	N JFET	2N4093	3-19	5-3	2 N 4859 JAN	N JFET	2N4859.JAN		5-3
2 N 4093 A	N JFET	2N4093			2N4859,JANTX	N JFET	2N4859JANTX		5-3
2 N 4117	N JFET	2N4117	3-20	5-29	2N4859.JANTXV	N JFET	2N4859JANTXV		5-3
2 N 1 177	N JFET	2N4117A	3-20	5-29	2N4860	N JFET	2N4860	$3-28$	5-3
2N4118	N JFET	2N4118	3-20	5-29	2 N 4860 A	N JFET	2N4860A	3-29	5-3
2N418A	N JFET	2N4118A	3-20	5-29	2N4860JAN	N JFET	2 N 486 JJAN		$5 \cdot 3$
2N4179	N JFET	2N4119	3-20	5-29	2N4860,JANTX	N JFET	2N4860JANTX		5-3
2N4119A	N JFET	2N419A	3-20	5-29	2N4860.jANTXV	N JFET	2N4860JANTXV		5-3
2N4120	P MOS ENH	3N163			2N4861	N JFET	2N4861	3-28	5-3
2N4139	N JFET	2N3822			2N4861A	N JFET	2N4861A	3-29	5-3
2N4220	N JFET	2N4220	3-22	5-25	2N4861JAN	N JFET	2N4861JAN		5-3
2N4220A	N JFET	2N4220A	3-22	5-25	2N4861JANTX	N JFET	2N486iJANTX		5-3
2N422t	N JFET	2N4221	3-22	5-25	2N4861JANTXV	N JFET	2N4861JANTXV		5-3
2N4221A	N JFET	2N4221A	3-22	5-25	2N4867	N JFET	2N4867	3-30	5-27
2N422?	N JFET	2 N 4222	3-22	5-25	2N4867A.	N JFET	2N4867A	3-30	5-27
2N4222A	N JFET	2N4222A	3-22	5-25	2N4868	N JFEE	2N4868	3-30	5.27
2N4223	N JFET	2N4223	3-23	5-25	2N4868A	N JFET	2N4868A	$3 \cdot 30$	5-27
2N4224	N JFET	2N4224	3-23	5-25	2 N 4869	N JFET	2N4869	3.30	5-27
2N4267	PMOS ENH	3N163			2N4869A	N JFET	2N4869A	3-30	5-27
2N4302	N JFET	PN4302-18			2 N 4977	N JFET	2N5432		
2N4303	N JFET	PN4303-18			2N4978	N JFET	2N5433		
2N4304	N JFET	PN4304-18			2N4979	N JFET	2 N 5434		
2N4338	N JFET	2N4338	3-24	5-19	2N5018	P JFET	2N5018	3-31	5-39
2N4339	N JFET	2N4339	3-24	5-19	2N5019	P JFET	2N5019	3-31	5-39

FET Cross Reference and Index (cont'd.)

Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page	Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	$\begin{gathered} \text { Geometry } \\ \text { Page } \end{gathered}$
2N5020	P JFET	2N2843			2N5484	N JFET	2N5484	4-3	5-8
2N5021	P JFET	2N2608			2N5485	N JFET	2N5485	4-3	5-8
2N5033	P JFET	2N2608			2N5486	N JFET	2N5486	4-3	5-8
2N5045	D N JFET	2N5045	3-32	5-17	2N5515	D N JFET	2N5515	3-37	5-27
2N5046	D N JFET	2N5046	3-32	5-17	2N5516	D N JFET	2N5516	3-37	5-27
2N5047	D N JFET	2 N 5047	3-32	5-17	2N5517	D N JFET	2N5517	3-37	5-27
2N5103	N JFET	2N4416			2N5518	D N JFET	2N5518	3-37	5-27
2N5104	N JFET	2N4416			2N5519	D N JFET	2N5519	3-37	5-27
2N5105	N JFET	2N4416			2N5520	D N JFET	2N5520	3-37	5-27
2N5114	P JFET	2N5114	3-33	5-39	2N5521	D N JFET	2N5521	3-37	5-27
2N5115	P JFET	2N5115	3-33	5-39	2N5522	D N JFET	2N5522	3-37	5-27
2N5116	P JFET	2N5116	3-33	5-39	2N5523	D N JFET	2N5523	3-37	5-27
2N5158	N JFET	2N5434			2N5524	D N JFET	2N5524	3-37	5-27
2N5159	N JFET	2N5433			2N5545	D N JFET	2N5545	3-38	5-15
2N5196	D N JFET	2N5196	3-34	5-15	2N5546	D N JFET	2N5546	3-38	5-15
2N5197	D N JFET	2 N 5197	3-34	5-15	2N5547	D N JFET	2N5547	3-38	5-15
2N5198	D N JFET	2N5198	3-34	5-15	2N5549	N JFET	2N4392		
2N5199	D N JFET	2N5199	3-34	5-15	2N5555	N JFET	2N5555	4-4	5-8
2N5245	N JFET	KK4418			2N5556	N JFET	2N5556	3-39	5-25
2N5246	N JFET	J305-18			2N5557	N JFET	2N5557	3-39	5-25
2N5247	N JFE	J304-18			2N5558	N JFET	2N5558	3-39	5-25
2N5248	N JFET	2N5486			2N5561	D N JFET	U401		
2N5257	N JFET	2N5457			2N5562	D N JFET	$\cup 402$		
2N5258	N JFET	2N5458			2N5563	D N JFET	U404		
2N5259	N JFET	2N5459			2N5564	D N JFET	2N5564	3-40	5-3
2N5265	P JFET	2N2608			2N5565	D N JFET	2N5565	3-40	5-3
2N5266	P JFET	2N2608			2N5566	D N JFET	2N5566	3-40	5-3
2N5267	P JFET	2N2608			2N5592	N JFET	2N3822		
2N5268	P JFET	2N2608			2N5593	N JFET	2N3822		
2N5269	P JFET	2N3331			2N5594	N JFET	2N3822		
2N5270	P JFET	2N3331			2N5638	N JFET	2N5638	4-5	5-3
2N5358	N JFET	2N3686			2N5639	N JFET	2N5639	4-5	5-3
2N5359	N JFET	2N3686			2N5640	N JFET	2N5640	4-5	5-3
2N5360	N JFET	2N3685			2N5647	N JFET	2N4117A		
2N5361	N JFET	2N3684			2N5648	N JFET	2N4117A		
2N5362	N JFET	2N3684			2N5649	N JFET	2N4117A		
2N5363	N JFET	2N4222A			2N5653	N JFET	2N5653	4-6	5-3
2N5364	N JFET	2N4224			2N5654	N JFET	2N5654	4-6	5-3
2N5391	N JFET	2N4867A			2N5668	N JFET	2N5668	4-7	5-8
2N5392	N JFET	2N4868A			2N5669	N JFET	2N5669	4-7	5-8
2N5393	N JFET	2N4869A			2N5670	N JFET	2N5670	4-7	5-8
2N5394	N JFET	2N4869A			2N5797	P JFET	2N2608		
2N5395	N JFET	2N4869A			2N5798	P JFET	2N2608		
2N5396	N JFET	2N4869A			2N5799	P JFET	2N2608		
2N5397	N JFET	U310			2N5800	P JFET	2N2608		
2N5398	N JFET	U312			2N5801	N JFET	2N4393		
2N5432	N JFET	2N5432	3-35	5-10	2N5802	N JFET	2N4393		
2N5433	N JFET	2N5433	3-35	5-10	2N5803	N JFET	2N4392		
2N5434	N JFET	2N5434	3-35	5-10	2N5902	D N JFET	2N5902	3-41	5-29
2N5452	D N JFET	2N5452	3-36	5-6	2N5903	D N JFET	2N5903	3-41	5-29
2N5453	D N JFET	2N5453	3-36	5-6	2N5904	D N JFET	2N5904	3-41	5-29
2N5454	D N JFET	2N5454	3-36	5-6	2N5905	D N JFET	2N5905	3-41	5-29
2N5457	N JFET	2N5457	4-2	5-25	2N5906	D N JFET	2N5906	3-41	5-29
2N5458	N JFET	2N5458	4-2	5-25	2N5907	D N JFET	2N5907	3-41	5-29
2N5459	N JFET	2N5459	4-2	5-25	2N5908	D N JFET	2N5908	3-41	5-29

Industry Part Number	Type and Classification	Recommended Replacement	Date Sheel Page	$\begin{gathered} \text { Geometry } \\ \text { Page } \end{gathered}$	Industry Part Number	Type and Classification	Recommended Replacement	Dato Sheet Page	Geometry Page
2N5909	- N JFET	2N5909	3-41	5-29	135 U	N JFET	2N4339		
2N5911	O N JFET	2N5911	3.43	5-34	455U	N JFET	2N4416		
2N5912	O N JFET	2N5912	3-43	5-34	182S	N JFET	2N4391		
2N5949	N JFET	K1837-18			1835	N JFET	2N3823		
2N5950	N JFET	K1837-18			197S	N JFET	2N4338		
2N5951	N JFET	K1837-18			1985	N JFET	2N4340		
2N5952	N JFET	K305-18			1995	N JFET	2N4341		
2N5953	N JFET	K305-18			200S	N JFET	2 N 4392		
2N6451	N JFET	2 N 4393			200 U	N JFET	2N3824		
2N6452	N JFET	2 N 4393			2015	N JFET	2N4391		
2N6453	N JFET	2N4393			202S	N JFET	2N4392		
2N6454	N JFET	2N4393			2035	N JFET	2N3821		
2N6483	D N JFET	U401			204S	N JFET	2N3821		
2N6484	O N JFET	U402			210 U	N JFET	2N4416		
2N6585	D N JFET	U404			231S	D N JFET	2N3954		
2N6568	N JFET	U290			232S	O N JFET	2N3955		
2N6656	\checkmark MOS N ENH	2N6656			2335	D N JFET	2N3956		
2N6657	\checkmark MOS N ENH	2N6657			2345	D N JFET	2N3957		
2N6658	\checkmark MOS N ENH	2N6658			2355	Q N JFET	2N3958		
2N6659	\checkmark MOS N ENH	2N6659			241 U	N JFET	2N4869		
2N6660	\checkmark MOS N ENH	2N6660			250U	N JFET	2N4091		
2N6661	\checkmark MOS N ENH	2N6661			251U	N JFET	2 N 4392		
3N145	P MOS ENH	3N163			703 U	N JFET	2N4220		
3N 46	P MOS ENH	3N163			704 U	N JFET	2 N 4220		
3N155	PMOS ENH	3N163			7050	N JFET	2N4224		
3N155A	PMOS ENH	3N163			7074	N JFET	2N4860		
3N156	PMOS ENH	3N163			7140	N JFET	2N3822		
3N156A	PMOS ENH	3N163			7340	N JFET	2N4416		
3N157	P MOS ENH	3 N 163			734EU	N JFET	KK4416-18		
3N157A	P MOS ENH	3N163			751 U	N JFEI	2N4340		
3N158	PMOS ENH	3N163			7520	N JFET	2N4340		
3N158A	P MOS ENH	3N163			7534	N JFET	2N4341		
3N163	PMOS ENH	3N163	3-44	5-1	754 U	N JFET	2N4340		
3N164	PMOS ENH	3N164	3-44	5-1	755 U	N JFET	2N4341		
3N174	PMOS ENH	3N163			7561	N JFET	2N4340		
14 T	N JFET	2 N 4224			1277A	N JFET	2N3822		
142 T	N JFET	PN4392			1278A	N JFET	2N3821		
158 T	N JFET	2N4302			1279A	N JFET	2N3821		
1597	N JFET	KK4416-18			1280A	N JFET	2N4224		
100S	N JFET	2N4304			1281A	N JFET	2N3822		
100 U	N JFET	2N3684			1282A	N JFET	2N4341		
102M	N JFET	2N5486			1283A	N JFET	2N4340		
102S	N JFET	2N4302			1284A	N JFET	2N4222		
103M	N JFET	2N5457			1285A	N JFET	2N3821		
1035	N JFET	2N5459			1286A	N JFET	2N4220		
104M	N JFET	2N5458			1325A	N JFET	2N4222		
105M	N JFET	2N5459			1714A	N JFET	2 N 4340		
105 U	N JFET	2N4222			2000M	N JFET	2N3823		
106M	N JFET	2N5485			2001M	N JFET	2N3823		
107M	N JFET	2N5486			2078A	D N JFET	2N3955		
1100	N JFET	2N3685			2079A	D N JFET	2N3955		
1150	N JFET	2N4340			2080A	D N JFET	2N5546		
120 U	N JFET	2N3686			2081A	D N JFET	2N5546		
1250	N JFET	2N4339			2093M	N JFET	2N3687		
130 J	N JFET	2N3687			2094M	N JFET	2N3686		

FET Cross Reference and Index ietriten									
Industry Part Number	Type and Clabsiflcation	Recommended Roplacement	Date Sheet Page	$\begin{aligned} & \text { Geometry } \\ & \text { Page } \end{aligned}$	Industry Part Number	Type and Classification	Recommended Replaternent	Date Sheet Page	$\begin{gathered} \text { Geometry } \\ \text { Page } \end{gathered}$
Ca022 Thru CR470 Roferenced Untigr 1N Series					E415		$\mathrm{U} 412$		
					$E 420$	D N JFET	$U 440$		
DPAD1	D PAD N JFET	DPAD1	3-48		E421	D N JFET	U441		
DPAD2	O PAD N JFET	DPAD2	3-48		E430	O N JFET	U430		
DPAD5	D PAD N JFET	DPAD5	3-46		E431	D N JFET	U431		
DPADIO	D PAO N JFET	OPAD10	3-48		E500	CL N JFET	J500		
DPAD20	D PAD N JFET	OPAD20	3-48		E501	CL N JFET	J501		
OPAD50	0 PAD N JFET	DPAD50	3-48		E502	CL N JFET	J502		
DPAD100	D PAD N JFET	OPAD100	3-48		E503	CL N JFET	J503		
DU4339	D N JFET	U235			E504	CL N JFET	J504		
DU4340	D N JFET	U235			E505	CL N JFET	$J 505$		
E100	N JFET	J203-18			E506	CL N JFET	J506		
E101	N JFET	J201-18			E507	CL N JFET	d507		
E102	N JFET	J202.18			EPAUSO	DD N JFET	JPAD50		
E103	N JFET	J105-18			EPAD100	[D N JFET	JPAD100		
E105	N JFET	J105.18			EPAD200	DD N JFET	JPADZ00		
E106	N JFET	J106 18			EPAD500	00 NJFET	$J P A 0500$		
E107	N JFET	$J 10718$			FE100	N JFET	2N3821		
E108	N JFET	J108-18			FE100A	N JFET	2N3821		
E109	N JFET	J109-18			FE102	N JFET	2N4119		
E110	N JFET	J110-18			FE102A	N JFET	2N4119		
E111	N JFET	J111-18			FE104	N JFET	2N4118		
E112	N JFET	J112-18			FE104A	N JFET	2N4118		
E113	N JFET	J113-18			FE200	N JFET	2N3821		
E114	N JFET	K114-18			FE202	N JFET	2N3821		
E174	P JFET	J174-18			FE204	N JFET	$2 N 3821$ $2 N 3822$		
E175	P JFET	J175-18			FE300	N JFET	2N3822		
E176	P JFET	J176-18			FE302	N JFET	2N3821		
E 177	P JFET	1177-18			FE304	N JFET	2N3821		
E201	N JFET	1201-18			FE0654A	N JFET	2N5486		
E202	N JFET	ل202-18			FE0654B	N JFET	$2 N 5485$		
E203	N JFET	J203-18			FE3819	N JFET	2N3819		
E204	N JFET	J204-18			FE5457	N JFET	2N5457		
E210	N JFET	K210-18			FE5458	N JFET	2N5458		
E211	N JFET	K211-18			FE5459	N JFET	2N5459		
E212	N JFET	K212-18			FE5484	N JFET	2N5484		
E230	N JFET	J230-18			FE5485	N JFET	2N5485		
E231	N JFET	J231-18			FE5486	N JFET	2N5486		
E232	N JFET	J232-18			FM3954	D N JFET	2N3954		
E270	P JFET	J270-18			FM3954A	D N JFET	2N3954A		
E271	P JFET	J27-18			FM3955	[N JFET	2N3955		
E300	N JFET	K300-18			FM3955A	D N JFET	2N3955A		
E304	N JFET	K304-18			FM3956	C N JFET	2N3956		
E305	N JFET	K305-18			FM3957	Q N JFET	2N3957		
E308	N JFET	K308-18			FM3958	D N JFET	2N3958		
E309	N JFET	K309-18			FID654A	N JFET	2N5486		
E310	N JFET	K310-18			F70654B	N JFET	2N5486		
E400	D N JFET	U410			FT0654C	N JFET	2N4221		
E401	D N JFET	U414			FT0654D	N JFET	2N4221		
E402	D N JFET	U410			FT704	PMOS ENH	3N163		
E410	D N JFET	U410			GET5457	N JFET	2N5457		
E411	D N JFET	$\checkmark 411$			GET5458	N JFET	2N5458		
E412	D N JFET	U412			GET5459	N JFET	2N5459		
E413	D N JFET	1410			HDIG1030	PMOS ENH	3N163		
E414	D N JFET	U411			ID100	D PAO N JFET	DPAD1		

Industry Part Number	Type and Clasisificatlon	Recommended Replacement	Date Sheet Page	Geometry Page	Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geomely Page
10101	D PAD N JFET	DPAD10			J112-18	N JFET	J112-18	4	5-3
IMF3954	0 N JFET	2N3954			J113	N JFET	J113	4-10	5-3
IMF3954A	Q N JFET	2N3954A			J113-18	N JFET	J173-18	4	5-3
IMF3955	Q N JFET	2N3955			J114	N JFET	\$114	4-11	5-34
IMF3955A	\$ N JFET	2N3955A			J174	P JFET	J174	4-12	5-39
IMF3956	¢ N JFET	2N3956			J174-18	P JFET	J174-18	4-12	5-39
1MF3957	D N JFET	2N3957			J175	P JFET	1175	4-12	5-39
IMF3956	0 N.	2N3956			J175-18	P JFET	J175-18	4-12	5-39
IMF6485	Q N JFET	U405			J176	P JFET	J 176	4-12	5-39
IT100	P JFET	2N5116			J176-18	P JFET	J176-18	4-12	5.39
IT 101	P JFET	2N5114			$J 177$	P JFET	$\checkmark 177$	4-12	5-39
IT108	N JFET	2N5486			J177-18	P JFET	1177-18	4-12	5-39
IT109	N JFET	U310			J201	N JFET		4-13	5-19
IT1700	PMOS ENH	3N163			J201-18	N JFET		4-13	5-19
111702	P MOSENH	3N163			J202	N JFET		4-13	5-19
TE500	CL N JFET	J500			J202-18	N JFET		$4 \cdot 13$	5-19
ITE501	CL N JFET	J501			J203	N JFET		4-13	5-19
ITE502	CL N JFET	J502			J203-18	N JFET		4-13	5-19
ITE503	CL N JFET	J503			J204	N JFET	J204	4-14	5-19
TTE504	CL N JFET	J504			J204-18	N JFET	J204-18	4-14	$5 \cdot 19$
ITE505	CL N JFET	J505			J210	N JFET	J210	4-15	5-34
ITE506	CL N JFET	J506			3211	N JFET	J211	4-15	5-34
TTE507	CL N JFET	J507			$\downarrow 212$	N JFET	J212	4-15	5-34
ITE3096	N JFET	J202-18			J230	N JFET	J230	4-16	5-27
ITE3067	N JFET	J201-18			J230-18	N JFET	1230-18	4-16	5-27
ITE3068	N JFET	$\sqrt{201-18}$			J231	N JFET	J231	4-16	5-27
1 TE4117	N JFET	2N4117			J231-18	N JFET	J231-18	4-16	5-27
ITE4118	N JFET	2N4118			J232	N JFET	J232	4-16	5-27
ITE4119	N JFET	2N4119			J232-18	N JFET	J232-18	4-16	5-27
ITE4338	N JFET	$\sqrt{201-18}$			J270	P JFET	J270	4-17	5-39
ITE4339	N JFET	J201-18			J270-18	P JFET	J270-18	4-17	5-39
ITE4340	N JFET	J202-18			J271	P JFET	J271	4-17	5-39
ITE4341	N JFET	J203-18			J271-18	P JFET	J271-18	4-17	5-39
ITE4391	N JFET	PN4391-18			J300	N JFET	J300	4-18	5-34
ITE4392	N JFET	PN4392-18			J304	N JFET	J304	4-19	5-8
ITE4393	N JFET	PN4393-18			J305	N JFET	J305	4-19	5-8
ITE4416	N JFET	KK4416-18			J308	N JFET	J308	4-20	5-32
1TE4867	N JFET	J230-18			J309	N JFET	J309	4-20	5-32
ITE4868	N JFET	J231-18			J310	N JFET	J310	4-20	5-32
ITE4869	N JFET	J232-18			1401	D N JFET	U401		
J105	N JFET	J105	4-8	5.31	1402	[N JFET	U402		
J105-18	N JFET	J105-18	4-8	$5 \cdot 31$	J403	D N JFET	U403		
J106	N JFET	\$106	4.8	5-31	J404	D N JFET	U404		
J106-18	N JFET	J106-18	4.8	5-31	J405	D N JFET	U405		
J107	N JFET	J107	4-8	5-31	J406	D N JFET	U406		
1107-18	N JFET	ل107-18	4.8	5-31	J410	D N JFET	U410		
$\downarrow 108$	N JFET	J108	4-9	5-10	J411	D N JFET	U411		
J108-18	N JFET	J108-18	4-9	5-10	J412	D N JFET	U412		
$J 109$	N JFET	5109	4-9	5-10	J500	CL N JFET	J500	4-21	5-5
J109-18	N JFET	J109-18	4.9	5.10	J501	CL N JFET	J501	4-21	5-5
5110	N JFET	$\checkmark 110$	4-9	5-10	J502	CL N JFET	J502		5-5
J110-18	N JFET	J110-18	4-9	$5 \cdot 10$	J503	CL N JFET	J503	421	5-5
J 1111	N JFET	J111	4-10	$5 \cdot 3$	J504	CL N JFET	J 504	4-21	$5 \cdot 5$
J111-18	N JFET	J\$11-18	4-10	5-3	J505	CL N JFET	J 505	4-21	55
J 112	N JFET	\$112	4-10	5-3	J506	CL N JFET	J506	4-22	$5 \cdot 5$

industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page	Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page
$J 507$	CL N JFET	$J 507$	4-22	5-5	KK4416-18	N JFET	KK4416-18	4-30	5-8
$\checkmark 508$	CL N JFET	$J 508$	4.22	5-5	LDF603	N JFET	2 N 422 ta		
4509	N JFET	J509	4-22	5-5	LDF604	N JFET	2 N 4221 A		
J510	N JFET	J510	4-22	5-5	LDF605	N JFET	2 N 4221 A		
J511	CL N JFET	. 51.11	4-22	5-5	M163	P MOS ENH	3N163		
JPAD50	PAD N JFET	JPA050	4-23		M164	PMOS ENH	3N164		
JPAD100	PAD N JFET	JPAD100	4-23		MEM520	PMOS ENH	3 1164		
JPAD200	PAD NJFET	JPAD200	4-23		MEM520C	PMOS ENH	3N164		
JPAD500	PAD N JFET	JPAD500	4-23		MEM561	PMOS ENH	3 N 163		
J1401	D N JFET	U401			MEM561C	PMOS ENH	3 N163		
J1402	D N JFET	4402			MEM806	PMOS ENH	3N163		
J1403	D N JFET	4403			MEM806A	PMOS ENH	3 N 163		
$J 1404$	D N JFET	4404			MFE823	PMOS ENH	MFE823	3-47	5-1
J1405	O N JFET	1405			MFE2000	N JFET	2 N 4416		
J1406	D N JFET	1406			MFE2001	N JFET	2 N 4416		
K114-18	N JFET	K114-18	4.24	5-34	MFE2004	N JFET	2 N 4093		
K1837-18	N JFET	K1837-18	4-25	5-8	MFE2005	N JFET	2 N 4092		
K210-18	N JFET	K210-18	4-26	5-34	MFE2006	N JFET	2 N 4091		
K211-18	N JFET	K210-18	4-26	5-34	MFE2007	N JFET	2N4860		
K212-18	N JFET	K210-18	4-26	5-34	MFE2008	N JFET	2N4859		
K300-18	N JFET	K300-18	4-27	5-34	MFE2009	N JFET	2 N 4859		
K304-18	N JFET	K 304 -18	4-28	5-8	MFE2010	N JFET	2N5434		
K305-18	N JFET	K304-18	4-28	5-8	MFE2011	N JFET	2 N 5433		
K308-18	N JFET	K 308-18	4-29	5-32	MFE2012	N JFET	2 N 5432		
K309-18	N JFET	K309-18	4-29	5-32	MFE2093	N JFET	2N3687		
K310-18	N JFET	K310-8	4-29	5-32	MFE2094	N JFET	2N3686		
KE3684	N JFET	2N3684			MFE2095	N JFET	2N3685		
KE3685	N JFET	2N3685			MFE4007	P JFET	2N2608		
KE3686	N JFET	2N3686			MFE4008	P JFET	2 N 2608		
KE3687	N JFET	2N3687			MFE4009	P JFET	2N3329		
KE3823	N JFET	J304-18			MFE4010	P JFET	${ }^{2 N 3330}$		
KE3970	N JFET	PN4391-18			MFE4011	P JFET	2 N 333 O		
KE3971	N JFET	PN4392-18			MFE4012	P JFET	2 N 3331		
KE3972	N JFET	PN4393-18			MK10	N JFET	2N4416		
KE409 ${ }^{\text {t }}$	N JFET	PN4391-18			MMF1	D N JFET	2 N 3921		
KE4092	N JFET	PN4392-18			MMF2	D N JFET	2N3921		
KE4093	N JFET	PN4393-18			MMF3	D N JFET	2N3921		
KE4220	N JFET	2N5457			MMF4	D N JFET	$2 N 3921$		
KE4221	N JFET	2N5457			MMF5	D N JFET	$2 N 3921$		
KE4222	N JFET	2N5459			MMF6	D N JFET	2N3921		
KE4223	N JFET	J304-18			MMT3823	N JFET	2N3823		
KE4224	N JFET	J304-18			MPF102	N JFET	MPF102	4-31	5-8
KE4391	N JFET	PN4391-18			MPF103	N JFET	2N5457		
KE4392	N JFET	PN4392-18			MPF104	N JFET	2N5458		
KE4393	N JFET	PN4393-18			MPF105	N JFET	2N5459		
KE4416	N JFET	KK4416-18			MPF106	N JFET	2N5485		
KE4856	N JFET	PN4391-18			MPF107	N JFET	2N5486		
KE4857	N JFET	PN4392-18			MPF108	N JFET	MPF108	4-32	5-8
KE4858	N JFET	PN4393-18			MPF109	N JFET	MPF109	4-33	5-25
KE4859	N JFET	PA4391-18			MPF111	N JFET	MPF111	4-34	5-25
KE4860	N JFET	PN4392-18			MPF112	N JFET	MPF112	4-35	5-8
KE4861	N JFET	PN4393-18			MPF256	N JFET	J309		
KE5t03	N JFET	K 305 -18			MPF820	N JFET	U310		
KE5104	N JFET	K 30418			MPF970	P JFET	J174		
KE5105	N JFET	K304-18			MPF971	P JFEI	$J 176$		

Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page	Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page
MPF4391	N JFET	PN4391-18			PN4093	N JFET	PN4093	4-37	5-3
MPF4392	N JFET	PN4392-18			PN4302	N JFET	PN4302	4-38	5-19
MPF4393	N JFET	PN4393-18			PN4302-18	N JFET	PN4302-18	4-38	5-19
NF500	N JFET	2N4416			PN4303	N JFET	PN4303	4-38	5-19
NF501	N JFET	2N4416			PN4303-18	N JFET	PN4303-18	4-38	5-19
NF506	N JFET	2N4416			PN4304	N JFET	PN 4304	4-38	5-19
NF510	N JFET	2N4393			PN4304-18	N JFET	PN4304-18	4-36	5-19
NF5:1	N JFET	2N4393			PN4391	N JFET	PN4391	4-38	$5-3$
NF520	N JFET	2N3684			PN439+18	N JFET	PN4391-18	4.39	$5-3$
NF521	N JFET	2N3686			PN4392	N JFET	PN4392	4-39	$5-3$
NF522	N $\mathrm{dFET}^{\text {d }}$	2N3684			PN4392-18	N JFET	PN4392-18	4-39	5-3
NF523	N JFET	2N3686			PN4393	N JFET	PN4393	4-39	5-3
NF530	N JFET	2N4341			PN4393-18	N JFET	PN4393-18	4-39	$5 \cdot 3$
NF531	N JFET	2N4339			PN4416	N JFET	PN4416	4-40	5-8
NF532	N JFET	2N4341			PN 5163	N JFET	PN5163	4-41	
NF533	N JFET	2N4339			PF510	P JFET	2N5018		
NF580	N JFET	2N5432			PF511	P JFET	2N5014		
NF581	N JFET	2N5432			SU2078	D N JFET	V425		
NF582	N JFET	2N5433			SU2079	O N JFET	4425		
NF583	N JFET	2N5434			SU2098	[N JFET	2N5:97		
NF584	N JFET	2N5433			SU2098A	D N JFET	2N5197		
NF585	N JFET	2N4859			SU2098B	万 N JFET	2N5196		
NF4302	N JFET	2N4302			SU2099	O N JFEI	2N5197		
NF4303	N JFET	2N4303			SU2099A	O N JFET	2N5197		
NF4304	N JFET	2 N 4304			$5 \cup 2365$	[N JFET	U401		
NF4445	N JFET	2N5432			SU2365A	D N JFET	U401		
NF4446	N JFET	2N5433			SU2366	D N JFET	U402		
NF4447	N JFET	2N5432			SU2366A	D N JFET	U402		
NF4448	N JFET	2N5433			SU2367	D N JFET	U403		
NF5163	N JFEI	2N5163			SU2367A	D N JFET	U403		
NF5457	N JFET	2N5457			SU2368	ON JFET	\404		
NF5458	N JFET	2N5458			SU2368A	D N JFEI	1104		
NF5459	N JFET	2N5459			SU2369	O N JFET	U405		
NF5484	N JFET	2N5484			SU2369A	D N JFET	U405		
NF5485	N JFET	2N5485			SU2410	O N JFET	U 424		
NF5486	N JFET	2N5486			SU2411	O N JFET	U425		
NF5555	N JFET	2N5555			SU2412	D N JFET	U426		
NF5638	N JFET	2N5638			105902	D N JFET	2N590?		
NF5639	N JFET	2N5639			TD5902	D N JFET	2N5902		
NF5640	N JFET	2N5640			TD5902A	D N JFET	2N5902		
NF5653	N JFET	2N5653			TD5903	D N JFET	2N5903		
NF5654	N JFET	2N5654			T05903A	[N JFET	2N5903		
PAD1	PAD N JFET	PAD1	3-49		T05904	0 N JFET	$2 \mathrm{N5GO4}$		
PA02	PAD N JFET	PAD2	3-49		T05904A	O N JFEI	2N5904		
PA05	PAD N JFET	PAD5	3-49		T05905	[N JFET	2N5905		
PAD10	PAD N JFET	PAD10	3-49		TD5905A	D N JFET	2N5905		
PAD20	PAD N JFET	PAD20	3-49		TD5906	D A JFET	$2 N 5906$		
PAD50	PAD N JFET	PAD50	3-49		T05906A	D N JFET	2N5906		
PAD100	PAD N JFET	PAD100	3-49		TD5907	0 N JFET	2N5907		
P1086	P JFET	P1086	4-36	539	TD5907A	D N JFET	2N5907		
P1086-48	P JFET	P1086.18	4-36	539	TD5908	D N JFET	2N5908		
P1087	P JFET	P1087	4-36	$5-39$	TL5908A	0 N JFET	2N5908		
P1087-18	P JFET	P1087-18	4-36	$5 \cdot 39$	TD5909	D N JFET	2N5909		
PN1094	N JFET	PN4091	4-37	53	TD5909A	D N JFET	2N5909		
PN4092	N JFET	PN4092	4.37	53	TD5911	O N JFET	2N5911		

Industry Part Number	Type and Classidication	Recommended Replacement	Date Shent Page	Geometry Page	Industry Part Number	Type and Classifictation	Recommended Replacement	Date Sheet Page	Geometry Pape
TD5911A	O N JFET	2N5911			U243	N JFET	2N5433		
TDS912	0 N JFET	2N5912			U248	D N JFET	2N5902		
T05912A	0 N JFET	2N5912			U248A	D N JFET	2N5906		
TIS14	N JFET	2N4340			U249	D N JFET	2N5903		
TIS25	D N JFET	1401			U249A	D N JFET	2N5907		
TIS26	© N JFET	0402			U250	D N JFET	2N5904		
TIS27	D N JFET	10404			V250A	0 N JFET	2N5908		
TIS41	N JFET	2N4859			U251	O N JFET	2N5905		
TIS58	N JFET	J305-18			U251A	D N JFET	2N5909		
TIS59	O N JFET	U1837			U254	N JFET	2N4859		
TIS73	N JFET	PN4391-18			U255	N JFET	$2 N 4860$		
TIS74	N JFET	PN4392-18			U256	N JFET	2N4661		
TIS75	N JFET	PN4393-18			U257	D N JFET	U257	3-52	5-34
TIS88	N JFET	2N5486			U273	N JFET	2N4118A		
TIXS41	N JFET	2N4859			U273A	N JFET	2N4118A		
71 XS42	N JFET	PN4393-18			U274	N JFET	2N4119A		
TN4117	N JFET	2N4117			U274A	N JFET	2N4119A		
TN4117A	N JFET	2N4117A			U275	N JFET	2N4119A		
TM4118	N JFET	2N4118			U275A	N JFET	2N4119A		
TN4118A	N JFET	2N4118A			Џ280	D N JFET	U231		
TN4119	N JFET	2N4119			U281	D N JFET	U231		
TN4119A	N JFET	2N4119A			U282	O N JFET	U232		
TN4338	N JFET	2N4338			U283	O N JFET	U232		
TN4339	N JFET	2N4339			U284	O N JFET	U233		
TN4340	N JFET	2N4340			U285	0 N JFET	U234		
TN4341	N JFET	2N4341			1290 4291	N JFET	U290	$3-53$ $3-53$	$5-31$ $5-31$
TP5114	P JFET	2N51\$4			0291	N JFET	U291	3-53	5-31
TP5115	P JFET	2N5115			$\begin{array}{r}1295 \\ \hline 1296\end{array}$	N JFET	U295		
TP5116	P JFET	2N5116			1296 4300	N JFET	U296		
U110	P JFET	2N2608			4300	P JFET	2N5114		
U112	P JFET	2N2608			U301	P JFET	2N5115		
± 133	P JFET	2 N 2608			U304	P JFET	W304	3-54	5-39
U146	P JFET	2N2608			U305	P JFET	U305	3-54	5-39
U147	P JFET	2N2608			U306	P JFET	U306	3-54	5-39
U148	P JFET	2N2608			U308	N JFET	U308	3-55	5-32
1149	P JFET	2N2609			U309	N JFET	4309	3-55	5-32
4168	P JFET	2N2609			U310	N JFET	U310	3-55	5-32
W182	N JFET	2N4857			U311	N JFET	U311	$3-57$ 3	5-32
U183	N JFET	2N3824			U312	N JFET	U312	3-58	5-34
U197	N JFET	2N4339			U320	N JFET	U320	3-59	5-10
$\checkmark 198$	N JFET	2N4340			V321	N JFET	U321	3-59	5-10
¢199	N JFET	2N4341			U322	N JFET	U322	3-59	5-10
1200	N JFET	U200	3-50	5-3	11401	O N JFET	U401	3.61	5-17
U201	N JFET	Џ201	3-50	5-3	\402	O N JFET	U402	3-67	5-17
U202	N JFET	U202	3-50	5-3	U403	[N JFET	1403	3-61	5-17
U221	N JFET	2N4391			U404	D N JFET	0404	3-61	5-17
U222	N JFET	2N4391			U405	O N JFET	U405	3-61	5-17
U231	O N JFET	U231	3-51	5-15	$\bigcirc 406$	O N JFET	U406	3-61	5-17
U232	D N JFET	U232	3-51	5-15	U410	D N JFET	U410	3-63	5-21
U233	D N JFET	U233	3-51	5-15	U411	D N JFET	0417	3-63	5-21
15234	D N JFET	U234	3-51	5-15	U412	D N JFET	11412	3-63	5-21
U235	0 N JFET	U235	3-51	5-15	U421	D N JFET	U421	3-64	5-23
15240	N JFET	2N5432			U422	0 N JFET	U422	3-64	5-23
\$241	N JFET	2N5433			U423	0 N JFET	U423	3-64	5-23
U242	N JFET	2N5432			U424	[N JFET	0424	3-64	5-23

[^0]FET Cross Reference and In \| (cont'd.)

Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	$\begin{gathered} \text { Geometry } \\ \text { Page } \end{gathered}$	Industry Part Number	Type and Classiflcation	Recommended Replacement	Date Sheet Page	$\begin{aligned} & \text { Geometry } \\ & \text { Page } \end{aligned}$
U425	D N JFET	U425	3-64	5-23	UC41	P JFET	2N2608		
$\cup 426$	D N JFET	U426	3-64	5-23	UC100	N JFET	2N3684		
U430	D N JFET	U430	3-66	5-32	UC110	N JFET	2N3685		
U431	O N JFET	U431	3-66	5-32	UC115	N JFET	2N4340		
$\cup 440$	O N JFET	U440	3-67	5-34	UC120	N JFET	2N3686		
(444	D N JFET	U441	3-67	5-34	UC130	N JFET	$2 N 3687$		
U508	N JFET	CR030	3	5	UC155	N JFET	2N4416		
U1177	N JFET	2N4220A			UC200	N JFET	2N3824		
01178	N JFET	2N3821			UC201	N JFET	2N3824		
U1179	N JFET	2N3821			UC210	N JFET	2N4416		
U1180	N JFET	2N4221A			UC220	N JFET	2N3822		
U1181	N JFET	2N4220A			UC240	N JFET	2N4869		
U1182	N JFET	2N3821			UC241	N JFET	2N4869		
01277	N JFET	2N3684			UC250	N JFET	2N4091		
01278	N JFET	2N3685			UC251	N JFET	2N4392		
U1279	N JFET	2N3686			UC300	P JFET	2N2608		
U1280	N JFET	2N3684			UC310	P JFET	2N2843		
U1281	N JFET	2N3822			UC320	P JFET	2N2843		
U1282	N JFET	2N4341			UC330	P JFET	2 N 2843		
U1283	N JFET	2N4340			UC340	P JFET	2N2843		
U1284	N JFET	2N4341			UC400	P JFET	2N3331		
U1285	N JFET	2N4220			UC401	P JFET	2N5916		
\1286	N JFET	2N4341			UC410	P JFET	2N3330		
U1287	N JFET	2N4092			UC420	P JFET	2N3329		
U1321	N JFET	2N3966			UC450	P JFET	2N5114		
U1322	N JFET	2N4221A			UC451	P JFET	2N5116		
U1323	N JFET	2N4221A			UC588	N JFET	2N4417		
U1324	N JFET	2N4220A			UC703	N JFET	2N4220		
U1325	N JFET	2N4222			UC704	N JFET	2N4220		
U1420	N JFET	2N3821			UC705	N JFET	2N4224		
U1421	N JFET	2N3822			UC707	N JFET	2N4860.		
U1422	N JFET	2N3822			UC714	N JFET	2N3822		
U1714	N JFET	2N4340			UC714E	N JFET	J203-18		
$\mathrm{U1837}$	N JFET	U1837	4.42	5.8	UC734	N JFET	$2 N 4416$		
U1837E	N JFET	U1837			UC734E	N JFET	KK4416 18		
U1897	N JFET	41897	4-43	$5 \cdot 3$	UC751	N JFET	2 N 4340		
U1897-18	N JFET	U1897-18	4-43	5-3	UC752	N JFET	2N4340		
U1897E	N JFET	U1897-18			UC753	N JFET	2N4341		
U†898	N JFET	U1898	4-43	$5 \cdot 3$	UC754	N JFET	2N4340		
\} 1 8 9 8 -18	N JFET	U1898-18	4-43	5-3	UC755	N JFET	2N4341		
U1898E	N JFET	U1898-18			UC756	N JFET	2N4340		
41899	N JFET	U1899	4-43	5-3	UC805	P JFET	2N3331		
U1899-18	N JFET	U1899-18	4-43	5-3	UC807	N JFET	2N4860		
U1899E	N JFT	U1899-18			UC814	P JFET	2N3331		
U1994	N JFET	U1994	4-44	5-8	UC851	P JFET	2N2608		
U1994E	N JFET	U1994			UC853	P JFET	2N2608		
U2047E	N JFET	KK4416-18			UC854	P JFET	2N2608		
U3000	N JFET	2N4341			UC855	P JFET	2N2609		
U300\%	N JFET	2N4339			UC1700	P MOS ENH	3N163		
U3002	N JFET	2N4338			UC1764	P MOS ENH	3N163		
U3010	N JFET	2N4341			UC2130	Q N JFET	2N5452		
U30:1	N JFET	2N4340			UC2132	D N JFET	2N3955		
43012	N JFET	$2 N 4338$			UC2134	0 N JFET	2N3956		
UC20	N JFET	2N3687			UC2136	0 N JFET	2N3957		
UC40	P JFET	2N2608			UC2138	ON JFET	2N3958		

Industry Part Number	Type and Classiflcstion	Recommended Replacement	Date Sheel Page	Geometry Page	Industry Part Number	Type and Clussiffleation	Recommended Replacement	Date Shety	Gepagetry
UC2139	D N JFET	2N3958			Vin40AF	VMOS N ENH	VN40AF		
UC2147	O N JFET	2N3958			VN46AF	VMOS N ENH	VN46AF		
UC2148	D N JFET	2N3958			VN64GA	VMOS N ENH	VN64GA		
UC2149	[N JFET	2N3958			VNG6AF	VMOS N ENH	VN64GF		
VCREN	N JFET	VCR2N	3-68	$5 \cdot 3$	WN66AJ	VMOS N ENH	VAl66AJ		
VCR3P	P JFET	VCR3P	3-68	5-38	VAS6AK	VMOS N ENH	VN66AK		
VCR4N	N JFET	VCREN	3-68	5-19	VN67AA	VMOS N ENH	UN67AA		
VCR5P	P JFET	VCR5P	3-66	$5 \cdot 36$	WN67AB	VMOS N ENH	VN67AB		
VCR6P	P JFET	2N5116			VN67AF	VMOS N ENH	WN67AF		
VCR7N	N JFET	VCR7N	3-68	5-29	VM67A,	VMOS N ENH	WN67AJ		
VMP1	VMOS N ENH	2N6657			WN67AK	VMOS N ENH	VN67AK		
VMP2	VMOS N ENH	2N6660			VN88AF	VMOS N ENH	VN88AF		
WMP4	VMOS N ENH	VMP4			VN89AA	VMOS N ENH	VN89AA		
WMP11	VMOS N ENH	2N6656			VNB9AB	VMOS N ENH	VN89AB		
VMP12	VMOS N ENH	2N6658			VNBGAF	VMOS N ENH	VN89AF		
VWP2F	VMOS N ENH	2N6659			WN90AA	VMOS N ENH	VIN90AA		
VMP22	VMOS N ENH	2N6661			VN90AB	VMOS N ENH	VN90AB		
VN30AA	VMOS N ENH	WN30AA			VNG8AJ	VMOS N ENH	UN98AJ		
VN30AB	VMOS N ENH	WN3OAB			VN98AK	VMOS N ENH	WN98AK		
VN33AJ	VMOS N ENH	VN33AJ			VN99AJ	VMOS N ENH	VF99Ad		
VA33AK	VMOS N ENH	VN33AK			VN99AK	VMOS N ENH	VAg9AK		
VN35AA	VMOS N ENH	VN35AA			WK5457	N JFET	2N5457		
VN35AB	VMOS N ENH	VN35AB			WK5458	N JFET	2N5458		
VN35A.	VMOS N ENH	VN35AJ			WK5459	N JFET	2N5459		
VN35AK	VMOS N ENH	VN35AK							

product information

Siliconix products are divided into three basic categories:

Standard Products. Modified Standard Products. Custom Productr

- Standard Products All the part numbers described in this catalog are standard products. A summary list of the prefixes used is shown below in the Device Identification Table. Ordering any of the standard products is easily done by referring to the data sheet part number. For example, a 2N4391 is simply ordered by that number: "2N4391," It will also appear in that form on the price lists, published separately.
■ Examples of Modified Standard Products are:
Electrical Specials Devices with either tightened, relaxed and/or special electrical specifications selected from a rtandard product.

Mechanical Specials Devices with standard or modified electrical specifications mounted in non-standard packager or modified (lead formed) rtandard packager. Modifications and/or additions to standard marking are also considered mechanical specials.

High Reliability Specials
Silicanix has a number of rtandard High-Reliability screening options that can be ordered as rtandard products. These options include MIL-750B. High-Rei process option details will be found in the introductory section of this data book. In addition. Silicanix offers certain JEDEC-registered FETs with JAN. JANTX, or JANTXV processing. Refer to any current Siliconix OEM price list for details on specific part numbers. If existing screening processes do not meet individual customer requirements, Siliconix can provide special additional in spections and controls to meet the stringent demands.
In all of the above carer (with the exception of JAN. JANTX, or JANTXV parts), a special part number is assigned which definer the part either by reference to customer's print(s) or by associated rpecial requirements. Each rpecial product is proprietary to the customer, and is nor made available to other customers.

- Custom Products Are designed to meet customer requirements not realizable by selection from standard parts; usually, there productr require rpecial engineering development. The proprietary relationship described above also applies to custom products.

Inquiries for SPECIAL DEVICES may be directed to the nearest field sales office or to:
FET Marketing Department, Siliconix incorporated, 2207 Laurelwood Road, Santa Clara. California 95054, Telephone: (408) 988-8000

FETs/Part Number Prefixes and Suffixes

Prefix	XXX	XXXX
CR DPAD FN J JPAO K KK M MEM MU PAD PF PN SU U VCR VMP V N 2N 3N	Si Standard N-Channel current Regulator Si Standard Dual JFET Diode Special N-Channel JFET 8i Standard TO-92 Cared FET Si Standard TO-92 Cared JFET Diode \$i Standard TO-92 Cared FE1 Si Standard TO-92 Cared FE1 Si Standard MOSFET Si Standard MQSFET Special MOSFET Si Standard JFET Diode Special P-Channel JFET Special P-Channel JFET Si Standard FET Si Standard N-and P-Channel Voltage Controlled Resistors VMOS Power FET N-Channel JEDEC-Registered Device	Special N-Channel JFET Special TO-92 Cared FET Si Standard TO-92 Cared FE1 Si Standard FET VMOS Power FET N-Channel JEDEC-Registered Device
Suffix		
-18	Std TO-92 Package with Center Lead Formed Toward Flat in TO-18 Pin Circle	
The above prefix list doer not include some second source products supplied by Siliconix. Refer to FET Cross Reference and Index or current price list for availability of these devices.		

x!uOD!!!

selector guides

tips on selecting the right FET for your application

The "Product Specification," a short form version of technical data, will provide you direct reference to Siliconix part numbers and a condensed version of technical specifications

IF YOU ARE NOT FAMILIAR WITH THE FET PARAMETERS YOU NEED:

1. Turn to page 2-2 "How to Choose the Correct FET for Your Application." Using this guide, determine the important FET parameters.
2. Next, turn to page 2-4 "JFET Geometry Selector Guide." Using this guide, choose the appropriate geometry.
3. Once you have chosen a geometry, turn to the "Geometry Characteristics" section 5 of the catalog. Here you make the choice of a suitable part number,
4. Now that you have the part number, you will find complete electrical specifications of these products In the "Data Sheets" sections 3 and 4 of the catalog.

IF YOU ARE FAMILIAR WITH THE PARAMETERS YOU NEED:

1. Turn to the "Product Specifications" pages 2-6 through 2-16 to determine the proper part number(s).

2: Double-check your choices against the data sheets, and select the part most suited for your application.
how to choose the correct FET for your application I

Application	Detail Application	Important FET Parameters Required	Major Tradeoffs	Unimportant FET Pa	meters
AMPLIFIER	Audio	Low noise ($\overline{\mathrm{e}}_{\mathrm{n}}$), $\mathrm{g}_{\mathrm{fs}} / \mathrm{g}_{\mathrm{os}}$	Voltage amplification factor μ $\begin{aligned} & =g_{\mathrm{f}} / \mathrm{g}_{\mathrm{OS}} \\ & =\Delta \mathrm{V}_{\mathrm{DS}} / \Delta \mathrm{V}_{\mathrm{GS}} @ \mathrm{I}_{\mathrm{D}}=\text { const } \end{aligned}$	${ }^{\text {R DSion }}$ $V_{D S(o n)}$ 'D(off) Switching Times	Noise, $\vec{e}_{n}, N F$ while using high level signals
	Buffer	Low I_{G}, high g_{fs}			
	Differential	Good matching $\mathrm{V}_{\mathrm{GS}} . \mathrm{g}_{\mathrm{f}}, \mathrm{I}_{\mathrm{DSS}} \mathrm{I}_{\mathrm{G}}$			
	High Input Impedance	Very low I_{G} (eg., MOSFET)			
	High Frequency	High $\mathrm{gts}^{/} / \mathrm{C}_{\text {iss }}$ ratio, NF, RF parameters			
	FET Input Op Amp	Good matching $\mathrm{V}_{\mathrm{GS}}, \mathrm{g}_{\mathrm{fs}}, \mathrm{I}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{G}}$			
	Low Distortion	High $\mathrm{V}_{\mathrm{GS}}(\mathrm{off})$ compared to signal amplitude			
	Low Supply Voltage	Low $\mathrm{V}_{\mathrm{GS} \text { (off) }}$			
	Low Noise	Low \bar{e}_{n}, \bar{i}_{n}. low $1 / \mathrm{f}$ noise, low $N F$			
	Preamplifier	Operate near IDzo. high $\mathrm{g}_{\mathrm{f}} / \mathrm{I}_{\mathrm{D}}$ ratio			
	Video	High $\mathrm{g}_{\mathrm{fs}} / \mathrm{C}_{\text {iss }}$ ratio, NF			
CONSTANT CURRENT SOURCE	Current Limiting	Low $\mathrm{g}_{\text {oss }}$, low $\mathrm{V}_{\text {GS(off) }}$, high $\mathrm{BV}_{\text {GSS }}$		$9_{f s}, R_{D S(o n)},{ }^{1}$ (off),$V_{D S(o n)}$ switching times, RF parameters capacitance	RF parameters while operating below RF frequencies Capacitance \& switching times while operating in audio and lower frequencies
	Reference Current Source				
	Biasing				
MIXERS	VHF	RF parameters, NF , high $\mathrm{g}_{\mathrm{fs}} / \mathrm{C}_{\text {iss }}$ ratio, low $C_{\text {rss }}$		$\mathrm{R}_{\mathrm{DS}(\text { on) }}$ $V_{D S(o n)}$ ${ }^{1} \mathrm{D}$ (off)	
	UHF				
	Double Balanced	Matching characteristics			
OSCILLATORS	Class A	Good g_{f} at operating frequency			
	Class C	Low $\mathrm{C}_{\text {iss }}$ for VHF operation			
SWITCHES	Analog Gates	Fast switching time	${ }^{\mathrm{R}} \mathrm{DS}($ on) vs Capacitance	$\begin{aligned} & 9_{\mathrm{f}_{\mathrm{s}}} \\ & g_{\mathrm{os}} \end{aligned}$	
	Choppers	${ }^{\mathrm{r}} \mathrm{DS}^{\prime /} \mathrm{D}$ (off) ${ }^{\text {switching efficiency }}$			
	Commutators	Low $\mathrm{C}_{\text {rss }}$			
	Digital	Fast switching time			
	Integrator Reset	Very low R ${ }_{\text {DS }}$ (on). High IDSS			
	Sample and Hold	Low Crss			
VOLTAGE CONTROLLED RESISTORS	Gain Control	High $V_{G S\{o f f\}}$ for wide dynamic range and low distortion		${ }_{9 f \text { f }}, \mathrm{BV}_{\text {GSS }}$, IDSS	
	Amplitude Stability				
	Attenuators				

Once you have chosen the major FET parameters, you will find selecting the optimum JFET geometry is easy. If you are familiar with Field Effect Transistors. start your selection using the characteristic graphs on page 2-4. You will find the $\mathrm{V}_{\mathrm{GS} \text { (off) }}{ }^{\mathrm{vs}} \mathrm{I}_{\mathrm{DSS}}$ graph the most meaningful, since it shows - in order of ascending active area - the complete line of Siliconix junction FETs.

To give you an idea how this guide works, let's find the most suitable geometry for a 70 ohm ON-resistance analog switch
which will be required to operate as close as 5 volts from the negative power supply. The power supply restraint requires a maximum $v \quad \sim$ of 5 volts. Examining the $R_{\text {DS(on) }}$ vs $V_{\text {GS(off) }}$ figure. you will find the NC. NIP, and NVA geometries meet the $\mathrm{R}_{\text {on }}$ and V_{GS} (off) requirements. In order to minimize your cost, choose the geometry having the least chip area, that is the NC. You will find characteristic data and part numbers in the Geometry Characteristics section of the catalog. Below are the most important parameter inter-relationships expressed in analytical form.

USEFUL JFET PARAMETER RELATIONSHIPS (APPROX.)

9 tso		$k \frac{I_{\mathrm{DSS}}}{v_{\mathrm{GS} \text { (off) }}}$	Forward transconductance as a function of 'DSS and V_{GS} (off) at zero gate-source voltage ($\mathrm{K}=1.5$ to 2.5 : typically $=2$ for N -channel junction FET)
Ifs		$9_{\mathrm{fso}}\left(1-\frac{\mathrm{v}_{\mathrm{GS}}}{\mathrm{v}_{\mathrm{GS}\{\mathrm{off}}}\right)$	Variation of g_{f} with gate bias
9 9ts	$=$	$\mathrm{g}_{\mathrm{fso}} \sqrt{\mathrm{ID}^{/ 1} \mathrm{DSS}}$	variation of g_{fs} with drain current
$V_{\text {GS }}$ (off)	$=$	$\begin{gathered} 2 \text { IDSS } \\ \text { 9fso }^{2} \end{gathered}$	Gate-Source cutoff voitage in terms of loss and 9fso
$\mathrm{V}_{\text {DS }}$		$V_{\text {GSIOff }}\left(\frac{1_{0}}{\operatorname{IDSS}}\right)^{1 / 2}$	Drain voltage at which drain current saturates
${ }^{\text {r DS }}$		$\frac{1}{9 f_{s}}$	Reciprocal relationship between drain-source resistance and forward transconductance. Accurate when $V_{D S}<V_{G S(o f f)}$ i.e. in the triode region
${ }^{\text {r DS }}$	\simeq	$\frac{\left[V_{G S(0 f f)}\right]^{2}}{\left.K_{\mathrm{DSS}}^{\left[V_{\mathrm{GS}}(\mathrm{off})\right.}-\mathrm{V}_{\mathrm{GS}}\right]}$	$K=1.5$ to 2.5 Variation of drain resistance in tho triode region
ID		$\operatorname{loss}\left(1-\frac{v_{G S}}{\left.v_{G S(o f f}\right)}\right)^{2}$	Variation of drain current with gate-source voltage. The square law transfer characteristic.

JFET geometry selector guide (cont'd)

\boldsymbol{s} Siliconix

n-channel JFETs

IDSS - SATURATION DRAIN CURRENT (mA)

JFET geometry selector guide (cont'd)	$\operatorname{SiB}_{\text {Siliconix }}$

p-channel JFET

	$\begin{aligned} & 2 \\ & 0 \\ & 0 \end{aligned}$															
			Gate	Chnl			Min．	Max．	Min．	Max．			Gate Ω	$\begin{gathered} \text { Chn! } \\ \Omega, \text { Max. } \end{gathered}$		
2N4117	N	72	0.01	－	1.8	40	0.03	0.09	70	210	3	－	－	－	NT	$r \square$
2N4117A	N	72	0.001	－	1.8	40	0.03	0.09	70	210	3	－	－	－	NT	$m 0$
2N4118	N	72	001	－	3.0	40	0.08	0.24	80	250	3	－	－	－	NT	只
2N4118A	N	72	0.001	－	3.0	40	0.08	0.24	90	250	3	－	－	－	NT	$\xrightarrow{8}$
2N4119	N	72	0.01	－	6.0	40	0.2	0.6	100	330	3	－	－	－－	NT	（1）
2N4119A	N	72	0.001	\cdots	6.0	40	0.2	0.6	100	330	3	－	－	－	NT	TI
2N3459	N	18	0.25	－	3.4	50	0.8	4.0	1500	6000	18	4	1M	－－	NP	
2N3460	N	18	0.25	．－	1.8	50	0.2	1.0	800	4500	18	4	1M	－	NP	
2N4220A	N	72	0.1	－	4.0	30	0.5	3.0	1000	4000	6	2.5	1M	－	NRL．	
2N42．21A	N	72	0.1	－	6.0	30	2.0	6.0	2000	5000	6	2.5	1M	－	NRL	
2N4222A	N	72	0.1	－	8.0	30	5.0	15	2500	6000	6	2.5	1M	－	NRL	
2N4338	N	18	0.1	－	1.0	50	0.2	0.6	600	1800	7	1.0	1M	－－	NP	
2N4339	N	18	0.1	－	1.8	50	0.5	1.5	800	2400	7	1.0	1M	－－	NP	
2N4340	N	18	0.1	－	3.0	50	1.2	3.6	1300	3000	7	1.0	1M	－	NP	
2N4341	N	18	0.1	－	6.0	50	3.0	9.0	2000	4000	7	1.0	1M	－	NP	
2N4867	N	72	0.25	－	2.0	40	0.4	1.2	700	2000	25	20	－	－	NS	
2N4867A	N	72	0.25	－	2.0	40	0.4	1.2	700	2000	25	10	－	－－	NS	5
2N4868	N	72	0.25	－	3.0	40	1.0	3.0	1000	3000	25	20	－	－	NS	\underline{L}
2N4868A	N	72	0.25	－	3.0	40	1.0	3.0	1000	3000	25	10	－	－	NS	2
2N4869	N	72	0.25	－	5.0	40	2.5	7.5	1300	4000	25	20	－	－	NS	\bigcirc
2N4869A	N	72	0.25	－	5.0	40	2.5	7.5	1300	4000	25	10	－	－	NS	\cdots
2N5556	N	72	0.1	－	4.0	30	0.5	2.5	1500	6500	6	35	－	－	NRL	m
2N5557	N	72	0.1	－	5.0	30	2.0	5.0	1500	6500	6	35	－	－	NRL	
2N5558	N	72	0.1	－	6.0	30	4.0	10	1500	6500	6	35	\cdots	－	NRL	
J230	N	92	0.25	－	3.0	40	0.7	3.0	1000	2500	－	30	－	－	NS	
J230－18	N	92	0.25	－	3.0	40	0.7	3.0	1000	2500	－	30	－	－	NS	
J231	N	92	0.25	－	5.0	40	2.0	6.0	1500	3000	－	30	－	－	NS	
J231－18	N	92	0.25	－	5.0	40	2.0	6.0	1500	3000	－	30	－	－	NS	
J232	N	92	0.25	－－－	6.0	40	5.0	10	2500	4000	－	30	－－	－－	NS	
J232－18	N	92	0.25	－	6.0	40	5.0	10	2500	4000	－	30	－	－	NS	
J270－18	P	92	0.2	－	2.0	30	2.0	15	6000	15000	－	－	－	－	PS	
2N3819	N	92	2.0	－	8.0	25	2.0	20	2000	6500	8.0	－	－	－	NRL	
2N3823	N	72	0.5	－	8.0	30	4.0	20	3500	6500	6	2.5	1 K	－	NRL	
2N4223	N	72	0.25	－	8.0	30	3.0	18	3000	7000	6	5.0	1 K	－	NRL	
2N4224	N	72	0.5	－	8.0	30	2.0	20	2000	7500	6	－	－	－	NRL	3
2N4416	N	72	0.1	－	6.0	30	5.0	15	4500	7500	4	2.0	1 K	－	NH	
2N4416A	N	72	0.1	－	6.0	35	5.0	15	4500	7500	4	2.0	1 K	－	NH	
2N5078	N	72	0.25	－	8.0	30	4.0	25	4500	10000	6	3.0	1K	－	－－	

N\&P-Channel Single JFETs

	$\begin{aligned} & 2 \\ & 0 \\ & 0 \end{aligned}$												$\begin{aligned} & \text { D } \\ & \text { m } \\ & \text { N } \\ & 0 \\ & H \\ & \\ & \end{aligned}$			翤¢n	
			Gate	Chnl			Min.	Max.	Min.	Max.			$\begin{gathered} \text { Gate } \\ \Omega \\ \hline \end{gathered}$	$\begin{gathered} \text { Chnt } \\ \Omega, \text { Max. } \end{gathered}$			
2N5484	N	92	1.0	-	3.0	25	1.0	5.0	3000	6000	5	3.0	1 K	-	NH		E.
2N5485	N	92	1.0	-	4.0	25	4.0	10	3500	7000	5	2.0	1 K	--	NH		
2N5486	N	92	1.0	-	6.0	25	8.0	20	4000	8000	5	2.0	1 K	-	NH		6
2N5668	N	92	2.0	-	4.0	25	1.0	5.0	1500	6500	7	2.5	1 K	-	NH		ล
2N5669	N	92	2.0	-	6.0	25	4.0	10	2000	6500	7	2.5	1 K	-	NH		8
2N5670	N	92	2.0	-	8.0	25	8.0	20	3000	7500	7.0	2.5	1K	\cdots	NH		
J210	N	92	0.1	-	3.0	25	2.0	15	4000	12000	-	-	-	-	NZF		0°
J211	N	92	0.1	-	4.5	25	7.0	20	7000	12000	-	-	-	-	NZF		\cdots
J212	N	92	0.1	-	6.0	25	15	40	7000	12000	-	-	-	-	NZF		
J270	P	92	0.2	-	2.0	30	2.0	15	6000	15000	-	-	-	-	PS		
J271	P	92	0.2	-	4.5	30	6.0	50	8000	18000	-	-	-	--	PS		
J300	N	92	0.5	-	6.0	25	6.0	30	4500	9000	5.5	-	-	-	NZF		
J304	N	92	0.1	-	6.0	30	5.0	15	4500	7500	-	-	-	-	NH		
J305	N	92	0.1	-	3.0	30	1.0	8.0	3000	-	-	-	-	-	NH		
J308	N	92	1.0	-	6.5	25	12	60	8000	20000	7.5	-	-	-	NZA	ग	
J 309	N	92	1.0	-	4.0	25	12	30	10000	20000	7.5	-	-	-	NZA	T	
J310	N	92	1.0	-	6.5	25	24	60	8000	18000	7.5	-	-	-	NZA	2	
K210-18	N	92	0.1	-	3.0	25	2.0	15	4000	12000	7.	-	-	-	NZF	3	
K211-18	N	92	0.1	-	4.5	25	7.0	20	7000	12000	-	-	-	-	NZF	$\underset{\sim}{\square}$	
K212-18	N	92	0.1	-	6.0	25	15	40	7000	12000	-	-	-	-	NZF	$\overline{T 1}$	
K $300-18$	N	92	0.5	-	6.0	25	6.0	30	4500	9000	5.5	-	-	-	NZF	\%	
K304-18	N	92	0.1	-	6.0	30	5.0	15	4500	7500	-	-	-	-	NH	ग	
K305-18	N	92	0.1	-	3.0	30	1.0	8.0	3000	-	-	-	-	-	NH	∞	
K308-18	N	92	1.0	-	6.5	25	12	60	8000	20000	7.5	-	-	-	NZA		
K309-18	N	92	1.0	-	4.0	25	12	30	10000	20000	7.5	-	-	-	NZA		
K310-18	N	92	1.0	-	6.5	25	24	60	8000	18000	7.5	-	-	-	NZA		
K1837-18	N	92	0.25	-	8.0	30	4.0	25	4500	10000	6.0	3.0	1K	-	NH		
KK4416-18	N	92	1.0	-	6.0	30	5.0	15	4500	7500	4.0	2.0	1 K	-	NH		
PN4416	N	92	1.0	-	6.0	30	5.0	15	4500	7500	4.0	2.0	1K	-	NH		
MPF 102	N	92	2.0	-	7.5	25	2.0	20	2000	7500	7.0	-	-	-	NH		
MPF108	N	92	1.0	-	8.0	25	1.5	24	2000	7500	6.5	2.5	1M	--	NH		
MPF112	N	92	100	-	10	25	1.0	25	1000	7500	-	-	-	-	NH		
U308	N	52	0.15	-	6.0	25	12	60	10000	20000	7.5	-	-	-	NZA		
U309	N	52	0.15	-	4.0	25	12	30	10000	20000	7.5	_	-	-	NZA		0
U310	N	52	0.15	-	6.0	25	24	60	10000	18000	7.5	-	-	-	NZA		
U311	N	72	0.15	-	6.0	25	20	60	10000	20000	7.5	-	-	-	NZA		080
U312	N	52	0.1	-	6.0	25	10	30	6000	10000	5.0	_	-	-	NZF		0
U320	N	39	3.0	-	10	25	100	500	75000	$2 \mathrm{M} \Omega 10$	30	-	-	-	NIP		$\underline{ }$
U321	N	39	30	-	40	25	80	250	75000	200000	30	-	-	-	NIP		X

x!uO5!!s

Siliconix

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{N\& P-Channel Single JFETs} \& \multirow[t]{4}{*}{} \\
\hline \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{\begin{tabular}{l}
2 \\
0 \\
0 \\
\hline
\end{tabular}} \& \multirow[t]{2}{*}{} \& \multicolumn{2}{|c|}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multicolumn{2}{|c|}{} \& \multicolumn{2}{|c|}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multicolumn{2}{|c|}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{易
\(\stackrel{\text { n }}{n}\)
n} \& \\
\hline \& \& \& Gate \& Chnl \& \& \& Min. \& Max. \& Min. \& Max. \& \& \& \(\mathrm{Gate}_{\Omega}^{\text {Gate }}\) \& \({ }_{\Omega}^{\text {Chnax }}\) Max. \& \& \& \\
\hline 2N5640 \& N \& 92 \& 1.0 \& 1.0 \& 6.0 \& 30 \& 5.0 \& - \& - \& - \& 10 \& - \& - \& 100 \& NC \& \& \\
\hline 2 N 5653 \& N \& 92 \& 1.0 \& 1.0 \& 12 \& 30 \& 40 \& - \& - \& - \& 10 \& - \& - \& 50 \& NC \& \& 3 \\
\hline 2 25654 \& N \& 92 \& 1.0 \& 1.0 \& 8.0 \& 30 \& 15 \& - \& - \& - \& 10 \& - \& - \& 100 \& NC \& \& 0 \\
\hline J105 \& N \& 92 \& 3.0 \& 3.0 \& 10.0 \& 25 \& 500 \& - \& - \& - \& - \& - \& - \& 3.0 \& NVA \& \& ¢ \\
\hline J105-18 \& N \& 92 \& 3.0 \& 3.0 \& 10 \& 25 \& 500 \& - \& - \& - \& - \& - \& - \& 3.0 \& NVA \& \& 0 \\
\hline J106

106.18 \& N
N \& 92 \& 3.0
30
3 \& 3.0
30 \& 6.0
6.0 \& 25
25
25 \& 200
200 \& - \& - \& - \& - \& - \& - \& 6.0
6.0 \& NVA \& \& 2

\hline J106-18
J107
der \& N
N \& 92
92 \& 3.0
3.0 \& 3.0
3.0 \& 6.0
4.5 \& 25
25 \& 200
100 \& - \& - \& - \& - \& - \& - \& 6.0
8.0 \& NVA \& \& $\stackrel{\square}{-}$

\hline J107-18 \& N \& 92 \& 3.0 \& 3.0 \& 4.5 \& 25 \& 100 \& - \& - \& - \& - \& - \& - \& 8.0 \& NVA \& \&

\hline J108 \& N \& 92 \& 3.0 \& 3.0 \& 10 \& 25 \& 80 \& - \& - \& - \& - \& - \& - \& 8.0 \& NIP \& \&

\hline J088-18 \& N \& 92 \& 3.0 \& 3.0 \& 10 \& 25 \& 80 \& - \& - \& - \& - \& - \& - \& 8.0 \& NIP \& \&

\hline J109 \& N \& 92 \& 3.0 \& 3.0 \& 6.0 \& 25 \& 40 \& - \& - \& - \& - \& - \& - \& 12 \& NiP \& \&

\hline 3109-18 \& N \& 92 \& 3.0 \& 3.0 \& 6.0 \& 25 \& 40 \& - \& - \& - \& - \& - \& - \& 12 \& NIP \& \&

\hline ${ }^{1110} 110$ \& N \& 92 \& 3.0 \& 3.0 \& 4.0 \& | 25 |
| :--- |
| 25 | \& 10

10 \& \& - \& - \& - \& - \& \& \& \& \&

\hline ${ }_{\text {d111 }}{ }^{\text {J110-18 }}$ \& N
N \& ${ }_{92}^{92}$ \& 3.0
1.0 \& 3.0
1.0 \& ${ }_{7} 9.0$ \& 25
35 \& 10
20 \& - \& - \& - \& - \& - \& - \& 18
30 \& N/P
NC \& \sum^{2} \&

\hline J111-18 \& N \& 92 \& 1.0 \& 1.0 \& 10 \& 35 \& 20 \& - \& - \& - \& - \& - \& - \& 30 \& NC \& - \&

\hline 5112 \& N \& 92 \& 1.0 \& 1.0 \& 5.0 \& 35 \& 5.0 \& - \& - \& - \& - \& - \& - \& 50 \& NC \& T \&

\hline J112-18 \& N \& 92 \& 1.0 \& 1.0 \& 5.0 \& 35 \& 5.0 \& - \& - \& - \& - \& - \& - \& 50 \& NC \& \% \&

\hline J 113 \& N \& 92 \& 1.0 \& 1.0 \& 3.0 \& 35
35 \& 2.0 \& - \& $-$ \& - \& - \& - \& $=$ \& 100
100 \& NC \& 0 \&

\hline ${ }^{\text {J113-18 }}$ \& N \& 92
92 \& 1.0
1.0 \& 1.0
1.0 \& ${ }_{10}^{3.0}$ \& 35
25 \& 2.0
15 \& - \& - \& - \& - \& - \& $-$ \& 100
150 \& NC
NIF \& \bigcirc \&

\hline J174 \& P \& 92 \& 1.0 \& 1.0 \& 10 \& 30 \& 20 \& 100 \& - \& - \& - \& - \& - \& 85 \& PS \& \% \&

\hline J174-18 \& P \& 92 \& 1.0 \& 1.0 \& 10 \& 30 \& 20 \& 100 \& - \& - \& - \& - \& - \& 85 \& PS \& \bigcirc \&

\hline J175 \& P \& 92 \& 1.0 \& 1.0 \& 6.0 \& 30 \& 7.0 \& 60 \& - \& - \& - \& - \& - \& 125 \& PS \& m \&

\hline J775-18 \& P \& 92 \& 1.0 \& 1.0 \& 6.0 \& 30 \& 7.0 \& 60 \& - \& - \& - \& - \& - \& 125 \& ${ }^{\text {PS }}$ \& \% \&

\hline J176 \& P \& 92 \& 1.0 \& 1.0 \& 4.0 \& 30 \& 2.0 \& 25 \& -- \& - \& - \& - \& - \& 250 \& PS \& \&

\hline ${ }^{3176-18}$ \& P \& 92 \& 1.0
10 \& 1.0 \& 4.0
2.25 \& 30
30 \& 2.0
1.5 \& 25
20 \& - \& - \& - \& - \& - \& 250
300 \& PS \& \&

\hline J177
J177-18 \& P \& 92
92 \& 1.0
1.0 \& 1.0
1.0 \& 2.25
2.25 \& 30
30 \& 1.5
1.5 \& 20
20 \& - \& - \& - \& - \& - \& 300
300 \& PS
PS \& \&

\hline K114-18 \& N \& 92 \& 1.0 \& 1.0 \& 10 \& 25 \& 15 \& - \& - \& - \& - \& - \& - \& 150 \& NZF \& \&

\hline PN4391 \& N \& 92 \& 1.0 \& 1.0 \& 10 \& 40 \& 50 \& 150 \& - \& - \& 14 \& - \& - \& 30 \& NC \& \&

\hline PN4391-18 \& N \& 92 \& 1.0 \& 1.0 \& 10 \& 40 \& 50 \& 150 \& - \& - \& 14 \& - \& - \& 30 \& NC \& \&

\hline PN4392 \& N \& 92 \& 1.0 \& 1.0 \& 5.0 \& 40 \& 25 \& 75 \& - \& - \& 14 \& - \& - \& 60 \& NC \& \&

\hline PN4392-18 \& N \& 92
92 \& 1.0
1.0 \& 1.0
1.0 \& 5.0
3.0 \& 40
40 \& ${ }_{5}^{25} 5$ \& 75
30 \& - \& - \& 14
14 \& - \& - \& 60
100 \& NC
NC \& \& \%

\hline PN4393 \& N \& 92 \& 1.0 \& 1.0 \& 3.0 \& 40 \& 5.0 \& 30
30 \& - \& - \& 14 \& - \& - \& 100 \& NC
NC \& \& 0

\hline P1086 \& P \& 92 \& 2.0 \& 10.0 \& 10 \& 30 \& 10 \& - \& - \& - \& 45 \& - \& - \& 75 \& PS \& \&

\hline P1086-18 \& P \& 92 \& 2.0 \& 10.0 \& 10 \& 30 \& 10 \& - \& - \& - \& 45 \& - \& - \& 75 \& PS \& \&

\hline
\end{tabular}

x!uoפ!!

Siliconix

N \& P-Channel Single JFETs

DEVICE		LOW LEAKAGE	LOW NOISE
GEOMETRY （Section 5）		$\left.\left\lvert\, \begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right.\right)$	
OUTPUT CONDUCTANCE gos（ μ mhos．MAX．）			응응응ㅇㅇㅇㅇㅇㅇㅇNㅇN
THRESHOLD			붕응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㄴ읐N
		人ᄋ	
NOISE VOLTAGE （ $n V / \sqrt{H z}$, MAX．）or INF．dB．MAX．）			
INPUT CAPACITANCE （pF，MAX．）		000000000000000000000000000 	
TRANS－ CONDUCTANCE gfs（ μ mhos）	免 5		
	家		
SATURATION CURRENT （mA）	¢		$\stackrel{n}{\sim} \stackrel{\square}{\circ} \stackrel{4}{\wedge} \stackrel{4}{\sim}$
BREAKDOWN V，MAS：			
VOLTAGE （V，MAX．）		 	OOGOOGOOOOO
tEAKAGE （nA，MAX．）	$\begin{aligned} & \text { ※゙山 } \\ & \text { © } \end{aligned}$	 	 0000000000000
PACKAGE（TO－）			万下下下ス天下天下ス下
N or P			zzzzzzzzz2z22
PART NUMEER			

Iow Leakage Diodes

Part Number	Package (TO-)	Diode	$\begin{gathered} \text { Reverse } \\ \text { Current } \\ \text { (pA, Max.) } \end{gathered}$	Breakdown Voltage (Volts)		Forward Voltage Drop (pF, Max.)	Capacitance
				Min.	Max.		
DPAD1	72	Dual	1	45	120	1.5	0.8
DPAD2	72	Dual	2	45	120	1.5	0.8
DPAD5	72	Dual	5	45	120	1.5	0.8
DPAD10	72	Dual	10	35	-	1.5	2.0
DPAD20	72	Dual	20	35	-	1.5	2.0
DPAD50	72	Dual	50	35	-	1.5	2.0
OPAD100	72	Oual	100	35	-	1.5	2.0
JPAD50	TO-92/TO-106	Single	20	35	--	1.5	2.0
PPAD100	TO-92/T0-106	Single	50	35	-	1.5	2.0
JPAD200	T0.92/บ0-106	Single	100	35	-	1.5	2.0
JPAD500	T0.92/T0.106	Single	500	35	-	1.5	2.0
PAD1	18	Single	1	45	120	1.5	0.8
PAD2	18	Single	2	45	120	1.5	0.8
PAD5	18	Single	5	45	120	1.5	0.8
PAD10	18	Single	10	35	-	1.5	2.0
PAD20	18	Single	20	35	-	1.5	2.0
PAD50	18	Single	50	35	-	1.5	2.0
PAD100	18	Singłe	100	35	-	1.5	2.0

Voltage Controlled Resistors

Part Number	N or P	Paekage	Breakdown Voltage [Volts, Min.)	Threshold Voltage (Volts)		Resistance (Channel Ω)		Geometry
				Min.	Max.	Min.	Max.	
VCR2N	N	18	15	5.5	7.0	20	60	NC
VCR3P	P	72	15	3.5	7.0	70	200	PE
VCR4N	N	18	15	3.5	7.0	200	600	NP
VCR5P	P	72	15	3.5	7.0	300	900	PC
VCR7N	N	72	15	2.5	5.0	4000	8000	NT

P-Channel MOSFETS

Part Number	Parkkage [TO-	Operating Mode	Threshold Voltage (Volts, Max.)	Resistance Channe: (Ω, Max.)	$\begin{gathered} \text { Leakage } \\ \text { Channe! On } \\ (\mathrm{mA}) \end{gathered}$		Leakage Channel Off (nA, Max.)	Brazalown Voltage (Volts, Max.)	Input Capacitance (pF, Max.)	Reversa Capacitance (pF, Max,)	Geometry
					Min.	Max.					
3N163	72	ENH	5.0	250	5.0	30	-	40	2.5	0.7	MRA
3N164	72	ENH	5.0	3W	3.0	30	-	30	2.5	0.7	MRA
MFE823	18	ENH	6.0	-	3.0	-	20	25	6.0	1.5	MRA

Current Regulator Diodes

Part Number	Package (TO-	Forward Current (mA)	Forward Current Toferance (\%)	Limiting Voltage (Volts, Max.)	Peak operating Voltage (Volts, Max.)	Dynamic Impedance (MS2, Msx.)	Forward Capacitance ($\mathrm{p} F, \mathrm{typ}$)	Geometry
CRO22	18	0.22	10	1.00	100	13		NKL
CRO24	18	0.24	10	1.00	100	10	-	NKL
CRO27	18	0.27	10	1.00	100	9.0	-	NKL
CR030	18	0.30	10	1.00	100	8.0	-	NKL
CR033	18	0.33	10	1.00	100	6.6	-	NKL
CR039	18	0.39	10	1.05	100	4.1	-	NKL
CRO43	18	0.43	10	1.05	100	3.3	-	NKL
CR047	18	0.47	10	1.10	100	2.7	-	NKL
CR056	18	0.56	10	1.20	100	1.9	-	NKL
CR062	18	0.62	10	1.30	100	1.55	-	NKL
CR068	18	0.68	10	1.15	100	1.35	-	NKM
CR075	18	0.75	10	1.20	100	1.15	-	NKM
CR082	18	0.82	10	1.25	100	1.00	-	NKM
CR091	18	0.91	10	1.29	100	0.88	-	NKM
CR100	18	1.00	10	1.35	100	0.80	-	NKMi
CRI10	18	1.10	10	1.40	100	0.70	-	NKM
CR120	18	1.20	10	1.45	100	0.64	-	NKM
CR130	18	1.30	10	1.50	100	0.58	-	NKM
CR140	18	1.40	10	1.55	100	0.54	-	NKM
CR150	18	1.50	10	1.60	100	0.51	-	NKM
CR160	18	1.60	10	1.65	100	0.475	-**	NKO
CR180	18	1.80	10	1.75	100	0.42	-	NKO
CR200	18	2.00	10	1.85	100	0.395	-	NKO
CR220	18	2.20	10	1.95	100	0.37	-	NKO
CR240	18	2.40	10	2.00	100	0.345	-	NKO
CR270	18	2.70	10	2.15	100	0.32	-	NKO
CR300	18	3.00	10	2.25	100	0.30	-	NKO
CR330	18	3.30	10	2.35	100	0.28	-	NKO
CR360	18	3.60	10	2.50	100	0.265	-	NKO
CR390	18	3.90	10	2.60	100	0.255	-	
CR430	18	4.30	10	2.75	100	0.245	-	NKO
CR470	18	4.70	10	2.90	100	0.235	-	NKO
J500	92	0.24	20	1.20	50	5.0	2	NCL
J501	92	0.33	20	1.30	50	3.0	2	NCL
J502	92	0.43	20	1.50	50	2.0	2	NCL
J503	92	0.56	20	1.70	50	1.4	2	NCL
J504	92	0.75	20	1.90	50	1.0	2	NCL
$\sqrt{505}$	92	1.00	20	2.10	50	0.6	2	NCL
$J 506$	92	1.40	20	2.50	50	0.4	2	NCL
J507	92	1.80	20	2.80	50	0.25	2	NCL
J508	92	2.40	20	3.10	50	0.25	2	NCL
J509	92	3.00	20	3.50	50	0.20	2	NCL
$J 510$	92	3.60	20	3.90	50	0.20	2	NCl .
$J 511$	92	4.70	20	4.20	50	0.15	2	NCL

VMOS Power FETs

Detailed Technical Specifications for the VMOS Power FETs listed above are not included in this data book.
Please contact your nearest Silicanix Sales Office for a VMOS Design Catalog.

Silicanix is a large volume supplier of die to the hybrid industry. Both military and industrial grader are available. Screen. ing includes 100% DC electrical probe and $\mathbf{i 0 0 \%}$ visual inspection of each die.

Physical Data

Physical layout and dimensions are presented in the die topography section.

- Each die is passivated with approximately 8.000 angstroms of non-crystalline glass.
- All die are gold backed. Gold backing is approximately 1.500 angrtromr thick.
- Die metallization is deposited aluminum approximately 12.000 angstroms thick.

Die Screening Criteria

Electrical Probe - Die are 100% probed in wafer form at $25^{\circ} \mathrm{C}$ to DC criteria.
Visual Criteria - Die are supplied with 100% visual sort to the criteria of MIL-Std. 750 method 2072.

Packaging

Die are supplied in dust proof, anti-static waffle packs. (see illustration)

Assembly

- Chips supplied in waffle packs normally do not require cleaning. Wafers should be cleaned after sawing or scribing. and fracturing.
- Chips should be handled with a vacuum pick-up with protected tip or with tweezers gripping the chip on its rider.
- When handling MOSFET chipr, particularly non-gate protected types, steps must be taken to prevent damage by static discharge. In some extreme carer, handling precautions may be necessary for junction FET chips.
- Chips can be die attached either eutectically or by conductive epoxy when lower temperatures are necessary. Gold silicon eutectic occurs at temperatures between $385^{\circ} \mathrm{C}$ and $425^{\circ} \mathrm{C}$.
- Banding of wirer from chip pads to posts can be achieved by thermocompression gold wire or ultrasonic aluminum wire bonded.

Options

- SEM - Scanning electron microscope examination and control in accordance with MIL-Std-883 Method 2018 can be ordered on chipr and wafers.
- Wafer qualification to unprobed parameters - sample testing of purchased chips to demonstrate capability to perform at data sheet temperature extremes by use of LTPD techniques can be provided.
- Hot probe - Siliconix has a chip processor/distributor with hot probe capability available.

Chip Packaging

Chips are packaged as individual die in the flat waffle carrier illustrated in Figure 1. The carrier has a cavity size adequate to allow ease of loading/unloading and aiso prevents die from rotating within the cavity.

NOTE: CARAIER TOP \& BOTTOM SECURED EV CLIPS
Figure 1

pc board layout and construction for low leakage applications

In order to realize the full capability of these devices in circuits that are sensitive to very low currents, considerable care should be exercised in PC board layout and construction techniques. If proper care is not taken. board leakage currents can easily become much larger than the leakage currents of the devices themselves, especially under conditions of high temperature and humidity. Excessive leakage currents can be produced by poor quality boards, socket leakage, poor board layout, imperfectly cleaned boardr, or improperly applied or cured protective coatings.

It is important to start with quality PC boardr which have high resistivity and low susceptance to mosture. Boards of teflon or polycarbonate composition exhibit these attributes and are preferred. Glass-epoxy boards are less desirable because they will absorb morsture, and if used must be protected with a conformal coating.

The use of sockets should be avoided wherever possible since the pin-to-pin isolation is often not great enough to prevent small leakage currents from occurring. These currents can significantly degrade device performance in low leakage applications. If sockets cannot be avoided use the highest quality available, preferably teflon.

In laying out PC boardr. care should be taken to keep pinr and runs which are sensitive to very low currents away from pins and runs which will be at significantly higher or lower voltages. The most common leakage current problems occur between pins sensitive to low current levels and nearby pins at $\boldsymbol{a r}$ near one of the supply voltages, Thus, if the isolation between critical pins and nearby high or low voltage pins is increased, leakage is minimized,

In order to reduce leakage currents. it is very important that all PC boards and experimental breadboards be thoroughly cleaned with a solvent after construction. A recommended procedure is to wash each board in an ultrasonic cleaning bath of alcohol, trichloroethylene, or some other commercial solvent, and to blow dry with compressed aur. The purpose of this is to remove all skin oils (the greatest cause of leak age in improperiy cleaned boardsi, solder fluxes, and other films and residues left over from the construction process which can cause gross leakage problems and erratic device behavior. especially at temperatures above $85^{\circ} \mathrm{C}$.

For best results, the thoroughly cleaned boards should be protected against dirt, conductive films, and humidity by the application of a conformal coating. Urethane and Dow Corning's R-4-3117 Silicone are easy to use and offer sufficient protection under most operating conditions. Epoxy resuits in a more durable coating but care must be taken to insure that it is cured properly; an improperly cured layer of epoxy will make the high temperature leakage problem worse. Union Carbide's Parvlene also results in a relatively durable coating.

The ultimate leakage protection method consists of printed circuit metalization guard rings driven from a low impedance buffer amplifier whose output is at the same potential as the pin being protected. This completely eliminates board surface leakage at critical pinr by removing any difference in potential, but it is difficult to implement due to the extra buffer amplifier required and the tight PC board metalization spacings encountered.

dotio cheetis metol

p-channel JFETs designed for.

General Purpose Amplifiers

Performance Curves PC PD See Section 5

BENEFITS

- JAN Approved Version Available

'ABSOLUTE MAXIMUM RATINGS $\left(\mathbf{2 5}^{\circ} \mathrm{C}\right)$

Gate-Drain and Gate-Source Voltage (Note3).. 30 V
Gate Current. Forward Biased (Note 1). 50 mA
Total Device Dissipation (Derate $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 300 mW
Storage Temperature Range 65 to $+200^{\circ} \mathrm{C}$

'ELECTRICAL CHARACTERISTICS ($\mathbf{2 5}{ }^{\circ} \mathbf{C}$ unless otherwise noted)

p-channel JFETs designed for . . .

Small-Signal Amplifiers

8
 Siliconix
 Performance Curves PC PD See Section 5

BENEFITS

- Low Supply Voltage Operation $\mathbf{V}_{\text {GS }}$ (off) Typically 1.2 V

'ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain and Gate-Source Voltage (Note 3) 30 V
Gate Current, Forward Biased (Note 1) 50 mA
Total Device Dissipation (Derate $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 300 mW
Storage Temperature Range. -65 to $+200^{\circ} \mathrm{C}$

*ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

PC
PD
*JEDEC Registered Data

NOTES:

1. Not JEDEC Registered
2. IGSS is JEDEC Registered at $\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$.
3. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.

p－channel JFETs designed for．

Small－Signal Amplifiers
－Analog Multipliers ■ Modulators

＊ABSOLUTE MAXIMUM RATINGS（ $25^{\circ} \mathrm{C}$ ）

Gate－Drain and Gate－Source Voltage（Note 1）．．．．．．．． 20 V
Gate Current ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 10 mA
Total Device Dissipation at（or below）
$25^{\circ} \mathrm{C}$ Free－Air Temperature（Note2）．．．．．．．．．． 300 mW
Storage Temperature Range．．．．．．．．．．．．．．-65 to $+200^{\circ} \mathrm{C}$
Lead Temperature
（1／16＂from case for 10 seconds）．．．．．．．．．．．．． $230^{\circ} \mathrm{C}$

T0．72 See Section 7

＊ELECTRICAL CHARACTERISTICS（ $25^{\circ} \mathrm{C}$ unless otherwise noted）

	Characteristic			2N3329		2N3330		2N3331		2N3332		Unit	Test Conditions	
				Min	Max	Min	Max	Min	Max	Min	Max			
1	$\begin{aligned} & S \\ & T \\ & A \\ & T \\ & 1 \\ & C \end{aligned}$	＇GSS	Gate Reverse Current		0.01		0.01		0.01		0.01	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OS}}=0$	
2					10		10		10		10		$V_{G S}=10 \mathrm{~V}, \mathrm{VDS}=0 . \mathrm{TA}-150^{\circ} \mathrm{C}$	
3		BVGSS	Gate－Source Breakdown Voltage	20		20		20		20		V	$1 G=10 \mu A, V D S=0$	
4		$V_{\text {GS }}$（off）	Gate－Source Cutoff Vottage		5		6		8		6		$V_{D S}=-15 V, I_{D}=-10 \mu \mathrm{~A}$	
5		1 DSS	Saturation Drain Curfent	－1	－3	-2	－6	－5	－15	－1	－6	mA	$V \mathrm{DS}=-10 \mathrm{~V}, \mathrm{VGS}^{\prime}=0$	
6		rosion）	Orain－Source ON Resistance		1000		800		600			Ω	$\mathrm{I}_{\mathrm{D}}=-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$	
7	$\begin{aligned} & D \\ & Y \\ & N \\ & A \\ & M \\ & 1 \\ & C \end{aligned}$	9 is	Common－Source input Conductance		0.2		0.2		0.2		0.2	$\mu \mathrm{mho}$	$V_{D S}=-10 \mathrm{~V} \quad \begin{aligned} & 2 \mathrm{~N} 3329: 1_{D}=-1 \mathrm{~mA} \\ & 2 \mathrm{~N} 3330: 1_{D}=-2 \mathrm{~mA} \\ & 2 \mathrm{~N} 3331:\left.\right\|_{D}=-5 \mathrm{~mA} \\ & 2 \mathrm{~N} 3332: 1_{D}=-1 \mathrm{~mA} \end{aligned}$	$f=1 \mathrm{kHz}$
8		$\mathrm{grs}^{\text {S }}$	Common－Source Reverse Transfer Conductance		0.1		0.1		0.1		0.1			
9.		g_{os}	Common－Source Output Conductance		20		40		100		20			
10		Sfs	Commorr Source Forward Transconductance	1000	2000	1500	3000	2000	4000	1000	2200			
11				900		1350		1800		900				$4=10 \mathrm{MHz}$
12		$C_{\text {iss }}$	Common－Source Inpur Capacitance		20		20		20		20	pF	$V_{D S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=1 \mathrm{~V}$	$\mathrm{f}^{\prime}=1 \mathrm{MHz}$
13		NF	Noise Figure		3		3		4		1	dB	$\begin{aligned} & V_{D S}=-5 \mathrm{~V}, \mathrm{ID}^{x}=-1 \mathrm{~mA} \\ & \mathrm{R}_{\text {gen }}=1 \mathrm{~m} \Omega \end{aligned}$	$f=1 \mathrm{kHz}$
14		NF	Noise Figure								5		$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-5 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=-1 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{gen}}=10 \mathrm{MS} \end{aligned}$	$f=10 \mathrm{~Hz}$

[^1]PC

n-channel JFETs designed for.
 Small-Signal Low Power Applications

*ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage (Note 1) -40 V
Gate Current 10 mA
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$
Free-Air Temperature (Note 2) , , , . , . 300 mW
Storage Temperature Range -65 to $+175^{\circ} \mathrm{C}$
Maximum Operating Temperature $150^{\circ} \mathrm{C}$

*ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathbf{C}\right.$ unless otherwise noted)

* \downarrow EDEC registered data.

NOTES:

1. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at rate of $2.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

3 To minumize heating on high loSS units, this parameter is measured during a 2 ms interval 10 ms after power is applied. (Not a JEDEC condition.)

p-channel JFETs designed for.

Analog Switches
 Choppers
 Commutators Amplifiers

Performance Curves PE See Section 5

BENEFITS

- Low Insertion Loss
$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}<150 \Omega(2 \mathrm{~N} 3386)$

*ABSOLUTE MAXIMUM RATINGS ($\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Gate-Drain Voltage (Note 1) . 30 V
Gate-Source Voltage (Note 1) . 30 V
Gate Current . 50 mA
Storage Temperature Range. , -65 to $+200^{\circ} \mathrm{C}$
Total Dissipation at $25^{\circ} \mathrm{C}_{\mathrm{A}}$ (Note 2) 300 mW

TO-72 See Section 7

'ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				2N3382		2N3384		2N3386		Unit	Test Conditions	
				Min	Max	Min	Max	Min	Max			
1	$\begin{aligned} & S \\ & T \\ & A \\ & T \\ & 1 \\ & C \end{aligned}$	IGSS	Gate Reverse Current		15		15		15	nA	$\begin{aligned} & V_{\mathrm{GS}}=30 \mathrm{~V} \\ & V_{\mathrm{DS}}=0 \end{aligned}$	
2		IGSS	Gate Reverse Current		15		15		15	$\mu \mathrm{A}$	$\begin{aligned} & V_{G S}=5 V \\ & V_{D S}=0 \end{aligned}$	$T_{A}=150^{\circ} \mathrm{C}$
3		BVGSS	Gate-Source Breakdown Voltage	30		30		30		V	$\begin{aligned} & \mathrm{GG}=1 \mu \mathrm{~A} \\ & \mathrm{VDS}=0 \end{aligned}$	
4		VGS(off)	Gate-Source Cutoff Voltage (Note 3)	1.0	5.0	4.0	5.0	4.0	9.5		$\begin{aligned} & V D S=-5 V \\ & D_{D}=-1 \mu \mathrm{~A} \end{aligned}$	
5		IDSS	Saturation Drain Current (Note 3)	-3.0	-30.0	-15.0	-30.0	-15.0	-50.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	
6		${ }^{1} \mathrm{D}$ (otf)	Drain Cutoff Current		-2 (6)		$\begin{aligned} & -2 \\ & (6) \end{aligned}$		$\begin{aligned} & -2.5 \\ & (10) \end{aligned}$	nA (V)	$\begin{aligned} & V_{D S}=-5 \mathrm{~V} \\ & V_{G S}=1 . \end{aligned}$	
7	$D$$\mathbf{Y}NAM\mathbf{D}$C	rdston)	Drain-Source ON Resistance		300		180		150	Ω	$\begin{aligned} & V_{G S}=0 \\ & V_{D S}=0 \end{aligned}$	$f=1 \mathrm{kHz}$
8		9fs	Common-Source Forward Transconductance (Note 3)	4500	12,500	7500	12,500	7500	15,000	$\mu \mathrm{m}$ ¢o	$\begin{aligned} & V_{D S}=-10 \mathrm{~V} \\ & V_{G S}=0 \end{aligned}$	
9		$\begin{array}{\|l\|} \hline \mathrm{C}_{\text {sgs }} \\ + \\ \mathrm{C}_{\text {dgs }} \\ \hline \end{array}$	Source-Gate Capacitance Plus Drain-Gate Capacitance		6.0		6.0		6.0	pF	$\begin{aligned} & V_{D S}=0 \\ & V_{G S}=10 \mathrm{~V} \end{aligned}$	$\mathrm{f}=140 \mathrm{kHz}$
10		$\mathrm{C}_{\text {iss }}$	Common-Source input Capacitance	16 Typ							$\begin{aligned} & V_{D S}=-5 V \\ & V_{G S}=1 \mathrm{~V} \end{aligned}$	

PE
*JEDEC registered data.
NOTE:

1. Due to symmetrical geometry, units may be operated with source and drain leads interchanged.
2. Derate linearty to $+175^{\circ} \mathrm{C}$ at $2 \mathrm{~mW} f^{\circ} \mathrm{C}$
3. Pulsewidth $=2 \mathrm{~ms}$, duty cycle $\leqslant 3 \%$

n-channel JFETs designed for.

Performance Curves NP See Section 5

Small-Signal Amplifiers Switches

BENEFITS

- Operates from High Supply Voltages

$$
\mathrm{BV}_{\mathrm{GSS}}>50 \mathrm{~V}
$$

TO-18 See Section 7

*ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage (Note 1) -50 V
Gate Current . 10 mA
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$
Free-Air Temperature (Note 2) , 300 mW Storage Temperature Range. 65 to $+200^{\circ} \mathrm{C}$

*ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				2N3436		2N3437		2N3438		Unit	Test Conditions	
				Min	Max	Min	Max	Min	Max			
1.	$\begin{gathered} S \\ T \\ A \\ T \\ 1 \\ C \end{gathered}$	IGSS	Gate Reverse Current		-0.5		-0.5		-0.5	กA	$V_{G S}=-30 \vee, V_{\text {DS }}=0$	
2					-1.0		-1.0		-1.0	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
3		BVGSS	Gate-Source Breakdown Voltage	-50		-50		-50		V	$\mathrm{I}_{\mathrm{G}}=-1, A^{\prime}, V_{D S}=0$	
4		ID(off)	Drain Cutoff Current		$\begin{array}{r} 1.0 \\ (-10.0) \end{array}$		$\begin{array}{r} 1.0 \\ \{-5.0\} \end{array}$		$\begin{array}{r} 1.0 \\ (-2.5) \end{array}$	nA (V)	$V_{D S}-20 \mathrm{~V}, \mathrm{VGS}^{\prime}=1$)	
5		VGSiotil	Gaie Source Cutoff Voltage		-9.8		-4.8		-2.3	V	$V_{D S}=20 \mathrm{~V}, I_{D}=1 \mu \mathrm{~A}$	
6		ICss	Saturation Drain Current	3.0	15.0	0.8	4.0	0.2	1.0	mA	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
7	$\begin{gathered} A \\ \text { M } \\ 1 \\ \text { C } \end{gathered}$		Common-Source Forward Transconductance	2500	10.000	1500	6000	800	4500	umho	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$f=1 \mathrm{kHz}$
8			Common-Soutce Output Conductance		35		20		5		$\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V} . \mathrm{V}_{\text {GS }}=0$	$f=1 \mathrm{MHz}$
9		$C_{\text {coss }}$	Common-Source Output Capacitance		6		6		6	pF		
10		$C_{\text {iss }}$	Common-Source Input Capacitance		(18)		18 (6)		18 (4)	pF (V)	$V_{G S}=0 \vee, V_{D S}=()$	
11		NF	Noise Figure				2		2	dB	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{R}_{\mathrm{gen}}=1 \mathrm{meg}, 8 \mathrm{Bt}=6 \mathrm{~Hz} \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$

- JEDEC Registered Dora.

NOTES:

1. Due to symmetrical geometry, these units may be operated with source and draifl leaus interchanged.
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at rate of $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

n-channel JFETs designed for.

Small-Signal Low Noise Amplifiers

Silidinix
Performance Curves NP See Section 5

BENEFITS

- Operates from High Supply Voltages $\mathrm{BV}_{\mathrm{GSS}}>50 \mathrm{~V}$

1. Due to symmetrical geometry, these units may be operated with source and drain feads interchanged
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at rate of $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

In-channel JFETs designed for.

Performance Curves NFA See Section 5

Low Noise Amplifiers

Choppers

BENEFITS

- Operates from High Supply Voltages
$B V_{\text {GSS }}>50 \mathrm{~V}$

TO-72 Ses Section 7

"ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

n-channel JFETs designed for

Small-Signal Amplifiers Oscillators

'ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage (Note 1) . . . -50 V
Gate Current , . , , , . , , 10 mA
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$
Free-Air Temperature (Note 2) 300 mW
Storage Temperature Range -65 to $+200^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16^{\prime \prime}$ from case for 10 seconds) $300^{\circ} \mathrm{C}$

TO. 72
See Section 7

'ELECTRICAL CHARACTERISTICS $\left(\mathbf{2 5}{ }^{\circ} \mathbf{C}\right.$ unless otherwise noted)

		Characteristic		2N3821		2N3822		Unit	Tapt Conditions	
				Min	Max	Min	Max			
${ }^{1}$		${ }^{\text {GSS }}$ Gate Reverse Current			-01		-0.1	nA		
					-0.1		-0.1	$\mu \mathrm{A}$	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	$150^{\circ} \mathrm{C}$
3	S	BVGSS	Gate Source Breakdown Voltage	-50		-50		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{OS}}=0$	
4	A	VGS[off]	Gate-Source Cutaff Voltage		-4		-6		$V_{0 S}=15 \mathrm{~V}, 10=0.5 \mathrm{nA}$	
5	1	$V_{G S}$	Gate-Source Voltage	-0.5	-2				$V_{D S}=15 \mathrm{~V} .10=50 \mu \mathrm{~A}$	
						-1	-4		$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$	
6		Ioss	Saturation Drain Current (Note 3)	0.5	2.5	2	10	mA	$V_{\text {OS }}=15 \mathrm{~V}$. $\mathrm{VGS}=0$	
7	$\begin{aligned} & D \\ & \mathbf{Y} \\ & \mathbf{N} \\ & \mathbf{A} \\ & \mathbf{M} \\ & \mathbf{1} \\ & \mathbf{C} \end{aligned}$	$9_{\text {fis }}$	Common-Source Forward Transconductance (Note 3)	\$500	4500	3000	6500	$\mu \mathrm{mho}$	$V_{O S}=15 V_{1} V_{G S}=0$	$\mathrm{f}=\mathrm{i} \mathrm{kHz}$
8		iYfs ${ }^{\text {l }}$	Common-Source Forward Transadmittance	1500		3000				$\mathrm{f}=100 \mathrm{MHz}$
9		905	Common-Source Output Conductance (Note 3)		10		20			$\mathrm{f}=1 \mathrm{kHz}$
10		$\mathrm{C}_{\text {iss }}$	commonsoure Input Capacitance		6		6	pF		$t=1 \mathrm{MHz}$
11		$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		3		3			
12		NF	Noise Figure		5		5	dB	$\begin{aligned} & V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{GS}} \sqcap 0 \\ & R_{\text {gen }}=1 \mathrm{meg}, \mathrm{BW}=5 \mathrm{~Hz} \end{aligned}$	$f=10 \mathrm{~Hz}$
13.		\bar{e}_{n}	equivalent Short-Circuit Input Noise Voltage		200		2D0	$\frac{n \mathrm{~V}}{\sqrt{\text { ¢2 }}}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{BW}=5 \mathrm{~Hz}$	

[^2]NRL
NOTES:

1. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.
2. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at rate of $2 \mathrm{~mW} / \mathrm{C}$.

3 These parameters are measured during a 2 mses interval 100 msee after d-c power is applied.

n-channel JFET designed for : . .

VHF Amplifiers
Oscillators
Mixers

Siliminix
 Performance Curves NRL See Section 5

BENEFITS

- Low Noise
$\mathrm{NF}<2.5 \mathrm{~dB}$ @ 100 MHz
*ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)
Gate-Drain or Gate-Source Voltage (Note 1) -30 V
Gate Current , 10 mA
Total Device Dissipation at Ior below) $25^{\circ} \mathrm{C}$
Free-Air Temperature (Note 2) 300 mW
Storage Temperature Range. -65 to $+200^{\circ} \mathrm{C}$ Lead Temperature ($1 / 16^{\prime \prime}$ From Case for 10 Sec) . . . $300^{\circ} \mathrm{C}$

T0-72 See Sgetion 7

'ELECTRICAL CHARACTERISTICS ($\mathbf{2 5}{ }^{\circ} \mathbf{C}$ unless otherwise noted)

			Characteristic	Min	Max	Unit		tions
1		IGSS	Gate Reverse Current		-0.5	nA	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
2					-0.5	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
3	$\begin{aligned} & A \\ & T \\ & 1 \\ & C \end{aligned}$	BVGSS	Gate-Source Breakdown Voltage	-30		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
4		$\mathrm{V}_{\text {GSioffi }}$	Gate-Source Cutoff Voltage		-8		$V_{D S}=15 \mathrm{~V}, 1_{D}=0.5 \mathrm{nA}$	
5		$V_{\text {GS }}$	Gate-Source Voltage	-1.0	-7.5		$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=400 \mu \mathrm{~A}$	
6		IDSS	Saturation Drain Current	4	20	mA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 3)	
7	$\begin{gathered} \mathrm{D} \\ \mathrm{Y} \\ \mathrm{~N} \\ \mathrm{~A} \\ \mathrm{M} \\ \mathrm{I} \\ \mathrm{C} \end{gathered}$	9fs	Commen-Source Forward Transconductance	3,500	6,500	$\mu \mathrm{mho}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\dagger=1 \mathrm{kHz}$ (Note 3)
8		\| y fs \mid	Common-Source Forward Transadmittance	3,200				$f=200 \mathrm{MHz}$
9		9 os	Common-Source Output Conductance		35			$\mathrm{f}=1 \mathrm{kHz}$ (Note 3)
10		Giss	Common-Surre Input Conductance		800			$\mathrm{f}=200 \mathrm{MHz}$
11		9oss	Common-Source Output Conductance		200			
12		$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		6	pF		$f=1 \mathrm{MHz}$
13		Crss	Common-Source Reverse Transfer Capacitance		2			
14		NF	Noise Figure		2.5	dB	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, V_{G S}=0 \\ & R_{G}=1 \mathrm{kS} \end{aligned}$	$\mathfrak{f}=100 \mathrm{MHz}$

-JEDEC Registered Data

NOTES:

1. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged,
2. Derate linearly to $175^{\circ} \mathrm{C}$ tree-a, temperature at rate " $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
3. These par ameters are measured during a 2 msec interval 100 msec after d-c power is applied.

n-channel JFET designed for

High Speed Commutators ■ Choppers

Performance_Curves NRL See Section 5

BENEFITS

- Low Insertion Loss
$r_{\text {ds }}$ (on) $<250 \Omega$
- High Off-Isolation
$I_{D(o f f)}<0.1 \mathrm{nA}$

p-channel JFET designed for .

General Purpose Amplifiers

*ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$	
Gate-Drain or Gate-Source Voltage (Note 1) 20 V	
Drain-Source Voltage - 20 V
Gate Current	10 mA
Total Device Dissipation at (or below)	
$25^{\circ} \mathrm{C}$ Free-Air Temperature (Note 2)	300 mW
Storage Temperature Range.	65 to $+200^{\circ} \mathrm{C}$
Lead Temperature 1/16" From Case For 10	

Performance Curves PC See Section 5

- ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic				2N3909		Unit	Test Conditions	
				Min	Max			
1		IGSS	Gate Reverse Current		10	nA	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
2	S				1	$\mu \mathrm{A}$		$\mathrm{T}=100^{\circ} \mathrm{C}$
3		BVGSS	Gate-Source Break down Voltage	20		V	$\mathrm{I}_{\mathrm{G}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
4	AT11c	$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage		8.0		$V_{D S}=-10 \mathrm{~V}, 1 \mathrm{D}=-10 \mu \mathrm{~A}$	
5		V_{GS}	Gate-Source Voltage	0.3	7.9		$V_{D S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-30 \mu \mathrm{~A}$	
6		IDSS	Saturaticn Drain Current	-0.3	-15	mA	$V_{\text {DS }}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
7	D$Y$$N$A	gfs	Commor-Gource Forward Transconiductance	1,000	5,000	$\mu \mathrm{mho}$		$f=1 \mathrm{kHz}$
8		gos	Commor-Source Output Conductance		100			$f=1 \mathrm{kHz}$
9		$\mid \mathrm{Y} \mathrm{fs} \mathrm{l}$	Common-Source Forward Transadmittance	900				$f=10 \mathrm{MHz}$
10	l	Ciss	Common-Source Input Capacitatice		32	pF		$f=1 \mathrm{MH}$
11		$\mathrm{C}_{\text {rss }}$	Cornmor-Source Reverse Transfer Capacitance		16			$f=1 \mathrm{MH}_{2}$

*JEDEC registered data
Notes
1 Due to symmetrical geometry, these units may be operated with source and drain leads interchanged
2 Derate limearly to $175^{\circ} \mathrm{C}$ free-air temperature at rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

monolithic dual n-channel JFETs designed for.
 Differential Amplifiers

'ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage - 50 V
Gate Current . 50 mA
Total Device Dissipation
(Derate $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$) 300 mW
Storage Temperature Range. 65 to $+200^{\circ} \mathrm{C}$
Performance Curves NNR See Section 5

BENEFITS

- Minimum System Error and Calibration

5 mV Offset Maximum (2N3921)

- Simplifies Amplifier Design

Low Output Conductance
TO-71 Ses Section 7

SilidTnix
'ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

matched dual n-channel JFETs designed for

Low and Medium Frequency Differential Amplifiers

 High Input Impedance Amplifiers| 'ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$) | |
| :---: | :---: |
| te-Drain | |
| Gate-To-Gate Voltage | $\pm 100 \mathrm{~V}$ |
| Gate Current | 50 mA |
| Total Device Dissipation $85^{\circ} \mathrm{C}$ (EachSide) | 250 mW |
| Case Temperature (Both Sides) | 500 mW |
| Power Derating (Each Side) | $2.86 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |
| (Both Sides) | $4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |
| Temperature Range | 5 to $+125^{\circ} \mathrm{C}$ |
| | s) . . . 30 |

Performance Curves NFA See Section 5

BENEFITS

- High Accuracy \& Stability Offset Less Than 5 mV (2N3954, 54A) Drift Less Than $5 \mu \mathrm{~V} /{ }^{\circ} \mathbf{C}$ (2N3954A)
- Wide Dynamic Range
$\mathbf{I}_{\mathbf{G}}$ Specified @ VDS $=20 \mathrm{~V}$
- Low Capacitance

Ciss ${ }_{4} \mathrm{pF}$

*ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

NOTE:

1. Assumes smaller value in numerator.

matched dual n-channel JFETs designed for.

- Low and Medium Frequency Differential Amplifiers

High Input Impedance Amplifiers

*ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Any Lead-To-Case Voltage. $\pm 100 \mathrm{~V}$
Gate-Drain or Gate-Source Voltage -50 V
Gate-To-Gate Voltage
$\pm 100 \mathrm{~V}$
Gate Current
50 mA
Total Device Dissipation $85^{\circ} \mathrm{C}$
(Each Side). 250 mW
Case Temperature
(Both Sides). 500 mW
Power Derating (Each Side) , $2.86 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
(Both Sides) $4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Storage Temperature Range. -65 to $+250^{\circ} \mathrm{C}$ Lead Temperature $11 / 16$ from case for 10 seconds). . . $300^{\circ} \mathrm{C}$

*ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic				2N3956		2N3957		2N3958		Unit	Test Conditions	
				Min	Max	Min	Max	Min	Max			
1	ATIC	IGSS	Gate Reverse Current		-100		-100		-100	pA	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
2					-500		-500		-500	aA		$T_{A}=150{ }^{\circ} \mathrm{C}$
3		BVGSS	Gate-Saurce Breakdown Voltage	-50		-50		-50		\checkmark	$V_{D S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$	
4		$\mathrm{V}_{\mathrm{GS}}(\mathrm{oft})$	Gate-Source Cutoff Voltage	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5		$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{ID}=1 \mathrm{nA}$	
5		$\mathrm{V}_{\mathrm{GS}}(\mathrm{f})$	Gate-Source Forward Voltage		2.0		2.0		2.0		$V_{\text {OS }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}$	
6		VGS	Gate-Source Vottage		-4.2		-4.2		-4.2		$V_{D S}=20 \mathrm{~V}, I_{0}=50 \mu \mathrm{~A}$	
7				-0.5	-4.0	-0.5	-4.0	-0.5	-4.0		$V_{D S}=20 \mathrm{~V}, \mathrm{iD}=200 \mu \mathrm{~A}$	
8		${ }^{\text {IG }}$	Gate Operating Current		-50		-50		-50	pA	$V_{O S}=20 \mathrm{~V}, 10=200 \mu \mathrm{~A}$	
9					-250		-250		-250	nA		$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$
10		IDSS	Saturation Drain Current	0.5	5.0	0.5	5.0	0.5	5.0	mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} . \mathrm{V}_{\mathrm{GS}}=0$	
11		\|Yfs ${ }^{\text {d }}$	Common-Source Forward Transconductance	1000	3000	1000	3000	1000	3000	$\mu \mathrm{mho}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{VGS}=0$	$t=1 \mathrm{kHz}$
12				1000		1000		1000				$f=200 \mathrm{MHz}$
13	D	gos	Common-Source Output Conductance		35		35		35			$\mathrm{f}=1 \mathrm{kHz}$
14	$\left\|\begin{array}{c} \mathbf{N} \\ \mathbf{A} \end{array}\right\|$	$\mathrm{C}_{\text {iss }}$	Common-Source 1nput Capacitance		4.0		4.0		4.0	pF		$f=1 \mathrm{MHz}^{\prime}$
15	M	$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		1.2		1.2		1.2			
16		$\mathrm{C}_{\text {dgo }}$	Drain-Gate Capacitance		1.5		1.5		1.5		$V_{D G}=10 \mathrm{~V}, \mathrm{IS}^{\prime}=0$	
17		NF	Common-Source Spot Noise Figure		0.5		0.5		0.5	d8	$\begin{aligned} & \mathrm{VOS}_{\mathrm{OS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{G}}=10 \mathrm{~m} \Omega \end{aligned}$	$\mathrm{f}=100 \mathrm{~Hz}$
18	M	${ }^{1} \mathrm{G}_{1}{ }^{-1} \mathrm{G} 21$	Differential Gate Aeverse Current		10		10		10	nA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A}$	$T=125^{\circ} \mathrm{C}$
19		IDSS1/lDSS2	Saturation Drain Current Ratio (Note il	0.95	1.0	0.90	1.0	0.85	1.0	-	$V_{D S}=20 \mathrm{~V}, \mathrm{VGS}_{\text {G }}=0$	
20	$\left\lvert\, \begin{aligned} & \mathbf{C} \\ & \mathbf{H} \end{aligned}\right.$	$\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2} \mid$	Differential Gate-Source Voltage		15		20		25	mV_{m}	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$	
21	${ }^{1}$	$\Delta V_{\text {GS }}{ }^{-V_{G S 2}}$	Gate-Source Voltage Differential Change With Temperature		4.0		6.0		8.0			$T=25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$
22	G				5.0		7.5		10.0			$\mathrm{T}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
23		$\mathrm{g}_{\mathrm{fs} 1} / \mathrm{g}_{\mathrm{fs} 2}$	Transconductance Ratio (Note 1)	0.95	1.0	0.90	1.0	0.85	1.0	-		$\mathrm{f}=1 \mathrm{kHz}$
*JEOEC registered dato NOTE: 1. Assumes smalter value in numerator.												

n-channel JFET designed for

Performance Curves NH See Section 5

- Analog Switches
 - Choppers Commutators

BENEFITS

- Low Insertion Loss. No Offset Voltage

$$
\mathrm{R}_{\mathrm{DS}(\mathrm{on})}<220 \Omega
$$

- Short Switching Aperture Times

$$
\begin{aligned}
& \mathbf{C}_{\text {rss }}<1.5 \mathrm{pF} \\
& \mathrm{t}_{\text {(on) }}+\mathrm{t} \text { (off) }<50 \mathrm{~ns} \text { Typical }
\end{aligned}
$$

*ABSOLUTE MAXIMUM RATINGS $\left(\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage. 30 V
Gate Current. 10 mA
Total Device Dissipation
($25^{\circ} \mathrm{C}$ Free-Air Temperature) 300 mW
Power Derating . $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+200^{\circ} \mathrm{C}$
Operating Temperature Range. -55 to $+175^{\circ} \mathrm{C}$
Lead Temperature
(1/16" from case for 10 seconds) $300^{\circ} \mathrm{C}$
10.72

See Section 7

'ELECTRICAL CHARACTERISTICS ($\mathbf{2 5}{ }^{\circ} \mathbf{C}$ unless otherwise noted)

Amplifier Design Chart
(CS_{5} for 3 dB . Point at 50 Hz)

VOD (V)	$\mathrm{R}_{\mathbf{S}}$ (Ω)	$\begin{gathered} \mathbf{R}_{1} \\ (\mathrm{M} \Omega) \end{gathered}$	$\begin{gathered} \mathbf{R}_{2} \\ (\mathrm{M} \Omega) \end{gathered}$	$\begin{array}{r} C_{S} \\ (\mu \mathrm{~F}) \end{array}$	$\begin{aligned} & \text { IDD } \\ & \text { (mA) } \end{aligned}$	RD (Ω)	$e_{0} \operatorname{Max}$ (V)	AV
2N3970								
30	560	1	∞	100	11	1K	3	9
	2.7K	3.3	10	100	6	1K	2.5	8
$\begin{aligned} & V_{D D}=15 \\ & v_{S S}=-15 \end{aligned}$	3K	1	Source Follower		7	0	8.5	0.96
	7.5 K	1			6	0	8.5	0.96
$\begin{aligned} & V_{D D}=15 \\ & V_{S S}=-15 \end{aligned}$	7.5K	1			6	0	15	0.97
2N3971								
20	2K	4.7	11	100	5	1 K	1.5	8-11
	330	1	∞	100	8	820	1.5	9
	330	1	∞	0	8	820	3	1.9
30	2K	4.7	11.	100	6	2.7K	5	18-24
	330	1	∞	100	8	1.5K	2.5	15
	330	1	∞	0	8	1.5K	5.5	3.3
$\begin{aligned} & V_{D D}=15 \\ & V_{S S}=-15 \end{aligned}$	4.7K	1	Source Follower		5	0	11	0.97
2N3972								
10	220	1	∞	0	5	1.2K	1.5	3.5
20	220	1	∞	0	5	2.2K	3.5	7
30	7K	1	12	100	4	3.9K	5	38
	1 K	1	12	100	4	5.6K	3.5	40-55
$\begin{aligned} & V_{D D}=15 \\ & V_{S S}=-15 \end{aligned}$	4.7K	1	Source Follower		2.5	0	13	0.98
	7.5K	1			1.5	0	13	0.98

n-channel JFETs designed for

- Analog Switches

Commutators
Choppers
Integrator Reset Switch

"ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Reverse Gate-Drain or Gate-Source Voltage. 40 V
Gate Current . 10 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Case Temperature
(Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
1.8 W

Storage Temperature Range. -55 to $+200^{\circ} \mathrm{C}$ Lead Temperature
(1/16" from case for 60 seconds). $300^{\circ} \mathrm{C}$

BENEFITS

- Low Insertion Loss

High Accuracy in Test Systems
$\mathrm{R}_{\mathrm{ON}}<30 \Omega$ (2N4091)

- High Off-Isolation
${ }^{1} \mathrm{D}$ (off) $<200 \mathrm{pA}$
- High Speed
$t_{\text {rise }}<10 \mathrm{~ns}$ (2N4091)
- Short Sample and Hold Aperture Time $C_{\text {rss }}<5 \mathrm{pF}$

*ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				2N4091		2N4092		2N4093		Unit	Tert Conditions				
				Min	Max	Min	Max	Min	Max						
1		BVGSS	Gate-Source Breakdown Voltage	40		40		40		V	$1 g^{\prime}=-1 \mu A_{1}$	DS $=0$			
2		'DGO	Drain Reverse Currant		200		200		200	pA	$V_{G S}=-20 \mathrm{~V}, \mathrm{IS}=0$		$150^{\circ} \mathrm{C}$		
3					400		400		400	nA					
4		ID(off) Drain Cutoff Current							200	pA	$V_{D S}=20 \mathrm{~V}$	$V_{G S}=-6 \mathrm{~V}$			
5									400	nA			$150^{\circ} \mathrm{C}$		
6							200			pA		$\mathrm{V}_{\mathrm{GS}}=-8 \mathrm{~V}$			
7	S						400			nA			$150^{\circ} \mathrm{C}$		
8	A				200					OA		$\mathrm{VGS}_{G}=-12 \mathrm{~V}$			
9	T				400					nA			$150^{\circ} \mathrm{C}$		
10	c	VGS(otf)	Gate-Source Cutoff Voltage	-5	-10	-2	-7	-1	-5	\checkmark	$V_{D S}=20 \mathrm{~V}, \mathrm{ID}^{\text {a }}=1 \mathrm{nA}$				
11		'DSs	Saturation Drain Current (Note 1)	30		15		8		mA	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$				
12		VDS(on)	Drain-Source ON Voltage						0.2	v	$V_{G S}=0$	$10=2.5 \mathrm{~mA}$			
13							0.2					$1 \mathrm{D}=4 \mathrm{~mA}$			
14					0.2							$\mathrm{D}=6.6 \mathrm{~mA}$			
15		rDSion)	Static Drain-Source ON Resistance		30		50		80	Ω	$V_{G S}=0.10{ }^{\text {d }}=1 \mathrm{~mA}$				
16	$\begin{aligned} & \mathbf{D} \\ & \mathbf{Y} \\ & \mathbf{N} \end{aligned}$	rdston)	D'rain-Source ON Resistance		30		50		80	Ω	$\mathrm{V}_{\mathrm{GS}} \times 0 . \mathrm{I}_{\mathrm{D}}=0$		$\mathrm{f}=1 \mathrm{kHz}$		
17		$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		16		16		16	pF	$\mathrm{V}_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		$\mathrm{f}=1 \mathrm{MHz}$		
18		Crss	Common-Source Reverse Transfer Capacitance		5		5		5		$\mathrm{V}_{\mathrm{DS}}=0 . \mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}$				
19	W	\|tdon) ${ }^{\text {a }}$	Turn-ON Dełay Time		15		15		20	ns					
20		t_{r}	Rise Time		10		20		40						
21		$t_{\text {off }}$	Turn-OFF Time		40		60		80						
	EDE	6 registere	data.				$v_{D D}$						NC		
	Puls	ewidth $=3$	$0 \mu \mathrm{~s}$, duty cycle $\leqslant \mathbf{3 \%}$					vout			CLE <10x TOR Impedance		is TANCE 10 m Citance 1.7 DF		

n-channel JFETs designed for - - -

Ultra-High Input Impedance Amplifiers
Electrometers pH Meters Smoke Detectors

BENEFITS

- Low Power

IDSS $<90 \mu \mathrm{~A}(2 \mathrm{~N} 4117)$

- Minimum Circuit Loading
$\mathbf{I}_{\mathrm{GSS}}<1 \mathrm{pA}(2 \mathrm{~N} 4117 \mathrm{~A}$ Series)

'ABSOLUTE MAXIMUM RATINGS ($\mathbf{2 5}{ }^{\circ} \mathrm{C}$)
 Gate-Drain or Gate-Source Voltage (Note 1) , -40 V

Gate-Current . 50 mA
Total Device Dissipation
(Derate $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$) 300 mW
Storage Temperature Range. -65 to $+175^{\circ} \mathrm{C}$
Lead Temperature
(1/16" from case for 10 seconds).
$255^{\circ} \mathrm{C}$

T0. 72
Ser Saction 7

'ELECTRICAL CHARACTERISTICS ($\mathbf{2 5}^{\circ} \mathbf{C}$ unless otherwise noted)
'JEOEC registered data.
NOTES:

1. Due to symmetrical geonetry, thew units may be operated with source and drain leads interchanged.
2. Thir parameter is measured during a $\mathbf{2}$ ms interval 100 ms after power is applied. (Not a JEOEC condition.)

Amplifier Design Chan

VDD (V)	$\underset{(\mathbf{k} \Omega\}}{\mathbf{R}_{\mathbf{S}}}$	c_{s}	IDD	$\begin{gathered} \mathrm{R}_{\mathrm{D}} \\ (\mathbf{k} \Omega) \end{gathered}$	${ }^{\circ} \mathrm{O}$ Max (pK V)	
2N4117						
10	10		45	120	1	5.7
20	10		45	270	1.5	12
				360	1	15
30	10		45	420	4	17
				620	1	22
$\begin{aligned} & V_{D D}=+15 \\ & V_{S S}=-15 \end{aligned}$	510	Source Follower	35	0	8	0.97
2N4118						
10	8.2		120	36	0.6	2.2
				50	0.2	3.5
20	8.2		120	120	1	7.5
30	8.2		120	180	2	10
$\begin{aligned} & V_{D D}=+15 \\ & V_{S S}=-15 \end{aligned}$	510	Source Follower	35	0	8	0.97
2N4119						
20	56	$\begin{aligned} & 5 \mu \mathrm{~F}^{*} \\ & \text { at } 5 \mathrm{~V} \end{aligned}$	70	150	1	10
30	56		70	240	3	17
				330	1	17-23
20	6.8		300	27	1	1.8
30	6.8		300	68	2	4.5
$\begin{aligned} & V_{D D}=+15 \\ & V_{S S}=-15 \end{aligned}$	510	Source Follower	40	0	10	0.97

*AC Amplifier

n-channel JFETs

 designed for
Small-Signal Amplifiers

- VHF Amplifiers

■ Oscillators

- Mixers

*ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage (Note 1) $-30 \mathrm{~V}$
Gate Current 10 mA
Drain Current 15 mA
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$Free-Air Temperature (Note 2) 300 mW
Storage Temperature Range. -65 to $+200^{\circ} \mathrm{C}$
Lead Temperature(1/la" from case for 10 seconds).$300^{\circ} \mathrm{C}$

T0. 72
See Section 7

*ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

*JEDEC registered data.

NRL

NOTES:

1. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.
2. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. These parameters are measured during a 2 msec interval 100 msec after d - c power is applied.

n-channel JFETs designed for

VHF Amplifiers

Mixers

*ABSOLUTE MAXIMUM RATINGS $\left.\mathbf{(2 5}{ }^{\circ} \mathbf{C}\right)$

Gate-Drain or Gate-Source Voltage (Note 1) -30 V
Gate Current . 10 mA
Drain Current . 20 mA
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$
Free-Air Temperature (Note 2) 300 mW
Storage Temperature Range. -65 to $+200^{\circ} \mathrm{C}$
Lead Temperature
(1/16" from case for 10 seconds) $300^{\circ} \mathrm{C}$

*ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				2N4223		2N4224		Unit	Test Conditions	
				Min	Max	Min	Max			
1	ST$A$$T1C$	IGSS	Gate Reverse Current		-0.25		-0.5	nA	$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
2					-0.25		-0.5	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
3		BV GSS	Gate-Source Breakdown Voltage	-30		-30		V	$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
4		VGS\{off $\}$	Gate-Source Cutoff Voitage	-0.1	-8	-0.1	-8	V	$V_{D S}=15 \mathrm{~V}, I_{D}=\{ \}$	
				(0.25)	(0.25)	(0.5)	(0.5)	(nA)		
5		$V_{\text {GS }}$	Gate-Source Voltage	-1.0	-7.0	-1.0	-7.5	V		
				(0.3)	(0.3)	(0.2)	(0.2)	(mA)		
6		IDSs	Saturation Drain Current (Note 3)	3	18	2	20	mA	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
7	$\begin{aligned} & \mathbf{D} \\ & \mathbf{Y} \\ & \mathbf{N} \end{aligned}$	g_{f}	Common-Source Forward Transconductance (Note 3)	3000	7000	2000	7500	$\mu \mathrm{mho}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0$	$\mathrm{f}=1 \mathrm{kHz}$
8		Ciss	Common-Source Input Capacitance (Output Shorted)		6		6	pF		$\mathrm{f}=1 \mathrm{MHz}$
9		Crss	Common-Source Reverse Transfer Capacitance		2		2			
10	$\begin{aligned} & \mathbf{H} \\ & \mathbf{1} \\ & \mathbf{G} \\ & \mathbf{H} \end{aligned}$	${ }^{\prime} \mathrm{y}_{\mathrm{fs}} \mathrm{l}$	Common-Source Forward Transadmittance	2700		1700		$\mu \mathrm{mho}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$	$f=200 \mathrm{MHz}$
14		$\mathrm{giss}^{\text {is }}$	Common-Source liput Conductance (Output Shorted)		800		800			
12	F	$\mathrm{g}_{\text {oss }}$	commansareoutput. Conductance (Input Shorted)		200		2W			
13	$\begin{array}{\|l\|} \mathrm{E} \\ \mathrm{O} \end{array}$	G_{ps}	Small Signal Power Gain	10						
14		NF	Noise Figure		5				$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & R_{\text {gen }}=1 \mathrm{~K} \end{aligned}$	

[^3]n-channel JFETs designed for
*ABSOLUTE MAXIMUM RATINGS $\left(\mathbf{2 5}^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage (Note 1) -50 V
Gate Current . 50 mA
Total Device Dissipation (Note2) 300 mW
Storage Temperature Range. -65 to $+200^{\circ} \mathrm{C}$ Maximum Operating Temperature $175^{\circ} \mathrm{C}$ Lead Temperature
(1/16" from case for 10 seconds)
$.300^{\circ} \mathrm{C}$

SilidPrix
 Beefobectioce5Curves NP

BENEFITS

- Low Noise
$\mathrm{NF}<1 \mathrm{~dB}$ at 1 kHz
- Operation from Low Power Supply Voltages
$\mathbf{V}_{\mathrm{GS} \text { (off) }}<1 \mathrm{~V}$ (2N4338)
- Simple Biasing Design with Tightly Specified Parameter Tolerances 3:1 IDSS, Vp. gfs $^{\text {Ranges }}$
- High Off-Isolation as a Switch ${ }^{1} \mathrm{D}$ (off) $<50 \mathrm{pA}$

*ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise specified)

Characteristic				2N4338		2N4339		2N4340		2N4341		Unit	Test Conditions	
				Min	Max	Min	Max	Min	Max	Min	Max			
1		IGSS	Gate Reverse Current		-0.1		-0.1		-0.1		-0.1	nA	$V_{G S}=-30 \vee, V_{\text {DS }}=0$	
2					-0.1		-0.1		-0.1		-0.1	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
3	\mathbf{S}	BVGSS	Gate-Source Breakdown Voltage	-50		-50		-50		-50		V	$I_{G}=-1 \mu A, V_{D S}=0$	
4	A	$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	-0.3	-1	-0.6	-1.8	-1	-3	-2	-6		$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mu \mathrm{~A}$	
5	c	ID(off)	Drain Cutoff Current		$\begin{aligned} & 0.05 \\ & \{-5\} \end{aligned}$		$\begin{aligned} & 0.05 \\ & \{-5 \mid \end{aligned}$		$\begin{aligned} & 0.05 \\ & (-5) \end{aligned}$		$\begin{gathered} 0.07 \\ 1-10) \end{gathered}$	nA (V)	$\begin{aligned} & V_{D S}=15 \mathrm{~V} \\ & V_{G S}=1, \end{aligned}$	
6		IDSS	Saturation Drain Current (Note 3)	0.2	0.6	0.5	1.5	1.2	3.6	3	9	mA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
7	$\begin{gathered} D \\ Y \\ A \\ N \\ A \\ M \\ 1 \\ C \end{gathered}$	9fs	Cornmon-Source forward Transconductance (Nota 3)	600	1800	800	2400	1300	3000	2000	4000	$\mu \mathrm{mho}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
8		g_{OS}	Common-Source Output Conductance		5		15		30		60			
9		$\mathrm{ras}^{\text {(on) }}{ }^{1}$	Drain-Source ON Resistance		2500		1700		1500		800	ohm	$\mathrm{VOS}^{\prime}=0 . \mathrm{V}_{\mathrm{GS}}=0$	
10		$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		7		7		7		7	pF	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$f=1 \mathrm{MHz}$
11		Crss	Common-Source Reverse Transfer Capacitance		3		3		3		3			
12		NF	Noise Figure		1		1		1		1	dB	$\begin{aligned} & V_{\mathrm{OS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{R}_{\text {gen }}=1 \mathrm{meg}, \mathrm{BW}=200 \mathrm{~Hz} \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$
*JEDEC registered data														NP
NOTES: 1. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged. 2. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. 3. These parameters are measured during a 2 msec interval 125 msec ($\mathrm{IDSS}^{\text {l }}$) and 625 msec ID+ fater d-c power is applied. (Not a JEDEC condition.)														

VDD (V)	95 (Ω)	$\begin{aligned} & \mathbf{R}_{1} \\ & \{\Omega\rangle \end{aligned}$	$\begin{aligned} & \mathrm{A}_{2} \\ & (\Omega) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathbf{S}} \\ & (\mu \mathrm{F}) \end{aligned}$	$\begin{gathered} \mathrm{IDO} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathrm{RD}_{\mathrm{D}} \\ (\mathrm{~K} \Omega) \end{gathered}$	${ }_{0}{ }_{0}$ Max (pk V)	${ }^{\text {A }} \mathbf{V}$
2N4338								
15	1500	1M	∞	0	0.25	36	2.5	9-12
						36	1.5	16-24
				30		47	2.0	20-30
	5100	1M	∞	0	0.12	82	3.0	10-10.5
				25		82	1.5	24-37
	36 K	1M	2 M	30	0.15	27	1.0	13-18.5
30	1500	¢M	∞	0	0.25	82	4.0	21.5-27
				30		82	2.5	32-49
				30		100	3.0	43.64
	5100	1M	∞	0	0.12	150	4.5	14.5-16
				25		150	2.5	38-54
				25		200	1.5	40.50
	36 K	1M	5M	30	0.15	82	5.0	37-52
45	1500	1M	∞	0	0.25	120	6.5	27-33
				30		120	4.0	45:68
	5100	1M	∞	0	0.12	270	10	28.31
				25		270	5.0	76.105
	36 K	1M	8.2M	0	0.15	120	14	2.8
				30		120	7.0	54-76
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=+15 \\ & \mathrm{~V}_{\mathrm{SS}}=-15 \end{aligned}$	100K	1M	∞	0	0.15	0	9.0	0.98
				2N433				
15	1800	1M	∞	0	0.42	20	3.0	7.7 .5
				40		20	2.0	17-22
				40		27	2.0	23-27
	9100	1M	6.8M	35	0.32	18	2.0	17-19
						30	2.5	26.28
	27K	1M	3M	25	0.2	22	1.0	16-18
						43	2.0	28-30
30	1800	1M	∞	0	0.42	47	6.5	15-17
				40		47	4.0	38-47
				40		51	4.5	40-50
	9100	1M	13M	0	0.32	43	8.0	4.5
				35		43	5.0	40-43
				35		68	4.5	53-60
	27K	1M	7.5 M	25	0.2	68	4.0	49.52
						100	7.0	66.70
45	1800	1M	∞	0	0.42	75	7.5	23.25
						75	5.0	58.70
				40		100	7.0	73-77
	9100	1M	22 M	0	0.32	68	7.0	7.0
				25		68	6.5	59.64
				25		120	7.0	$80-85$
	27 K	1M	12M	0	0.2	100	12	3.3
				25		100	5.0	65-68
				25		180	8.0	100.115
$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+15 \\ & \mathrm{~V}_{\mathrm{SS}}=-15 \end{aligned}$	75K	1M	∞	0	0.22	0	10	0.98

$\overline{V_{D D}}$ (V)	$\begin{aligned} & \mathrm{R}_{\mathbf{S}} \\ & (\Omega) \end{aligned}$	$\begin{aligned} & \mathbf{R}_{1} \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{R}_{2} \\ (\Omega) \end{gathered}$	$\begin{gathered} C_{S} \\ (\mu F) \end{gathered}$	$\begin{aligned} & \mathrm{IDD} \\ & (\mathrm{~mA}) \end{aligned}$	$\begin{gathered} \mathbf{R}_{\mathrm{D}} \\ (\mathbf{K} \Omega) \end{gathered}$	${ }_{8}$ Max (pk V)	Av
2N4340								
15	680	1M	∞	0	1.5	5.1	3.0	3.5-4
				65		5.1	1.5	7.8 .5
						6.8	2.0	9.10.5
	1200	1M	∞	0	1.1	7.5	2.5	3.5-4
						7.5	2.0	9-11
				6		10	2.0	71-13
	3900	1M	∞	0	0.4	18	4.0	3.5-4
				40		18	1.5	15-18
						22	1.0	19-22
30	680	1M	∞	0	1.5	12	6.0	9.5-10
				65		12	3.0	17-22
						18	1.0	24-26
	1200	1M	∞	0	1.1	18	6.0	9-9.5
						18	4.0	21-26
				60		24	2.0	29
	3900	1M	∞	0	0.4	39	7.0	7.5-8
				40		39	7.0	30.36
				40		62	0.5	34-45
	20 K	1M	6.8M	35	0.35	30	3.0	25-27
						56	6.5	40
45	680	1M	∞	0	1.5	20	10.5	14-15.5
				65		20	8.0	27-32
				65		27	4.0	35
	1200	1 M	∞	0	1.1	27	12.5	16-18
				60		27	5.0	+30-37
						39	2.0	39.42
	3900	1M	∞	0	0.4	68	12	12.13
				40		68	7.0	52.61
				40		91	3.0	56-63
			3M	55	1.0	10	5.0	15
	$20 K$	2N	3M	55	1.0	20	4.0	27-28
$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+15 \\ & \mathrm{~V}_{\mathrm{SS}}=-15 \\ & \hline \end{aligned}$	22K	3M	∞	0	0.75	0	12	0.96
2N4341								
15	1000	1M	∞	70	2.7	2	1.0	3-3.5
						2.7	2.0	4.4.5
					3.5	1.2	2.0	2.5
	1200	1.2M	7.5M	80	3.5	2.2	3.0	3-4.5
					1.8	3	2.0	4-4.5
	2000	1M	∞	65	1.8	4.7	1.5	6-6.5
30	1000	1M	∞	0	2.7	6.2	7.0	4.0
				70		6.2	3.5	10
						9.1	1.5	11-13
	1200	1.1M	15M	80	3.5	3.9	4.0	7.5.8
	2000	1M	∞	0	1.8	9.1	6.0	3.0
				65		9.1	4.0	12
						15	1.0	13.19
	15K	1M	3.3M	50	0.7	18	3.0	16-21
45	1000	1M	∞	0	2.7	10	8.5	6.3
				70		10	6.0	16
	1200	1 M	22M	80	3.5	6.8	7.0	13
	2000	1M	∞	0	1.8	$\overline{15}$	8.5	5.5
				65		15	5.0	20-21
	15K	1M	5.6M	50	0.7	30	9.0	28-35
$\begin{aligned} & \bar{V}_{D O}=+15 \\ & v_{\mathrm{SK}}=-15 \end{aligned}$	10K	1M	∞	0	1.9	0	13.5	0.94

Performance Curves NC See Section 5

BENEFITS

- Low Insertion Loss, High Accuracy in Test Systems ron < 30Ω (2N4391)
- No Offset or Error Voltages Generated by Closed Switch

Purely Resistive
High Isolation Resistance from Driver

- High Off-Isolation ${ }^{\text {D }}$ (off) $<100 \mathrm{pA}$
- High Speed toN $<20 \mathrm{~ns}$

*ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

n-channel JFETs designed for

VHF Amplifiers Mixers

Performance Curves NH See Section 5

BENEFITS

- Low Noise
$\mathrm{NF}=3 \mathrm{~dB}$ Typical at 400 MHz
- Wide Band

High $\mathrm{g}_{\mathrm{fs}} / \mathrm{C}_{\text {iss }}$ Ratio

T0-72
See Section 7

*ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

pererodionut x!uoj!!! 6261 (3)

n-channel JFETs designed for

- Analog Switches
- Commutators
- Choppers

■ Integrator Reset Switch
*ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Reverse Gate-Drain or Gate-Source Voltage. 2N4856A-58A $-40 \mathrm{~V}$
Reverse Gate-Drain or Gate-Source Voltage. 2N4859A-61A. $-30 \mathrm{~V}$
Gate Current. 50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Case Temperature (Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 1.8 W

Storage Temperature Range -65 to $+200^{\circ} \mathrm{C}$ Lead Temperature
($1 / 16^{\prime \prime}$ from case for 10 seconds)
$300^{\circ} \mathrm{C}$

Performance Curves

 See Section 5
BENEFITS

- Low Insertion Loss and High Accuracy in Test Systems
$r_{\text {DS(on) }}<25 \Omega$ (2N4856A,59A)
- High Off-Isolation

$$
I_{D}(\text { off })<\mathbf{2 5 0} \mathrm{PA}
$$

- Short Sample and Hold Aperture Time $\mathrm{C}_{\mathrm{rss}}<4 \mathrm{pF}$
- High Speed
$t_{\mathrm{ON}}<8 \mathrm{~ns}$

*ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

	Characteristic				2N4856A 2N4859A		$\begin{aligned} & \text { 2N4857A } \\ & \text { 2N4860A } \end{aligned}$		$\begin{aligned} & \text { 2N4858A } \\ & \text { 2N4861A } \end{aligned}$		Unit	Test Conditions	
					Min	Max	Min	Max	Min	Max			
\uparrow		BVGSS	Gate-Source Breakdown Voltage	2N4856A.58A	-40		-40		-40		v	$i_{G}=1 \mu \mathrm{~A}, \mathrm{~V}_{D S}=0$	
2				2N4859A61A	-30		30		-30				
3		'Gss	Gate Reverse Current	2N4856A.58A		-250		-250		-250	pA	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DS}}=0 \end{aligned}$	
4						--500		-500		-500	nA		$150^{\circ} \mathrm{C}$
5	s			2N4859A-61A		-250		-250		250	pA	$\begin{aligned} & v_{G S}=-15 \mathrm{~V} . \\ & v_{D S}=0 \end{aligned}$	
6	A					-500		-500		-500	nA		$150^{\circ} \mathrm{C}$
7	T	'Ofoff) Drain Cutoff Current				250		250		250	pA	$\left\{\begin{array}{l} V_{D S}=15 \mathrm{~V} . \\ V_{G S}=-10 \mathrm{~V} \end{array}\right.$	
8	c					500		500		500	nA		$150^{\circ} \mathrm{C}$
9		$V_{\text {GS }}$	Gate-Source Cutoff Volt		4	10	-2	-6	-0.8	-4	V	$\mathrm{V}_{\text {DS }}=15 \mathrm{~V}, 1$	0.5 nA
10		I DSs	Saturation Drain Current	(Note 1)	50		20	100	8	80	mA	$\mathrm{V}_{\text {OS }}-15 \mathrm{~V}, \mathrm{~V}_{\text {g }}$	SS $=0$
11		VDStont	Orain-Source ON Voitage			$\begin{aligned} & 0.75 \\ & (20) \end{aligned}$		$\begin{aligned} & 0.50 \\ & (10\} \end{aligned}$		$\begin{array}{r} 0.50 \\ \quad(5) \end{array}$	$\begin{gathered} V \\ \text { imAl } \end{gathered}$	$V_{G S}=0,10=1$	
12	OYN	'dsion)	Drain-Source ON Resistance			25		40		60	52	$\begin{aligned} & V_{G S}=0 \\ & \mathrm{I}_{\mathrm{O}}=0 \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$
13		$\mathrm{C}_{\text {iss }}$	Commor-Source Input Capacitance			10		10		10	pF	$\begin{aligned} & v_{D S}=0 . \\ & v_{G S}=-10 \mathrm{~V} \end{aligned}$	$\mathrm{f}=1 \mathrm{MHz}$
14		$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance			4		3.5		3.5			
15	SWIJcH	${ }^{\text {t }} \mathrm{d}(\mathrm{on})$	Turn.ON Delay Time			$\begin{array}{r}5 \\ \hline(20) \\ 101 \\ \hline\end{array}$		$\begin{array}{r} 6 \\ \{10\}^{2} \\ {[-6]} \end{array}$		8 (5) $[4]$	$\begin{gathered} \mathrm{ns} \\ \text { (mA) } \\ {[\mathrm{V}]} \end{gathered}$	$\left\{\begin{array}{l} V_{\mathrm{GO}}=10 \mathrm{~V} \\ V_{\text {GS }(O n)}=0 \\ \mathrm{~V}_{\mathrm{GS} \text { (off) }}=1 \end{array}\right.$	$R_{L}=\left\{\begin{array}{l} 464 \Omega 2,2 N 4856 A, 59 A \\ 953 \Omega, 2 N 4857 A, 60 \mathrm{~A} \\ 191052,2 N 4858 \mathrm{~A}, 61 \mathrm{~A} \end{array}\right.$
16		${ }_{\text {tr }}$	fise Tıme			[$\begin{array}{r}3 \\ {[20)^{3}} \\ {[-10]}\end{array}$		$\begin{array}{r} 4 \\ {[10]^{4}} \\ {[-6]} \end{array}$		$\begin{array}{r} 8 \\ (5) \\ {[-4]} \\ \hline \end{array}$	$\begin{gathered} \mathrm{ns} \\ (\mathrm{~m} A) \\ {[\mathrm{V}]} \end{gathered}$		
17	N G	${ }_{\text {toff }}$	Turn-QFF Time			20 1201 $!-10!$		40 $[10$ $[6]$		80 (5) [4]	ns (mA) (V]		

n-channel JFETs designed for

Audio and Sub-Audio Amplifiers

Performance Curves NS

 See Section 5E Siliconix

BENEFITS

- Ultra Low Noise $\bar{e}_{n}=8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Typical at 10 Hz
$\bar{e}_{\mathrm{n}}=2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Typical at 1 kHz See Section 7

*ABSOLUTE MAXIMUM RATINGS $\left(\mathbf{2 5}^{\circ} \mathbf{C}\right)$
Gate-Drain or Gate-Source Voltage (Note 1) -40 V
Gate Current or Drain Current 50 mA
Total Device Dissipation
(Derate $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) . 300 mW
Storage Temperature Range. -65 to $+200^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16^{\prime \prime}$ from case for 60 seconds) $300^{\circ} \mathrm{C}$

*ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

*JEDEC reģistered data.
NOTES:

1. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.
2. Pulise test duration $=2 \mathrm{~ms}$.

p-channel JFETs designed for

 BENEFITS

 BENEFITS
 - Low Insertion Loss
 RDS(on) $<75 \Omega$ (2N5018)
 - No Offset or Error Voltages Generated by Closed Switch
 Purely Resistive

"ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Reverse Gate-Drain or Gate-Source Voltage
(Note 1)
30 V
Gate Current 50 mA
Total Device Dissipation, Free-Air
(Derate $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
. 500 mW
Storage Temperature Range , . . . -65 to $+200^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16^{\prime \prime}$ from case for 60 seconds 1
$300^{\circ} \mathrm{C}$

TO-18 See Section 7

'ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

p-channel JFETs designed for

Analog Switches

- Commutators

Choppers

Integrator Reset Switch

'ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Reverse Gate-Drain or Gate-Source Voltage
(Note11
30 V
Gate Current 50 mA
Total Device Dissipation, Free-Air
(Derate $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 500 mW
Storage Temperature Range -65 to $+200^{\circ} \mathrm{C}$ Lead Temperature
($1 / 16^{\prime \prime}$ from case for 10 seconds) $300^{\circ} \mathrm{C}$

Performance Curves

silis $1 \mathbf{x}$ See Section 5

BENEFITS

- Simplifies Series-Shunt Switching when Combined with 2N4393, its N-Channel Complement
- Low Insertion Loss in Switching Systems $\mathrm{R}_{\mathrm{ON}}<75 \Omega$ (2N5114)
- Short Sample and Hold Aperture Time $\mathrm{C}_{\mathrm{rss}}<7 \mathrm{pF}$
- High Off-Isolation ${ }^{\mathrm{I}} \mathrm{D}(\mathrm{off})<500 \mathrm{pA}$

T0-18
See Section 7

*ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				2N5114		2N5115		2N5116		Unit	Test Conditions				
				Min	Max	Min	Max	Min	Max						
1		$8 \mathrm{~V}_{\mathrm{GSS}}$	Gate-Source Breakdown Voitage	30		30		30		V	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$				
2		${ }^{\text {IGSS }}$	Gate Reverse Current		500		500		500	pA	$V_{G S}=20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$				
3					1.0		1.0		1.0	$\mu \mathrm{A}$					$150^{\circ} \mathrm{C}$
4		'D(off)	Drain Cutoff Current		-500		-500		-500	pA	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=12 \mathrm{~V}(2 \mathrm{~N} 5114\} \\ & \mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}\{2 \mathrm{~N} 5115) . \\ & \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}\{2 \mathrm{~N} 5116\} \end{aligned}$				
5	\mathbf{S}				-1.0		-1.0		-1.0	μA					$150^{\circ} \mathrm{C}$
6	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~T} \end{aligned}$	$\mathrm{V}_{\text {GS }}(\mathrm{fff})$	Gate-Source Cutoff Voitage	5	10	3	6	1	4	V	$V_{D S}=-15 \mathrm{~V}, \mathrm{C}_{\mathrm{D}}=-1 \mathrm{nA}$				
7		IDSS	Saturation Drain Current (Note 2),	-30	-90	-15	-60	-5	-25	mA	$\begin{aligned} & V_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=-18 \vee(2 N 5114) \\ & V_{\mathrm{DS}}=-15 \vee(2 N 511 \mathrm{~b}, 2 \mathrm{~N} 5116) \end{aligned}$				
8		$\mathrm{V}_{\text {GS }}$ (f)	Forward Gate-Source Voltage		-1		-1		-1	V	$\mathrm{I}_{\mathrm{G}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OS}}=0$				
9		Vos $(0 n)$	Drain-Source ON Voltage		-1.3		-0.8		-0.6		$\begin{aligned} & V_{G S}=0 . \mathrm{I}_{\mathrm{D}}=-15 \mathrm{~mA}(2 \mathrm{~N} 5114) \\ & \mathrm{I}_{\mathrm{D}}=-7 \mathrm{~mA}(2 \mathrm{~N} 5115), \mathrm{I}_{\mathrm{D}}=-3 \mathrm{~mA}(2 \mathrm{~N} 5116) \end{aligned}$				
10		rosion)	Static Drain-Source ON Resistance		75		100		150	Ω	$V_{G S}=0, I_{D}=-1 m A$				
11	D$\mathbf{N}$$\mathbf{N}$	rdsion)	Drain Source ON Resistance		75		100		150	Ω	$V_{G S}=0, I_{D}=0$				$\mathrm{f}=1 \mathrm{kHz}$
12		$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		25		25		25	pF	$\mathrm{V}_{\mathrm{DS}}=-15, \mathrm{~V}_{\mathrm{GS}}=0$				$f=\dagger \mathrm{MHz}$
13		Crss	Common-Source Reverse Transfer Capacitance		7		7		7		$\begin{aligned} & V_{O S}=0, V_{G S}=12 \vee\{2 N 5114\} \\ & V_{G S}=7 \vee\{2 N 5115), V_{G S}=5 \vee(2 N 5116) \end{aligned}$				
	$\begin{gathered} \mathbf{S} \\ \mathbf{W} \\ \mathbf{1} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{H} \end{gathered}$	$\mathrm{t}_{\mathrm{d}}(\mathrm{on})$	Turn-ON Delay'Time		6		10		12	ns	2N5114		2N5115	2N5116	
14											VDD $V_{G S}(\mathrm{off})$ R_{L} VGS(on) ID(on)	$\begin{array}{r} -10 \mathrm{~V} \\ 12 \mathrm{~V} \\ 580 \Omega \\ 0 \\ -15 \mathrm{~mA} \end{array}$	$\begin{array}{r} -6 \mathrm{~V} \\ 7 \mathrm{~V} \\ 743 \Omega \\ 0 \\ -7 \mathrm{~mA} \\ \hline \end{array}$	-6V	
15		t_{r}	Rise Time		10		20		30					$\begin{array}{r} 5 \mathrm{~V} \\ 1800 \Omega \\ 0 \\ -3 \mathrm{~mA} \end{array}$	
16		${ }_{\text {d }}$ dioff $)$	Turn-OFF Delay Time		6		8		10						
17		$\mathrm{tf}^{\text {f }}$	Fail Time		15		30		50						
*JEDEC registered data. NOTES: I. Due to symmetrical geometry these units may be operated with source and drain leads interchanged. 2. Pulse Test PW $300 \mu \mathrm{~s}$, duty cycle $\leqslant \mathbf{3 \%}$.												inPUT PuL TIME < 1 ns TIME < 1 n E WIOTH 10 tition mat			PS ING SCOPE .4 ns STANCE $10 \mathrm{M} \Omega$ ACHTANCE 1.5 pF

monolithic dual n-channel JFETs designed for.

 a Differential Amplifiers - FET Input Op Amps'ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage -50 V
Gate Current . 50 mA
Device Dissipation (EachSide), $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
(Derate $2.56 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
250 mW
Total Device Dissipation. TA $=85^{\circ} \mathrm{C}$
(Derate $4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) . 500 mW
Storage Temperature Range. 65 to $+200^{\circ} \mathrm{C}$
'ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

n-channel JFETs designed for.

Low ON Resistance Analog Switches

- Commutators
- Choppers

■ Integrator Reset Capacitors Low Noise Audio Amplifiers

*ABSOLUTE MAXIMUM RATINGS $\left(\mathbf{2 5}^{\circ} \mathrm{C}\right)$

Reverse Gate-Drain or Gate-Source Voltage
$-25 \mathrm{~V}$
Gate Current.
100 mA
Drain Current
400 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$
Free-Air Temperature (Note 1) 300 mW
Storage Temperature Range 65 to $+150^{\circ} \mathrm{C}$ Lead Temperature
(1/16" from case for 10 seconds)
$300^{\circ} \mathrm{C}$

BeefßrationceSCurves NIP

BENEFITS

- Low Insertion Loss
$\mathrm{R}_{\mathrm{DS} \text { (on) }}<5 \Omega$ (2N5432)
- Small Error in MeasurementSystems $\mathrm{V}_{\mathrm{DS} \text { (on) }}<50 \mathrm{mV}$ (2N5432)
- High Off-Isolation
$I_{\text {D(off) }}<200 \mathrm{pA}$
- High Speed
${ }^{t_{d}}$ (on) <4 ns
- Low Noise Audio-Frequency Amplification
$\mathbf{e n}_{\mathbf{n}}<\mathbf{2 n V} / \sqrt{\mathrm{Hz}}$ at $\mathbf{1 k H z}$ Typical

TO-52
See Section 7

*ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				2N5432		2N5433		2N5434		Unit	Test Conditions		
				Min	Max	Min	Max	Min	Max				
1	$\begin{aligned} & S \\ & \mathbf{T} \\ & A \\ & T \\ & 1 \\ & C \end{aligned}$	'GSS	Gate Reverse Current		-200		-200		-200	pA	$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		
2					-200		-200		-200	nA		$150^{\circ} \mathrm{C}$	
3		BVGSS	Gate Source Breakdown Voltage	-25		-25		-25		\checkmark	$\mathrm{I}_{\mathrm{G}}=.1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{OS}}=0$		
4		${ }^{\circ} \mathrm{D}$ (off)	Drain Cutoff Current		200		200		200	pA	$V_{D S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$		
5					200		200		200	nA		$150^{\circ} \mathrm{C}$	
6		$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	-4	-10	-3	-9	-1	-4	V	$V_{D S}=5 \mathrm{~V}, \mathrm{D}=3 \mathrm{nA}$		
7		' DSS	Saturation Drain Current (Note 2)	150		100		30		mA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} . \mathrm{V}_{\mathrm{GS}}=0$		
8		rDS(on)	Static Drain-Source ON Resistance	2	5		7		10	ohm	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$		
9		VDS(on)	Drain-Source ON Voltage		50		70		100	mV			
10	$\begin{aligned} & \mathbf{D} \\ & \mathbf{Y} \\ & \mathbf{N} \end{aligned}$	${ }^{\text {rdsiont }}$	Drain-Source ON Resistance		5		7		10	ohm	$\mathrm{V}_{\mathrm{GS}}=0.1 \mathrm{D}=0$	$\mathrm{f}=1 \mathrm{kHz}$	
11		$\mathrm{Ciss}^{\text {is }}$	Common-Source Input Capacitance		30		30		30	pF	$V_{D S}=0, V_{G S}=-10 \mathrm{~V}$	$\mathrm{f}=\mathrm{i} \mathrm{MHz}$	
12		Crss	Common-Source Reverse Transfer Capacitance		15		15		15				
13	S\mathbf{W}	tdon)	Turn-ON Delay Time		4		4		4	ns	$V_{D D}=1.5 \mathrm{~V}$, $145 \Omega(2 \mathrm{~N} 5432)$ $V_{G S(\text { on })}=0$, $R_{\mathrm{L}}=143 \Omega(2 \mathrm{~N} 5433)$ $V_{G S(o f f)}=-12 \mathrm{~V}$, $140 \Omega(2 \mathrm{~N} 5434)$ $\mathrm{I}_{\mathrm{D}(\mathrm{on})}=70 \mathrm{~mA}$		
14		t_{1}	Rise Time		1		1		1				
15		$\mathrm{t}_{\text {d }}$ (off)	Turn-OFF Delay Time		6		6		6				
16		${ }_{4}$	Fall Time		30		30		30				

[^4]NOTES:

1. Derate linearly at the rate of $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Pulse tast required pulsewidth $300 \mu \mathrm{~s}$, duty cycle $\leqslant 3 \%$.

matched dual n-channel JFETs designed for
 Differential Amplifiers

*ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage \qquad
Device Dissipation (Each Side). $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
Total Device Dissipation, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
(Derate $3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
375 mW
Storage Temperature Range -65 to $+150^{\circ} \mathrm{C}$ Lead Temperature
(1/16" from case for 30 seconds)
$.300^{\circ} \mathrm{C}$

Performance Curves NS See Section 5

BENEFITS

- Ultra-Low Noise
$\overline{\mathrm{e}}_{\mathrm{n}}=8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 10 Hz (Typical) $\overline{\bar{E}_{\mathrm{n}}}=2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz (Typical)
- Minimum System Error and Calibration 5 mV Offset Maximum CMRR $>100 \mathrm{~dB}$

TO-71
See section 7

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic									Min		Max		nit			Tast Conditions			
1	$\left\{\begin{array}{c} S \\ T \\ A \\ T \\ C \end{array}\right.$	IGSS	Gate Reverse Current								-250		A						
2											-250		A	GS	$V, V_{D S}=0$	$150^{\circ} \mathrm{C}$			
3		BVGSS	Gate-Source Breakdown Voltage						-40			V		$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$					
4		VGS(off)	Gate-Source Cutoff Voltage						-0.7		-4			$V_{D S}=20 \mathrm{~V}, \mathrm{t}_{\mathrm{D}}=1 \mathrm{nA}$					
5.		VGS	Gate Source Voltage						-0.2		-3.8			$V_{D G}=20 \mathrm{~V} \cdot 1 \mathrm{D}=200 \mu \mathrm{~A}$					
6		IG	Gste Operating Current								-100	ρ							
		G									-100		A			$125^{\circ} \mathrm{C}$			
7		loss	Saturation Drain Current (Note 1)						0.5		7.5		A	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$					
8	$\begin{aligned} & D \\ & V \\ & N \\ & A \\ & M \\ & 1 \\ & C \end{aligned}$	g_{5}	Common-Source Forward Transconductance (Note 1)						1000		4000	umho		$V_{O S}=20 \mathrm{~V}, \mathrm{VGS}_{\text {g }}=0$		$f=1 \mathrm{kHz}$			
9		$9_{\text {fis }}$	Common-Source Forward Transconductance (Note 1)						500		1000			$V D G=20 \mathrm{~V}, 1 \mathrm{D}=200 \mu \mathrm{~A}$					
10		gos	Common-Source Output Conductance								10			$\mathrm{VDS}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$					
14		gos	Common-Source Output Conductance								1			$V_{\text {DG }}=20 \mathrm{~V}, 10=200 \mu \mathrm{~A}$					
12		$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance								25	pF		$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		$\mathrm{f}=1 \mathrm{MHz}$			
13		Crss	Common-Source Reverse Transfer Capacitance								5								
14		E_{n}	Equivalent Short Circuit Input Noise Voltage			$\begin{array}{\|l\|} \hline \text { 2N55 } \uparrow \text { - } \cdot 19 \\ \hline \text { 2N5520-24 } \\ \hline \text { 2N5515.24 } \\ \hline \end{array}$					30	$\frac{n V}{\sqrt{H_{z}}}$				$V_{D G}=20 \mathrm{~V}, 1_{D}=200 \mu \mathrm{~A}$		$\mathbf{f}=10 \mathrm{~Hz}$	
									15										
									10	f-1 kHz									
		Characteristic		2N5515, 20				2N5516,21		2N5517,22		2N5518,23		2N55 19,24		Unit	Test Conditions		
				Min	Max			Min	Max	Min	Max	Min	Max	Min	Max				
15	$\begin{aligned} & \mathrm{M} \\ & \mathbf{A} \\ & \mathbf{Y} \\ & \mathbf{C} \\ & \mathbf{H} \\ & \mathbf{l} \\ & \mathbf{N} \\ & \mathbf{G} \end{aligned}$	ilg $\mathbf{1}^{-1} \mathrm{G} 2$.	Differential Gate Current		10		10		10		10		10	$n \wedge$	$\begin{aligned} & V D G=20 \mathrm{~V} \\ & l_{D}=200 \mu \mathrm{~A} \end{aligned}$	$125^{\circ} \mathrm{C}$			
16		$\frac{{ }^{\text {I DSS1 }}}{\text { IDSS2 }}$	Saturation Drain Current Ratıo (Notes 1 and 2)	0.95	1	0.95	1	0.95	1	0.95	1	0.90	1	-	$V_{D S}-20 \mathrm{~V}, \mathrm{VGS}=0$				
17		\|VGS1-VGS2 ${ }^{\prime}$	Differential GateSource Voltage		5		5		10		15		15	$m \mathrm{~m}$	$\begin{aligned} & V D G=20 \mathrm{~V}, \\ & 10=200 \mu \mathrm{~A} \end{aligned}$				
		$\triangle N_{G S 1}{ }^{-V_{G S 2}}{ }^{1}$	Gate Source Voltage Differentia! Drift (Note 3)		5		10		20		40		80	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{B}=125^{\circ} \mathrm{C} \end{aligned}$			
		-'			5		10		20		40		80			$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & T_{\mathrm{B}}=25^{\circ} \mathrm{C} \end{aligned}$			
19		Igos $1-\operatorname{gos} 2^{1}$	Differential Output Conductance		0.1		0.1		0.1		0.1		0.1	$\mu \mathrm{mho}$		$=1 \mathrm{kHz}$			
20		$\frac{9 t s 7}{9 t s 2}$	Transconductance Ratio (Notes 1 and 2)	0.97	1	0.97	1	0.95	1	0.95	1	0.90	1	-					
21		CMRR	Cammon Mode Rejection Ratio (Note 4)	100		100		90						dB	$\begin{aligned} & V_{D D}=10 \text { to } 20 \mathrm{~V} \\ & \mathrm{ID}_{\mathrm{D}}=200 \mu \mathrm{~A} \end{aligned}$				
NDTES: 1 Pulse test required, pulsewidth $=300 \mu \mathrm{~s}$, duty cycle $\leqslant 3 \% . \quad 4$ CMAR $=20 \log 10$ 2 Assumes smaller value in numerator										$\left(\frac{\Delta V_{D D}}{\Delta i V_{G S 1}-V_{G S 2}}\right), \Delta$				$V \mathrm{VD}=10 \mathrm{~V}$			NS		

monolithic dual n-channel JFETs designed for

General Purpose Differential Amplifiers

Silidrinix
 Beef@uatione5Curves NNP
 BENEFITS
 - High Input Impedance $\mathrm{IG}_{\mathrm{G}}<50 \mathrm{pA}$
 - Minimum System Error and Calibration 5 mV Offset Maximum (2N5545)

T0-71
Gate-Drain or Gate-Source Voltage. 50 V
Gate Current. 30 mA
Device Dissipation (EachSide), $\mathrm{T} A=25^{\circ} \mathrm{C}$
(Derate $1.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
250 mW
Total Device Dissipation, $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(Derate $2.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 400 mW Storage Temperature Range -65 to $+200^{\circ} \mathrm{C}$ Lead Temperature
(1/16" from case for 30 seconds)
$.300^{\circ} \mathrm{C}$

See Saction 7

'ELECTRICAL CHARACTERISTICS $\left(\mathbf{2 5}{ }^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic							Min	Max		Unit	Test Conditions													
1		IGSS	Gate Reverse Current					-100		pA	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$													
2								-150		nA			$\mathrm{T}_{\mathrm{A}}=150^{\circ}$											
3	A	BVGSS	Gate-Source Breakdown Voltage				-50			V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$													
4	+	$\mathrm{V}_{\mathrm{GS} \text { (off) }}$	Gate-Source Cutoff Voltage				-0.5	-4			$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA}$													
5		IG	Gate Operating Current					-50		pA	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$													
6		IDSS	Saturation Drain Current				0.5			mA	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0$													
7	D\mathbf{Y}NAM$\mathbf{1}$C	9fs	Common-Source Forward Transconductance				1500	6000		$\mu \mathrm{mho}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		$\mathrm{f}=1 \mathrm{kHz}$											
8		$\mathrm{g}_{\text {os }}$	Common-Source Output Conductance					25					f= $\mathrm{kHz}^{\text {d }}$											
9		$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance							pF			$f=1 \mathrm{MHz}$											
10		Crss	Common-Source Reverse Transfer Capacitance																					
11		NF	Spot Noise Figure					3.5		dB	$\begin{aligned} & \mathrm{V}_{\mathrm{DG}}=15 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \end{aligned}$	2N5545	$\mathrm{f}=10 \mathrm{~Hz}$.											
												2N5546	$\mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$											
12		\bar{E}_{n}	Equivaient Short Circuit Input Noise Voltage					$\frac{180}{200}$		$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$		2N5545	$f=10 \mathrm{~Hz}$											
										2N5546														
		Characteristic		2N5545		2N5546		2N5547			Unit	Test Conditions												
				Min	Max	Min	Max	Min	Max															
13		${ }^{1} \mathrm{G}_{\mathrm{G} 1^{-1} \mathrm{l} 2}{ }^{\text {I }}$	Differential Gate Current		5		5		5	nA	$V_{D G}=15 \mathrm{~V}$,	$1 \mathrm{D}=200 \mu \mathrm{~A}$	$\mathrm{T}_{\text {A }}=125^{\circ} \mathrm{C}$											
14		$\frac{\operatorname{loss} 1}{\operatorname{losss}^{2}}$	Saturation Drain Current Ratio (Note 1)	0.95	1	0.90	1	0.90	1	-	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$													
15		$\mathrm{V}_{\mathrm{GS} 1} \mathrm{~V}_{\mathrm{GS} 2}{ }^{\text {I }}$	Differential Gate-Source Voltage		5		10		15	mV	$V_{\text {DG }}=15 \mathrm{~V}$		$1 \mathrm{D}=50 \mu \mathrm{~A}$											
	A				5		10		15				$\mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$											
	$\left\lvert\, \begin{aligned} & \mathrm{T} \\ & \mathrm{C} \\ & \mathrm{H} \end{aligned}\right.$	$\frac{\Delta \mathrm{V}_{\mathrm{GS} 1}{ }^{-\mathrm{V}_{\mathrm{GS} 2}{ }^{\prime}}}{\Delta \mathrm{T}}$	Gate-Source Voltage Differential Drift (Note 2		10		20		40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$V_{\text {DG }}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{B}}=125^{\circ} \mathrm{C} \end{aligned}$											
16	$\underset{\mathbf{G}}{\mathbf{N}} \underset{\substack{\mathbf{N} \\ \hline}}{ }$				10		20		40				$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & \mathrm{~T}_{B}=25^{\circ} \mathrm{C} \end{aligned}$											
17		$\frac{9 f s 1}{g_{f s}}$	Transconductance Ratio (Note 1)	0.97	1	0.95	1	0.90	1	-			$\mathrm{f}=1 \mathrm{kHz}$											
18		\|9os 1 -gos 2^{1}	Differential Output Conductance		1		2		3	$\mu \mathrm{mho}$														
-JEDEC registered data													NNP											
NOTES:													NP-D											
1 Assumes smaller value in numerator. 2. Measured at end points, T_{A} and T_{g}.																								

n-channel JFETs designed for

 Beef\&eotione5Curves NRL
General Purpose Amplifiers

*ABSOLUTE MAXIMUM RATINGS (at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$)
Gate-Drain or Gate-Source Voltage (Note 1) 30 V
Gate Current
Total Device Dissipation
($25^{\circ} \mathrm{C}$ Free Air Temperature). 300 mW
Power Derating (to $+175^{\circ} \mathrm{C}$) $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range. -65 to $+200^{\circ} \mathrm{C}$
Operating Temperature Range. -65 to $+175^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16^{\prime \prime}$ from case for 10 seconds) $240^{\circ} \mathrm{C}$

BENEFITS

- Low Noise
- Low Output Conductance

matched dual n-channel JFETs designed for

Wideband Differential Amplifiers

 Commutators
Performance Curves NC See Section 5

BENEFITS

- High Gain
$7500 \mu \mathrm{mho}$ Minimum $\mathrm{gfs}_{\mathrm{s}}$
- Specified Matching Characteristics

10-71

"ELECTRICAL CHARACTERISTICS ($\mathbf{2 5}^{\circ} \mathbf{C}$ unless otherwise noted)

*JEDEC registered data.
notes.
NC
7. Pulse test required, pulse width $300 \mu \mathrm{~s}$, duty cycle $\leqslant 3 \%$.

2 Assumes smatier value in numerator.
3. Measured at ends points, T_{A} and T_{B}

matched dual n-channel JFETs designed for

Differential Amplifiers High Input Impedance Amplifiers

*ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$ Gate-to-Gate Voltage $\pm 80 \mathrm{~V}$ Gate-Drain or Gate-Source Voltage 40 V Gate Current . 10 mA Device Dissipation (Each Side). $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Derate $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 367 mW
Total Device Dissipation, $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) \qquad 500 mW Storage Temperature Range. -65 to $+150^{\circ} \mathrm{C}$

Performance Curves NT See Section 5

BENEFITS

- Matching Characteristics Specified
- High Input Impedance

IG $=1$ PA Max (2N5906-9)

T0.78 See Section 7

BOTTOM VIEW

'ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

*Use lower voltages for minimum I_{G}

matched dual n-channel JFETs designed for.

Wideband Differential Amplifiers

*ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)

Gate-to-Gate Voltage . $\pm 80 \mathrm{~V}$
Gate-Drain or Gate-Source Voltage $-25 \mathrm{~V}$
Gate Current 50 mA Device Dissipation (Each Side), (Derate $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$). . 367 mW Total Device Dissipation, (Derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 500 mW Storage Temperature Range. -65 to $+150^{\circ} \mathrm{C}$ Lead Temperature
(1/16" from case for 10 seconds)
$300^{\circ} \mathrm{C}$

Performance Curves NZF

 See Section 5BENEFITS

- High Gain through 100 MHz
$g_{\mathrm{fs}}>5000 \mu \mathrm{mho}$
- Matching Characteristics Specified

TO-78
See Section 7

'ELECTRICAL CHARACTERISTICS (25° unless otherwise noted)

enhancement-type p-channel MOSFETs

Ultra-High Input Impedance Amplifiers

> Electrometers Smoke Detectors pH Meters

Digital Switching Interfaces Analog Switching

*ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$) Drain-Source or Gate-Source Voltage 31111.
Drain-Source or Gate-Source Voltage 3N 164 $-40 \mathrm{~V}$

Transient Gate-Source Voltage (Note 1) $\pm 150 \mathrm{~V}$
Drain Current.................................... -50 mA
Storage Temperature -65 to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature......... -55 to $+150^{\circ} \mathrm{C}$
Total Device Dissipation
(Derate $3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$)
375 mW
Lead Temperature 1116 " From Case For 10 Seconds . . $265^{\circ} \mathrm{C}$

Performance Curves MRA See Section 5

BENEFITS

- Rugged MOS Gate Minimizes Handling Problems
$\pm 150 \vee$ Transient Capability
- Low Gate-Leakage

Typically 0.02 pA

- High Off-Isolation as a Switch IDSS $<200 \mathrm{pA}$

*ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless otherwise noted)

current regulator diodes
- Simple Two Lead Current Source
- Current Insensitive to Temperature Changes
Temperature Coefficient Better
Than $1500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ On All Devices
- TO-18 Package for Improved Current Control

■ Current Regulation
 - Current Limiting Biasing

■ Low Voltage References

- Simplifies Floating Current Sources No Power Supplies Required

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Peak Operating Voltage 100 V
Forward Current 20 mA
Reverse Current
50 mA
Thermal Resistance θ_{JC}. $100^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation at $\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C} \ldots$.
Operating Junction Temperature -55 to $+150^{\circ} \mathrm{C}$
Storage Temperature
-55 to $+200^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	$i^{1} 1$			$z_{\text {d }}$		z_{k}		V_{L}		Pov	${ }^{1} 1$								
Perametar	Ragulatar Current			Drnamic Impedinica		Knae Impedanct		Limiting Voltagt		Prak Operating Voltege	Temperaturs Coofticient								
Teat Conditions	$\begin{aligned} & V_{F}=25 \mathrm{~V} \\ & \text { (Note 1) } \\ & \hline \end{aligned}$			$\begin{gathered} V_{F}=25 \mathrm{~V} \\ \text { (Nota 2) } \end{gathered}$		$\mathrm{V}_{\mathrm{F}}=6 \mathrm{~V}$		$\begin{gathered} \text { if }_{=}^{=0.8 I_{\text {fri(Min) }}} \\ \text { (Note } 31 \end{gathered}$		$\begin{gathered} I_{F}=1.11_{F 1}(\text { Max }) \\ \text { (Note 4) } \end{gathered}$	$\begin{gathered} V_{F}=25 V \\ -55^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} V_{F}=25 \mathrm{~V} \\ 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}}<50^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} V_{F}=25 V \\ 25^{\circ} \mathrm{C} \leqslant \mathrm{I}_{\mathrm{A}} \leqslant 125^{\circ} \mathrm{C} \end{gathered}$	E O M					
Units	(mA)			M Ω		$\mathrm{M} \Omega$		Vots		Min Volts	Typpamife	Typ ppmfe	Typ ppmf C	m					
	Nom	Min	Max	Min	TYp	Min	Trp	Max	Typ										
CRO22	0.22	0.198	0.242	13.0	16.0	2.75	3.6	1.0	0.40	100	+1350	+1050	+750						
cro24	0.24	0.216	0.264	10.0	14.0	2.35	3.0	1.0	0.45	100	+1200	+900	+600						
CR027	0.27	0.243	0.297	9.0	13.0	1.95	2.8	1.0	0.50	100	+1000	+700	+400						
CR030	0.30	0.270	0.330	B. 0	12.0	1.60	2.5	1.0	0.55	100	+800	$+500$	$+200$						
CRO33	0.33	0.297	0.363	6.6	12.0	1.35	2.2	1.0	0.60	100	+600	+300	50	N K					
CR039	0.39	0.351	0.429	4.10	9.5	1.00	1.90	1.05	0.70	100	+300	+50	-300	L					
cro43	0.43	0.387	0.473	3.30	8.6	0.87	1.65	1.05	0.78	100	+150	-150	-450						
C8047	0.47	0.423	0.517	2.70	8.0	0.75	1.50	1.10	0.85	100	50	-300	-600						
CR056	0.56	0.504	0.616	1.90	6.5	0.56	1.26	1.20	0.98	900	-300	-600	-900						
CR062	0.62	0.558	0.682	1.55	6.2	0.47	1.15	1.30	1.10	100	-500	-800	-1100						
CR06B	0.68	0.612	0.748	1.35	9.5	0.400	1.70	1.15	0.70	100	+850	+400	-50						
CR075	0.75	0.675	0.825	1.15	7.2	0.335	1.50	1.20	0.75	100	+650	$+200$	-250						
CR082	0.82	0.338	0.902	1.00	6.0	0.290	1.30	1.25	0.80	100	+450.	+50	-450						
CR099	0.91	0.819	1.001	0.88	5.2	0.240	1.10	1.29	0.85	100	+300	-150	-600						
CR100	1.00	0.900	1.100	0.80	4.4	0.205	0.95	1.35	0.95	100	+150	-300	-750	N K					
CR110	1.10	0.990	1.210	0.70	3.8	0.180	0.80	1.40	1.05	100	+50	-450	-900	M					
CR120	1.20	1.08	1.32	0.64	3.3	0.155	0.71	1.45	1.15	100	150	-600	-1050						
CRI30	1.30	1.17	1.43	0.68	3.2	0.135	0.60	1.50	1.25	100	-300	-750	1200						
CR 140	1.40	T.26	1.54	0.54	2.5	0.115	0.52	1.55	1.30	100	-400	-850	-1300						
CR150	1.50	$\uparrow .35$	1.65	0.51	2.2	0.105	0.46	1.60	1.35	100	-500	-950.	1400						
CR160	1.60	1.44	1.76	0.475	1.00	0.092	0.35	1.65	0.50	100	+650	+350	$+50$						
CR180	1.80	1.62	1.98	0.420	0.95	0.074	0.30	1.75	0.55	100	+500	+200	-100						
CR200	2.00	1.80	2.20	0.395	0.88	0.061	0.25	1.85	0.60	100	+350	+50	-250						
CR220	2.20	1.98	2.42	0.330	O.sc	0.052	0.22	1.95	0.65	100	+200	-100	- 350						
CR240	2.40	2.16	2.64	0.345	0.75	0.044	0.20	2.00	0.70	100	+50	-200	-450	N					
CF270	2.70	2.43	2.97	0.320	0.68	0.035	0.13	2.15	0.75	100	-100	-300	-550	K					
cr300	3.00	2.70	3.30	0.300	0.60	0.029	0.14	2.25	0.85	100	-250	-450	-700	0					
CR330	3.30	2.97	3.63	0.280	0.56	0.024	0.13	2.36	0.90	100	-400	-600	-800						
CR360	3.60	3.24	3.96	0.265	0.52	0.020	0.11	2.50	0.95	100	-550	-750	-900						
CR390	3.90	3.51	4.29	0.255	0.48	0.017 .	0.10	2.60	1.00	100	-700	-850	- 1000						
CA430 CH470	4.30 4.70	3.87	4.73 4.17	$\begin{aligned} & 0.245 \\ & 0.235 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.012 \end{aligned}$	$\begin{aligned} & 0.09 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 2.90 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.40 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} -850 \\ -1000 \end{array}$	$\begin{array}{r} -950 \\ -1100 \end{array}$	$\begin{aligned} & -1100 \\ & -1200 \end{aligned}$						
NOTES: 1. Pulse test - steady state currents may vary. 2. Pulse test - steady state impedances may vary. 3. Min V_{F} required to insure $I_{\xi}>0.8 I_{\text {Fisimint. }}$. 4. Msx V_{F} where $I_{F}<1.1!_{F}$ imax) is guarenteed.																			

EQUIVALENT CIRCUIT

SYMBOLS AND DEFINITIONS
A Anode (Drain)
C Cathode (Source and Gate Shorted)
If Forward Current (Anode Positive)
IF1 Current at a rpecified Test Voltage. V_{F}
POV Peak Operating Voltage
$\theta_{1} \quad$ Current Temperature Coefficient
$\theta \|_{\mathrm{L}}$ Thermal Resistance Junction to Care
$\theta \mathrm{JA}_{\mathrm{A}}$ Thermal Resistance Junction to Ambient
$Z_{K} \quad$ Knee $A C$ Impedance at rpecified V_{F}. Z_{K} should be as high as possible and is rpecified as a minimum.
$Z_{d} \quad$ Dynamic Impedance at rpecified $V_{F} . Z_{d}$ is specified as a minimum.

APPLICATIONS

The current-limiter diode is the electrical dual of the Zener diode.

Constant-Current Timing Circuits

Collector or Drain
Hi-Z Load Resistors

Emitter or Source Biasing

Constant-Current Supply or Current-Limiting Element

Logic Circuit Pull-Up

enhancement-type p-channel MOSFET designed for.

Performance Curves MRA See Section 5

High-Input Impedance Amplifiers Smoke Detectors Electrometers pH Meters

BENEFITS

- High Input Impedance
${ }^{\text {G GSS }}=30$ Femto Amp Typical
- High Gain $g_{\mathrm{fs}}=1000 \mu \mathrm{mho}$ Minimum

T0. 18 See Section 7

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$)

Characteristic				Min	Max	Unit	Test Conditions
1	$\begin{aligned} & T \\ & A \\ & T \\ & 1 \\ & C \end{aligned}$	${ }^{1} \mathrm{GSS}$	Gate-Source Leakage Current		-1.0	PA	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$
2		BV ${ }_{\text {DSS }}$	Drain-Source Breakdown Voltage	-25		V	$\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$
3		V_{GS}	Gate-Source Voltage	-2.0	-6.0	V	$V_{\text {DS }}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$
4		IDSS	Drain Cutoff Current		-20	กA	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$
5		${ }^{\text {I D }}$ (on)	ON Drain Current	-3.0		mA	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$
6	YNAM$\mathbf{I}$$\mathbf{I}$C	$9_{\text {fs }}$	Common-Source Forward Transconductance	1000		umhos	$V_{D S}=-10 \mathrm{~V} . \mathrm{I}_{\mathrm{D}}=-2 \mathrm{~mA}, \mathrm{f}=\mathbf{1} \mathbf{~ k H z}$
7		Ciss	Common-Source Input Capacitance		6.0	pF	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V} . \mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V} . \mathrm{f}=1 \mathrm{MHz}$
		Crss	Common-Source Reverse Transfer Capacitance		1.5		

MRA

dual pico a designed for.
 Clipping Circuits
 Diode Switching
 High Impedance Protection Circuits

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Forward Gate Current, Each Side.. 50 mA
Total Device Dissipation @TA $=25^{\circ} \mathrm{C}$
Derate $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
400 mW
Storace Temperature Range. -55 to $+125^{\circ} \mathrm{C}$ Lead Temperature
(1116" from case for 10 seconds)
$.300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathbf{2 5} \mathbf{}{ }^{\circ} \mathbf{C}$ unless otherwise noted)

BENEFITS

- Verv High Off Isolation

1 pA Max (DPAD1)

- High Isolation Between Diodes

20 Femto Amp Typical (DPAD1)

- Matched Capacitances
- Compact Packaging

TO-71	TO-78
(Pins 2 and 6 Romoved)	(DPAD1 Only)
See Section 7	Sea Section 7

BOTTOM VIEW
[ALTERNATE]

BOTTOM VIEW

CHARACTERISTIC				MIN	TYP	MAX	UNIT	TEST CONDITION	
1	S$T$$A$$T$TC	${ }^{\prime} \mathrm{R}$	Reverse Current			-1	pA	$V_{R}=-20 \mathrm{~V}$	DPAD1
2						-2			DPAD2
3						-5			DPAD5
4						-10			DPAD10
5						-20			DPAD20
6						- 50			DPAD50
7						-100			DPAD100
8				-45		-120			DPAD1, 2.5
		B	Reverse Breakdown Voltage	-35			V		DPAD10, 20, 50.100
10			Forward Voltage Drop		0.8	1.5		$\mathrm{I}_{F}=1 \mathrm{~m} A$	DPAD1, 2.5.10.20.50.100
11	D					0.8			DPAD1, 2.5
12	N		Capacitance			2.0	pr	$=-5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	DPAD10.20.50. 100
13	M	ICR_{1}	Differential Capacitance		0.1	0.2	$p \mathrm{~F}$	$V_{R 1}=V_{R 2}=-5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	DPAD1.2.5.10.20.50.100

Operational Amplifier Protection, Input Differentiar Voltage limited to $0,8 \mathrm{~V}$ (typl by DPADS D_{1} and D_{2} Common mode input voltage limited by DPADS D_{3} and D_{4} to $\pm 15 \mathrm{~V}$.

Typical sample and hold circuit with clipping. DPAD diodes reduce offset voltages
 fed capacitively from the FET switch gate.

Clipping Circuits
Diode Switching High Impedance Protection Circuits

BENEFITS

- Very High Off-Isolation 1 pAMax (PAD1)

SSOLUTE MAXIMUM RATINGS (
Forward Current	50 mA
Total Device Dissipation	300 mW
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ}$
Lead Temperature	
($1 / 16^{\prime \prime}$ from case for 10 seconds)	300°

ELECTRICALCHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

APPLICATION

Operational Amplifier Protection. Input Differential Voltage limited to 0.8 V (typ) by PADS D_{1} and D_{2} common mode input voitage limited by PADS D_{3} and D_{4} to $\pm 15 \mathrm{~V}$.

Typical sample and hold circuit with clipping. PAD diodes reduce offset voltages fed capacitively from the FET switch gate.

n-channel JFETs designed for

■ Analog Switches
 Commutators Choppers

BENEFITS

- Low Insertion Loss
$\mathrm{R}_{\mathrm{DS}(\text { on) }}<50 \Omega$ (U202)
- Good Off-Isolation
${ }^{1}$ (off) <1 nA
ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage - 30 ■
Gate Current . 50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Case Temperature
(Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
1.8 W

Storage Temperature Range -65 to $+200^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16^{\prime \prime}$ from case for 10 seconds)
$300^{\circ} \mathrm{C}$

TO-18

See Section 7

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				U200		U201		U202		Unit	Test Conditions	
				Min	Max	Min	Max	Min	Max			
1	S$T$$A$$T1C$	IGSS	Gate Reverse Current		-1		-1		-1	nA	$V_{G S}=-20 \mathrm{~V}, \mathrm{VOS}=0$	
2					-1		-1		-1	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
3		BVGSS	Gate-Source Breakdown Voltage	-30		-30		-30		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{OS}}=0$	
4		$V_{G S}$ (aff)	Gate-Source Cutoff Voltage	-0.5	-3	-1.5	-5	-3.5	-10		$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$	
		${ }^{\prime}$ D (off)	Drain Cutoff Current		1		1		1	nA	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V}$	
5					1		1		1	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
6		' DSS	Saturation Drain Current (Note 1)	3	25	15	75	30	150	mA	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
7	$\begin{aligned} & \mathbf{D} \\ & \mathbf{Y} \\ & \mathbf{N} \end{aligned}$	${ }^{\text {rds }}$ (on)	Drain-Source ON Resistance		150		75		50	ohm	$\mathrm{V}_{\mathrm{GS}}=0.1 \mathrm{D}=0$	$\mathrm{f}=1 \mathrm{kHz}$
8		$\mathrm{Ciss}^{\text {is }}$	Common-Source Input Capacitance (Note 1)		30		30		30	pF	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{G S}=0$	$\mathrm{f}=1 \mathrm{MHz}$
		Crss	Common-Source Reverse Transfer Capacitance		8		8		8		$\mathrm{V}_{\mathrm{DS}}=0 . \mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$	

NOTE.
NC

1. Pulse tort required, pulsewidth $=300 \mu \mathrm{sec}$, duty cycle $\leqslant \mathbf{3 \%}$.

monolithic dual n-channel JFETs designed for Differential Amplifiers

Performance Curves NNP See Section 5

BENEFITS

- Good Matching Characteristics

T0-71
ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage
$-50 \mathrm{~V}$
Gate Current
50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$
(Derate $1.7 \mathrm{~mW} / /^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$) 300 mW
Storage Temperature Range. -65 to $+200^{\circ} \mathrm{C}$ Lead Temperature
($1 / 16^{\prime \prime}$ from case for 10 seconds) $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

matched dual n-channel JFET designed for

Wideband Differential Amplifiers

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage $-25 \mathrm{~V}$
Gate Current 50 mA
Device Dissipation (Each Side), $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
(Derate $3.85 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 250 mW
Total Device Dissipation, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$(Derate $7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 500 mW
Storage Temperature Range. -65 to $+150^{\circ} \mathrm{C}$
Lead Temperature
(1116" from case for 10 seconds) $.300^{\circ} \mathrm{C}$

Performance Curves NZF See Section 5

BENEFITS

- High Gain through 100 MHz

$\mathrm{g}_{\mathrm{fs}}=5000 \mu \mathrm{mho}$ Minimum
- Matching Characteristics Specified

T0.78
See Section 7

ELECTRICAL CHARACTERISTICS (25° unless otherwise noted)

Characteristic				Min	Max	Unit	Test Conditions	
1	$\begin{aligned} & \mathrm{S} \\ & \mathbf{T} \\ & \mathrm{~A} \\ & \mathrm{~T} \\ & \mathrm{I} \\ & \mathrm{C} \end{aligned}$	IGSS	Gate Reverse Current		-100	pA	$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
2					-250	nA		$150^{\circ} \mathrm{C}$
3		$B V_{\mathrm{GSS}}$	Gate-Source Breakdown Voltage	-25		V	$\mathrm{IG}_{\mathrm{G}}=-1 \mu \mathrm{~A}, V_{D S}=0$	
4		$\mathrm{V}_{\mathrm{GS} \text { (off) }}$	Gate-Source Cutoff Voltage	-1	-5		$V_{D S}=10 \mathrm{~V}, 1 \mathrm{D}=1 \mathrm{nA}$	
5		IDSS	Saturation Drain Current (Note 1)	5	40	mA	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
6	DYNAMICC	9fs	Common-Source Forward Transconductance	5000	10,000	$\mu \mathrm{mho}$	$V_{\text {DS }}=10 \mathrm{~V}, \mathrm{ID}=5 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$
7		9 fs	Common-Source Forward Transconductance	5000	10,000		$V_{D G}=10 \mathrm{~V}, \mathrm{D}=5 \mathrm{~mA}$	$\mathrm{f}=100 \mathrm{MHz}$
8		Gos	Common-Source Output Conductance		150		$V_{D S}=10 \mathrm{~V} .1 \mathrm{D}=5 \mathrm{~mA}$	$t=1 \mathrm{kHz}$
9		905	Common-Source Output Conductance		150		$V_{O G}=10 \mathrm{~V}, \mathrm{ID}=5 \mathrm{~mA}$	$f=100 \mathrm{MHz}$
10		Ciss	Common-Source Inpur Capacitance		5	pF		$f=1 \mathrm{MHz}$
11		Crss	Common-Source Reverse Transfer Capacitance		1.2			
12		\bar{e}_{n}	Equivaient Short Circuit Input Noise Voltage		30	$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$		$f=10 \mathrm{kHz}$
13	$M$$A$$T$$\mathbf{T}$$\mathbf{H}$ING	$\frac{\operatorname{loss} 1}{\operatorname{loss} 2}$	Saturation Drain Current Ratio (Notes 1 and 2)	0.85	1		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
14		$\mathrm{V}_{\mathrm{GS}} \mathrm{V}^{-\mathrm{V}_{G S}{ }^{i}}$	Difterential Gate Source Voltage		100	mV	$V_{D G}=10 \mathrm{~V}, \mathrm{D}=5 \mathrm{~mA}$	
15		$\frac{\mathrm{g}_{\mathrm{fs} 1}}{\mathrm{~g}_{\mathrm{fs} 2}}$	Transconductance Ratio (Note 2)	0.85	1			$\mathrm{f}=1 \mathrm{kHz}$
16		$\lg _{051} 1-g_{\text {os } 2} 1$	Differential Output Conductance		20	umho		
NOTES: 1. Pulse test required, pulse width $=300 \mu 5$, duty cycle $\leqslant 30 \%$ 2. Assumes smaller value in numerator.								NZF

Analog Switches

Commutators
Choppers

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Reverse Gate-Drain or Gate-Source Voltage. -30 V
Gate Current . 100 mA
Drain Current ... 1.5 A
Total Device Dissipation at $25^{\circ} \mathrm{C}$
Free-Air Temperature (Note 1) 500 mW
Storage Temperature Range. 65 to $+150^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16^{\prime \prime}$ from case for 10 seconds) $300^{\circ} \mathrm{C}$

BENEFITS

- Ultra-Low Insertion Loss
$\mathrm{R}_{\mathrm{DS}(\text { on })}<2.5 \Omega$ (U290)
High Off-Isolation
I_{D} (off) <1 nA

TO-52
See Section 7

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				J290		U291		Unit	Test Conditions		
				Min	Max	Min	Max				
1		IGSS	Gate Reverse Current		-1		- 9	nA	$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{D S}=0$		
2					-1.		-1	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$	
3		BVGSS	Gate-Source Breakdown Voltage	-30		-30		V	$\mathrm{IG}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		
4		VGS (off)	Gate-Source Cutoff Voltage	-4	-10	-1.5	-4.5		$V_{O S}=15 \mathrm{~V}, \mathrm{ID}=3 \mathrm{nA}$		
5		'Dioff)	Drain Cutoff Current		1		1	nA	$V_{D S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$		
6					1		1	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$	
7		$V_{\text {DS }}$ (on)	Drain-Source ONVotage		25		70	mV	$V_{G S}=0,1 D=10 \mathrm{~mA}$		
8		IDSS	Saturation Drain Current (Note 2)	500		200		mA	$V_{\text {DS }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		
9		rosfon)	Static Drain-Source ON Resistance	1.0	2.5	2	7	Ω	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$		
10	$\begin{array}{\|c} \hline \mathbf{D} \\ \mathbf{Y} \\ \mathbf{N} \\ \mathbf{A} \\ \mathbf{M} \\ \mathbf{1} \\ \mathbf{C} \end{array}$	${ }^{\text {r d }}$ ds (on)	Drain-Source ON Resistance	1.0	2.5	2	7	Ω	$V_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=0$	$f=1 \mathrm{kHz}$	
11		$\mathrm{C}_{\text {SGO }}$	Source Gale OFF Capacitance		30		30	pF	$V_{S G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0$	$f=1 \mathrm{MHz}$	
72		Cbgo	Drain-Gate OFF Capacitance		30		30		$V_{\text {DG }}=15 \mathrm{~V}, \mathrm{IS}=0$		
13		$\mathrm{C}_{\text {SG }}+\mathrm{CDG}^{\text {d }}$	Source Gate Plus Drain Gate On Capacitance		160		160		$V_{O S}=0, V_{G S}=0$		
14	W	tdion)	Turn-ON Delay Time		15		15	ns	$\begin{aligned} & V_{D D}=1.5 \mathrm{~V}, I_{D(\text { on })}=30 \mathrm{~mA}, R_{L}=50 \Omega . \\ & V_{G S(\text { on })}=0 \mathrm{~V}, \\ & V_{G S(\text { off })}--12 \mathrm{~V}(\mathrm{U} 290) \\ & V_{G S(\text { off })}=-7 \mathrm{~V}(\mathrm{U} 291) \end{aligned}$		
15		t_{r}	Rise Time		20		20				
16		${ }^{\text {d }}$ diofi ${ }^{\text {d }}$	Turn-OFF Delay Time		15		15				
17		t_{4}	Fall Time		20		20				

NOTES:

I. Derate linearly a, the rare of $40 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
2. Pulse test required pulsewidth $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

Silisinix
 Performance Curves PS See Section 5

BENEFITS

- Low Insertion Loss
$\mathrm{R}_{\mathrm{DS}(\text { on })}<85 \Omega$ (U304)
- High Off-Isolation
$l_{\text {D(off) }}<500 \mathrm{pA}$

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Reverse Gate-Drain or Gate-Source Voltage (Note 1) . . 30 V
Gate Current . 50 mA
Total Device Dissipation, Free-Air
(Derate $2.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
350 mW
Storage Temperature Range. -65 to $+150^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16^{\prime \prime}$ from case for 60 seconds) $300^{\circ} \mathrm{C}$

TO-18
Seee Section 7 Section

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathbf{C}\right.$ unless otherwise noted)

Characteristic				U304		U305		U306		Unit	Test Conditions			
				Min	Max	Min	Max	Min	Max					
1	S$T$$A$$T$SC	IGSS	Gate Reverse Current		500		500		500	PA	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			
2					1.0		1.0		1.0	$\mu \mathrm{A}$				$150^{\circ} \mathrm{C}$
3		BVGSS	Gate-Source Bieakdewn Voltayt	30		30		30		V	$\mathrm{I}_{\mathrm{G}}-1 \mu \mathrm{~A}_{,} \mathrm{V}_{\mathrm{DS}}-0$			
4		$\mathrm{VGS}_{\text {G (off) }}$	Gate-Source Cutoff Voltage	5	10	3	6	1	4		$V_{D S}=-15 \mathrm{~V}, \mathrm{l}_{\mathrm{D}}=-1 \mu \mathrm{~A}$			
5		VDS $\{0 n$)	Drain-Source ON Voltage		-1.3		-0.8		-0.6		$\begin{aligned} & V_{G S}=0,1 D=-15 \mathrm{~mA}(\mathrm{U} 304), \\ & I_{D}=-7 \mathrm{~mA}(U 305), \\ & I_{D}=-3 \mathrm{~mA}(U 306) \end{aligned}$			
6		ioss	Saturation Drain Current (Note 2)	-30	-90	-15	-60	-5	-25	mA	$\mathrm{V}_{\mathrm{DS}}=-1$	$V, V_{G S}$		
7		'D (off)	Drain Cutoff Current		-500		-500		-500	pA	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=12 \mathrm{~V}(\mathrm{U} 304) . \\ & \mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}(\mathrm{U} 305) . \\ & \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}(\mathrm{U} 306) \end{aligned}$			
8					-1.0		-1.0		-1.0	$\mu \mathrm{A}$				$150^{\circ} \mathrm{C}$
9		TDSton)	Static Drain-Source ON Resistance		85		110		175	Ω	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}$			
10	$\begin{aligned} & \mathbf{D} \\ & \mathbf{Y} \\ & \mathbf{N} \end{aligned}$	rds(on)	Drain-Source ON Resistance		85		110		175	Ω	$V_{G S}=0$	$10=0$		$f=1 \mathrm{kHz}$
11		Ciss	Common-Source input Capacitance		27		27		27	pF	$V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$			$f=1 \mathrm{MHz}$
12		Crss	Common-Source Reverse Transfer Capacitance		7		7		7		$\begin{aligned} & V_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=12 \mathrm{~V}(\mathrm{U} 304) \\ & \mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}(\mathrm{U} 305), \\ & \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}(\mathrm{U} 306) \end{aligned}$			
13	\mathbf{s}		Turn-ON Delay Time		20		25		25	ns		U304	U305	U306
13		ton)									$V_{D D}$	-10 V	-6V	-6V
14	W	t_{r}	Rise Time		15		25		35		$\mathrm{V}_{\text {GS }}$ (off)	12 V	7 V	5 V
15	$\begin{aligned} & \mathrm{T} \\ & \mathrm{C} \\ & \mathrm{H} \end{aligned}$	td (off)	Turn-OFF Delay Time		10		15		20		R_{L}	580Ω	743Ω	1800Ω
16		t_{f}	Fall Time		25		40		60		'VGS(on)	0	0	0
											ID (on)	$-15 \mathrm{~mA}$	-7ma	$-3 \mathrm{~mA}$

[^5]PS

1. Due to symmetrical geometry these units may be operated with
source and drain leads interchanged.
2. Pulse test pulsewidth $=300 \mu$ s, duty cycle $\leqslant 3 \%$.

n-channel JFETs designed for

VHF Amplifiers

Front End High Sensitivity Amplifiers Oscillators Mixers

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage

$-25 \mathrm{~V}$Gate Current . 20 mA
Total Power Dissipation at $T_{A}=25^{\circ} \mathrm{C}$.
Power Derating to $150^{\circ} \mathrm{C}$. $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range. -65 to $+150^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16^{\prime \prime}$ from case for 10 seconds)
$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

200-250 MHz Wideband Amplifer (1 dB Ripple) 3-Stage Amplifier Circuit

450 MHz Common Gate Amplifier

2 Tone Intercept \& Compression Point Measurement

Noise Figure vs. Power Gain

Prototype Active Balanced Mixer'

$$
\begin{aligned}
& \mathrm{C}_{1}, \mathrm{C}_{5}-01 \mu \mathrm{Hd} \quad \mathrm{C}_{10} \quad 0.1 \mu \mathrm{~F} \\
& \begin{array}{ll}
C_{2}, C_{4}-1.10 \mathrm{pF} & \mathrm{l}_{1}, L_{2}-1.3 \text { iny } \\
c_{3}-1000 \mathrm{pF} & \mathrm{o}_{1}, \mathrm{o}_{2}-U 310
\end{array} \\
& \begin{array}{ll}
C_{3}-1000 \mathrm{pF} & \mathrm{o}_{1}, \mathrm{C}_{2}-\text { U310 } \\
\mathrm{C}_{6}, \mathrm{C}_{\mathrm{B}}-30 \mathrm{pF} & \mathrm{~T}_{1} \\
\mathrm{C}_{7}, \mathrm{C}_{9}-68 \mathrm{pF} &
\end{array}
\end{aligned}
$$

*Reference Sificonix Application Note AN71-2.

n-channel JFET designed for

VHF Amplifiers
Oscillators
Mixers

ABSOLUTE MAXIMUM RATINGS ($\mathbf{2 5}{ }^{\circ} \mathrm{C}$)	
Gate-Drain or Gate-Source Voltage	25 V
Gate Current	10 mA
Total Device Dissipation (Derate $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)	300 mW
Storage Temperature Range	-65 to $+200^{\circ} \mathrm{C}$
Lead Temperature	
(1/16" from case for 10 seconds)	300°

E Siliconix

 Befforeatione5Curves NZA
BENEFITS

- High Power Gain

16 dB Typ @ 105 MHz. CommonGate
11 dB Typ @ 450 MHz , CommonGate

- Low Noise Figure
1.5 dB Typ@ 105 MHz
2.7 dB Typ @ 450 MHz
- Wide Dynamic Range-Greater than 100 dB

T0-72
See Section 7

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic			Min	Max	Unit	Test Conditions	
1	IGSS	Gats Reverse Current		-150	pA	$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
2.				-150	nA		$150^{\circ} \mathrm{C}$
3 T	BVGSS	Gate-Source Breakdown Voltage	-25		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{OS}}=0$	
41	$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	-1	-6		$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	
$5{ }^{\text {C }}$	IOSS	Saturation Drain Current (Note 1)	20	60	mA	$\mathrm{V}_{\text {DS }}=10 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$	
6	$V_{\text {GS }}(f)$	Gate-Source Forward Voltage		1	V	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$	
7	g_{fg}	Common-Gate Forward Transconductance (Note 1)	10,000	20,000	$\mu \mathrm{mho}$	$\mathrm{VOS}_{\text {O }}=10 \mathrm{~V}, \mathrm{ID}=10 \mathrm{~mA}$	$f=1 \mathrm{kHz}$
8 O	9 og	Common-Gate Output Conductance		200			
9 N	$\mathrm{C}_{\text {gd }}$	Gate-Drain Capacitance		2.5	pF	$V_{O G}=10 \mathrm{~V}, \mathrm{ID}^{\prime}=5 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{MHz}$
10	Cgs	Gate-Source Capacitance		5.0			

NOTE:

NZA

1. Puise test duration $=2 \mathrm{~ms}$,

n-channel JFET designed for

VHF/UHF Common-Gate Amplifiers
 Mixers

BENEFITS

- High Power Gain 10 dB Typical at 450 MHz . Common Gate
- Low Noise
$\mathrm{NF}=3.5 \mathrm{~dB}$ Typical at 450 MHz

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)

Gate-Drain or Gate-Source Voltage - 25 V
Gate Current . 10 mA
Total Power Dissipation at or below $25^{\circ} \mathrm{C}$
Free-Air Temperature . 500 mW
Power Derating . $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range. 65 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range. -65 to $+150^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16^{\prime \prime}$ from case for 10 seconds) $300^{\circ} \mathrm{C}$

TO-52 See Section 7

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathbf{C}$ unless otherwise noted)

Characteristic			Min	Max	Unit	Test Conditio	
4	${ }^{1} \mathrm{GSS}$	Gate Reverse Current		-0.1	nA	$V_{G S}=-15 V^{\prime} V_{D S}=0$	
2 S				-0 1	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
3 A	BVGSS	Gate-Source Breakdown Vortage	-25		V	$I_{G}=-1 \mu A, V D S=0$	
4 ,	$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	-1	-6	V	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	
$5 \times$	IDSS	Sauration Drain Current (Note 1)	10	30	mA	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
$\underline{6}$	$9+9$	Common-Gate Forward Trenscenductance (Note 11	6000	10,000	$\mu \mathrm{mbo}$	$V_{D S}=10 \mathrm{~V}, 1 \mathrm{D}=10 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$
7 Y	${ }^{909}$	Common-Gate Output Conductance		200	$\mu \mathrm{mba}$		
8 N	$\mathrm{C}_{\mathrm{g}} \mathrm{d}$	Gate-Deain Capacitance		1.2	pF	$V_{D G}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{MHz}$
9	C_{gs}	Gale-Source Capacitance		3.8	pF		

NOTE:

1. Pulse test duration $=2 \mathrm{~ms}$

n-channel JFETs designed for.

VHF Buffer Amplifiers
 IF Amplifiers

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathbf{C}$ unless otherwise noted)

T1-6. TURNS \# 22 AWG TNISTED PAIR WIRE ON 0.375 INCH DIAMETER INDIANA GENERAL F625-902 TOROID CORE.

50 MHz Power Gain and Noise Figure T at Circuit for U320, U32才 and U322

Figure 1

Gain - Intermodulation Characteristics Figure 2

monolithic dual n-channel JFETs designed for.

Low Noise FET Input Amplifiers

- Low and Medium Frequency Amplifiers

Impedance Converters

Precision Instrumentation Amplifiers

Comparators
ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)
Gate-Drain or Gate-Source Voltage 50 V
Forward Gate Current 10 mA
Device Dissipation (each side)
$@ T_{A}=85^{\circ} \mathrm{C}$ derate $2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
300 mW
Total Device Dissipation
@ $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ (derate $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
C) -6500 mW

Storage Temperature Range
ELECTRICAL CHARACTERISTICS (@ $\mathbf{2 5}^{\circ} \mathrm{C}$ unless otherwise noted)

| | U401 | U402 | U403 | U404 | U405 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

General Purpose FET Input Op Amp

Typical Specs for General Purpose FET Input Op Amp*
Common Mode Range +6.7 to -8.8 Volts Worst Care Drift Referred to the Input . . $\approx 12 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Broad Band Noise Referred to
the Input (0.1 to 1 kHz) $\approx 188 \mathrm{nV} / \mathrm{Rms}$ Gain and Bandwidth (see graph)
*These specs depend upon the specifications of the Opera tional amplifier IC used.

Open Loop Gain and Frequency Response of Op Amp

For futher design informarion, write for:
DESIGNING FET-INPUT OPERATIONAL AMPLIFIERS (AN743)
Describer the advantages of FET input operational amplifiers over their bipolar transistor counterparts. Includes data on noise, leakage current, offset and drift. CMRR and slew rate. Detailed design information and several practical circuits are included. (16 pages).

FET Input Instrumentation Amplifier

monolithic dual n-channel JFETs designed for.

円T Input Amplifiers Low and Medium Frequency Amplifiers Impedance Converters Precision Instrumentation Amplifiers Comparators

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Gate-To-Gate Voltage $+40 \mathrm{~V}$
Gate-Drain or Gate-Source Voltage $-40 \mathrm{~V}$
Gate Current 50 mA
Total Package Dissipation ($25^{\circ} \mathrm{C}$ Free-Air) 375 mW Power Derating . $3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range
-65 to $+150^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds) . $300^{\circ} \mathrm{C}$

Performance Curves NQP

 See Section 5
BENEFITS

- Low Cost
- Minimum System Error and Calibration 10 mV Offset Maximum (U410) 70 dB Minimum CMRR (U410)
- Low Drift with Temperature
$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Maximum (U410)
- Simplifies Amplifier Design Low Output Conductance T0.71

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

monolithic dual n-channel JFETs designed for

Very High Input Impedance Differential Amplifiers

Electrometers

 Impedance Converters
ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Performance Curves NQT See Section 5

BENEFITS

- High Input Impedance
$\mathbf{I}_{\mathbf{G}}=0.1 \mathrm{pA}$ Maximum (U421-3)
- High Gain $\mathrm{g}_{\mathrm{fs}}=\mathbf{1 4 0} \mu \mathrm{mho}$ Minimum @ $I_{D}=30 \mu \mathrm{~A}$ (U421-3)
- Low Power Supply Operation $\mathrm{V}_{\mathrm{GS}(\mathrm{off})}=2 \mathrm{~V}$ Maximum (U421-3)
- Minimum System Error and Calibration 10 mV Maximum Offset 90 dB Minimum CMRR (U421, U424)

HOM VIEW
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Very Low Leakage FET Input Op Amps

NOTE：Pin 4 （case）is isolated from the substrate and should be left floating．

For more information see：
DESIGNING FET INPUT OPERATIONAL AMPLIFIERS IAN7431

Describes the advantages of FET input operational ampli－ fiers aver their bipolar transistor counterparts．Includes data on noise，leakage current，offset and drift，CMRR and slew rate．Detailed design information and several practical cir－ cuits are included．

Electrometer Amplifier
L144Cl
Instrumentation Amplifier

matched dual n-channel JFETs designed for

Balanced Mixers Differentia! Amplifiers

ABSOLUTE MAXIMUM RATINGS $\left(\mathbf{2 5}^{\circ} \mathbf{C}\right)$

Gate-Drain or Gate-Source Voltage -25 V
Gate Current . 10 mA
Total Continuous Power Dissipation at
(or Below) $25^{\circ} \mathrm{C}$ Free Air Temperature
Derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. 500 mW
Continuous Device Dissipation (Each Side) at
(or Below) $25^{\circ} \mathrm{C}$ Free Air Temperature
Derate $2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. 300 mW
Storage Temperature Range. -65 to $+200^{\circ} \mathrm{C}$
Lead Temperature
(1/16" from case for 10 seconds) $300^{\circ} \mathrm{C}$

Performance Curves NZA See Section 5

BENEFITS

- Low Noise Figure
- Low IMD

30 dBm Intercept Point

TO-99
See Section 7

ELECTRICAL CHARACTERISTICS (25° unless otherwise noted)

matched dual n-channel JFETs designed for VHF/UHF Amplifiers

Performance Curves NZF See Section 5

BENEFITS

- High Gain
$\mathrm{g}_{\mathrm{fs}}=4500 \mu \mathrm{mho}$ Minimum
- Dual Version of 5300 with Matched Gate-to-Source Voltage
ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Gate-To-Gate Voltage. $\pm 50 \mathrm{~V}$
Gate-Drain or Gate-Source Voltage -25 V
Gate Current 50 mA
Total Package Dissipation
($25^{\circ} \mathrm{C}$ Free-Air Temperature) 350 mW
Power Derating $2.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range -65 to $+150^{\circ} \mathrm{C}$
Lead Temperature(1/16" from case for 10 seconds)$.300^{\circ} \mathrm{C}$

T0.71 See Saction 7

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				U440			U441			Unit	Test Conditions	
				Min	TYp	Max	Min	TYp	Max			
1	STAT1C	${ }^{\text {IGSS }}$	Gate Reverse Current (Note 1)			-500			-500	nA	$V_{D S}=0, V_{G S}=-15$	
2		$V_{\text {GS }}$ (off\}	Gate-Source Cutoff Votage	-1		-6	-1		-6	v	$V_{D S}=10 \mathrm{~V}, \mathrm{iD}=1 \mathrm{nA}$	
3		BVGSS	Gate-Source Breakdown Voltage	-25			-25				$V_{D S}=0, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$	
4		Ioss	Saturation Drain Current (Note 2)	6		30	6		30	mA	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
5		'G	Gate Current (Note 1)			-500			-500	pA	$V_{O G}=10 \mathrm{~V}, 1 \mathrm{D}=5 \mathrm{~mA}$	
6	$\begin{aligned} & \mathrm{D} \\ & \mathrm{Y} \\ & \mathrm{~N} \\ & \mathrm{~A} \\ & \mathrm{M} \\ & \mathbf{I} \\ & \mathbf{C} \end{aligned}$	9fs.	Common-Source Forward Transconductance	4,500		9,000	4,500		9,000	$\mu \mathrm{mha}$	$V_{D G}=10 \mathrm{~V} \cdot 10=5 \mathrm{~mA}$	$f=1 \mathrm{kHz}$
7		gos	Common-Source Outpur Conductance			200			200			
8		$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		3.5			3.5		pF		$\mathrm{f}=\mathrm{l} \mathrm{MHz}$
9		$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		0.8			0.8				
10	M \mathbf{A} \mathbf{T}	$\mid V_{G S}{ }^{-} \mathrm{V}_{\text {GS } 2 \mid}$	Differential Gate-Source Voltage			10			20	mV	$V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA}$	

[^6]NZF
voltage-controlled resistor FETs designed for

Small Signal Attenuators

Filters
Amplifier Gain Control
Oscillator Amplitude Control

TQ-18 See section 7

VCRZN
VCR4N

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)
N-Channel VCR FETs

Characteristic				VCR2N		VCR4N		VCR7N		Unit	Test Conditions	
				Min	Max	Min	Max	Min	Max			
1	$S$$T$$A$$T$$I$$C$	IGSS	Gate Reverse Current		-5		-0.2		-0.1	nA	$V_{G S}=-15 \mathrm{~V}, V_{D S}=0$	
2		$B V_{G S S}$	Gate-Source Breakdown Voltage	-15		-15		-15		V	$1_{G}=-1 \mu \mathrm{~A}, V_{D S}=0$	
3		VGS(off)	Gate-Source Cutoff Voltage	-3.5	-7	-3.5	-7	-2.5	-5		${ }^{1} \mathrm{D}=1 \mu \mathrm{~A}, V_{D S}=10 \mathrm{~V}$	
4		${ }^{\text {rds }}$ (on)	Drain Source ON Resistance	20	60	200	600	4,000	8,000	Ω	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{ID}=0$	$f=1 \mathrm{kHz}$
5	V	$\mathrm{C}_{\text {dgo }}$	Drain-Gate Capacitance		7.5		3		1.5	pF	$V_{G D}=-10 \mathrm{~V}, \mathrm{IS}_{\mathrm{S}}=0$	$f=1 \mathrm{MHz}$
6		$\mathrm{C}_{\text {sgo }}$	Source-Gate Capacitance		7.5		3		1.5		$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0$	
NC NP												

P-Channel VCR FETs

Eiliconix

N-Channel JFET Output Characteristic Enlarged Around $\mathrm{VOS}^{\boldsymbol{O}}=\mathbf{0}$

Figure t 8
 Figure 2
The VCR FET has an a-c drain-source resistance, evaluated around $V_{D S}=\mathbf{0}$, that is controlled by $d-c$ bias voltage $V_{G S}$ applied to the high-impedance gate terminal. Minimum $r_{d s}$ occurs when $V_{\mathrm{GS}}=0$ and, as V_{GS} approaches the pinch-off voltage, $r_{d s}$ rapidly increaser. Comparing Fig. 1 and 2 for $V_{\text {DS }}< \pm 0.1$ volt and $V_{G S}=$ constant, the VCR FET has a bilateral characteristic with no offset voltage, just like a fixed resistor. However, when VDS $> \pm 0.1$ volts, the VCR FET characteristic has noticeable curvature.

This series of junction FETr is intended for applications where the drain-source voltage is a low-level a-c signat with no d-c component. Thus the FET operating point will swing symmetrically around $V_{D S}=0$. In the first quadrant. signal distortion depends on what extent the FET output characteristic deviates from a straight line or linear relation. Besifes the linearity problem in the third quadrant, when $V_{G S}$ is near zero and $v_{d s}>0.5$ volt rms, the gate-channel junction will become forward biased and cause additional curvature in the characteristic. Also, whenever the gate becomer forward biased due to any combination of $V_{G S}$ and $v_{d s}$. it ceases to be a high-impedance control terminal for the VCR.

Fig. 3 presents a normalized plot of ros versus normalized V_{GS} where $\mathrm{V}_{\mathrm{GS}}(\mathrm{off})$ is defined as that value of V_{GS} at $I_{D} /$ DSS $=0.001$. The dynamic range of rDS is shown as greater than 100:1. For best control of ros the normalized V_{GS} should lie between 0 and $0.8 \mathrm{~V}_{\mathrm{GS} \text { (off) }}$ because as
V_{GS} approaches $\mathrm{V}_{\mathrm{GS} \text { (off), }} \mathrm{DS}$ increaser very rapidly so that r_{d} s control becomes very critical and unit-to-unit
 function of $\mathrm{V}_{\mathrm{GS}(\mathrm{off})}$. In Fig. $5 \mathrm{r}_{\mathrm{ds}}$ has a typical $0.7 \% /{ }^{\circ} \mathrm{C}$ temperature coefficient far P-channels which decreases as VGS approaches the zero t.c. point. N-channel devices have a typical $0.3 \% /{ }^{\circ} \mathrm{C}$ t.c. Specific bias voltage to set operation at the zero t.c. point varier, as doer VGS(off). from device to device."

Fig. 3

Fig. 4

Fig. 5
For further information on using FETr as voltage-variable resistors, consult Siliconix Application Note AN73-1.

[^7]
dota sheets plostic

n-channel JFETs rdesigned for
 - General Purpose Amplifiers Switches

*ABSOLUTE MAXIMUM RATINGS $\left(\mathbf{2 5}^{\circ} \mathrm{C}\right)$
Drain-Source Voltage 25 V
Drain-Gate Voltage 25 V
Source-Gate Voltage 25 V
Total Device Dissipation at $25^{\circ} \mathrm{C}$ 310 mW
Derate above $25^{\circ} \mathrm{C}$ $2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature $135^{\circ} \mathrm{C}$
Storage Temperature Range. -65 to $+150^{\circ} \mathrm{C}$

Beeforotione5Curves NRL

BENEFITS

- Low Cost
- Automated Insertion Package

TO-92
See Section 7

Bortom View

*ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				2N5457			2N5458			2N5459			Unit	Test Conditions	
				Min	Typ	Max	Min	Typ	Max	Min	Typ	Max			
1		'GSS	Gate Reverse Current		-. 01	-1.0		-. 01	-1.0		-. 01	-1.0	πA	$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
2	S					-200			-200			-200			$T_{A}=1100^{\circ} \mathrm{C}$
3	A	BVGss	Gate-Source Breakdown Voltage	-25	-60		-25	-60		-25	-60		V	${ }^{1} \mathrm{G}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$	
4	T	$\mathrm{V}_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	-0.5		-6.0	-1.0		-7.0	-2.0		-8.0		$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$	
5	c	I DSs	Saturation Drain Current	1.0		5.0	2.0		9.0	4.0		16	mA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 1)	
6	D	9fs	Common-Source Forword Transconductance	1,000		5,000	1.500		5,500	2,000		6,000	$\mu \mathrm{mho}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathfrak{f}=1 \mathrm{kHz}$
7		$\mathrm{gos}^{\text {S }}$	Common-Source Output Conductance		10	50		15	50		20	50			
8	N	$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		4.5	7.0		4.5	7.0		4.5	7.0	pF		$f=1 \mathrm{MH}$ \%
9	M	$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		1.0	3.0		1.0	3.0		1.0	30			
10	C	NF	Noise Figure		. 04	3.0		. 04	3.0		. 04	30	dB	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} . \mathrm{V}_{\mathrm{GS}}-0 \\ & R_{\mathrm{G}}=1 \mathrm{MS} . \\ & \mathrm{NBW}=1 \mathrm{~Hz} \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$

*JEDEC registered data
NOTE:

1. Pulse test pulsewidth $=2 \mathrm{~ms}$.

	8 Siliconix
deslgned for • .	Performance Curves NH See Section 5
- VHF/UHF Amplifiers	BENEFITS
- Mixers	- Low Cost - Completely Specified for 400 MHz
- Oscillators	- Egeration Analog Switch
- Analog Switches	Very Little Charge Coupling $\mathrm{C}_{\mathrm{rss}}<1.0 \mathrm{pF}$
*ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$	
Drain-Gate Voltage. 25 V	
Source Gate Voltage. 25 V	${ }_{\text {See }}^{\text {Section }}$
Drain Current . 30 mA	
Forward Gate Current.. 10 mA	
Total Device Dissipation @ $25^{\circ} \mathrm{C}$. 360 mW Derate above $25^{\circ} \mathrm{C}$. $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
Operating Junction Temperature Range 65 to $+135^{\circ} \mathrm{C}$	\bigcirc
Storage Temperature Range -65 to $+150^{\circ} \mathrm{C}$	5
Lead Temperature	\bigcirc
(1116" from case for 10 seconds) $240^{\circ} \mathrm{C}$	Battom Vie

*ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Analog Switches

Choppers

- Commutators
'ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage -25 V
Gate Current 10 mA
Total Device Dissipation at (or Below) $\mathrm{TA}=25^{\circ} \mathrm{C} . .360 \mathrm{~mW}$
(Derate $3.28 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $135^{\circ} \mathrm{C}$)
Operating Temperature Range. -55 to $+135^{\circ} \mathrm{C}$
Storage Temperature Range $65 \mathrm{to}+150^{\circ} \mathrm{C}$
Lead Temperature
(1/16" from case for 10 seconds) $.240^{\circ} \mathrm{C}$

TO-92 See Section 7

BENEFITS

- Low Cost
- Automatic Insertion Package
- No Offset or Error Voltages Generated by Closed Switch

Purely Resistive

- Low Charge Coupling from Driver to Load

$$
\mathbf{C}_{\mathrm{rss}}=0.8 \mathrm{pF} \text { Typically }
$$

Silidinix
Beef\&eatione5Curves NH

'ELECTRICAL CHARACTERISTICS ($\mathbf{2 5}^{\mathbf{\circ}} \mathbf{C}$ unless otherwise noted)

n-channel JFETs designed for

Analog Switches
 Commutators Choppers

'ABSOLUTE MAXIMUM RATINGS ($\mathbf{2 5}^{\circ} \mathrm{C}$)
Drain-Source Breakdown Voltage 30 V
Drain-Gate Breakdown Voltage 30 V
Source-Gate Breakdown Voltage. 30 V
Forward Gate Current . 10 mA
Total Device Dissipation at TLEAD $=25^{\circ} \mathrm{C} \ldots . .625 \mathrm{~mW}$
Derate above $25^{\circ} \mathrm{C}$....................... $5.68 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range.. ... -65 to $+135^{\circ} \mathrm{C}$
Storage Temperature Range. -65 to $+150^{\circ} \mathrm{C}$ Lead Temperature
($1 / 16^{\prime \prime}$ from case for 10 seconds) $300^{\circ} \mathrm{C}$
*ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

n-channel JFETs designed for

Analog Switches

- Commutators
- Choppers

Performance Curves NC See Section 5

BENEFITS

- Low Cost
- Automatic Insertion Package
- High Speed
${ }^{\text {ton }}{ }^{+}{ }^{\text {tofFF }}=24$ ns Max (2N5653)
- Low Insertion Loss
$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}=50 \Omega \mathrm{Max}(2 \mathrm{~N} 5653$)
*ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

TO-92 See Section 7

Drain-Source Voltage
.30 V
Drain-Gate Voltage . 30 V
Source-Gate Voltage. 30 V
Forward Gate Current.. 10 mA
Total Device Dissipation at (or Below) $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(Derate $2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $135^{\circ} \mathrm{C}$).
360 mW
Operating Junction Temperature Range -65 to $+135^{\circ} \mathrm{C}$
Storage Temperature Range -65 to $+150^{\circ} \mathrm{C}$
'ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

*JEDEC registered data
NOTE;

1. Pulse test $\mathrm{PW} \leqslant 300 \mu \mathrm{~s}$, duty cycie $\leqslant 3 \%$.

n-channel JFETs designed for

VHF/UHF Amplifiers Mixers Oscillators

*ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Drain-Gate Voltage
Source-Gate Voltage . 25 V
Drain-Source Voltage. 25 V
Forward Gate Current. 10 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 360 mW
Operating Temperature Range.. 55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$ Lead Temperature Range

$$
\left(1 / 16^{\prime \prime} \text { from case for } 10 \text { seconds) } 300^{\circ} \mathrm{C}\right.
$$

BENEFITS

- Low cost
- Automatic Insertion Package
- Specified for 100 MHz Operation
*ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

TO-92 See Section 7

Battom Viaw

[^8]
n-channel JFETs designed for.

- Analog Switches

 Choppers- Commutators
ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage $-25 \mathrm{~V}$
Gate Current 50 mATotal Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) . 360 mW
Operating Temperature Range -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. -55 to $150^{\circ} \mathrm{C}$Lead Temperature Range
(1/16" from case for 10 seconds) $300^{\circ} \mathrm{C}$

Performance Curves NV A See Section 5

BENEFITS

- Very Low Insertion Loss
$\mathrm{R}_{\mathrm{DS}}(\mathrm{on})<3 \Omega$ (J 105)
- No Offset or Error Voltages Generated by Closed Switch

Purely Resistive
High Isolation Resistance from Driver

(-18)

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic				J105			3106			J107			Unit	Test Conditions			
				Min	Typ	Max	Min	Typ	Max	Min	Typ	Max					
1	S	1 GSS	Gate Reverse Current (Note 1)			-3			-3			-3	nA	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}--15 \mathrm{~V}$			
2		$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	-4.5		-10	-2		-6	-0.5		-4.5	V	$V_{D S}-5 V_{1} I_{D}=1 \mu \mathrm{~A}$			
3	A	BVGSS	Gate-Source Breakdown Voltage	-25			-25			-25				$V_{D S}=0 \mathrm{~V}, \mathrm{i}_{\mathrm{G}}=-1 \mu \mathrm{~A}$			
4	AT1C	${ }^{1} \mathrm{DSS}$	Drain Saturation Current (Note 2t	500			200			100			mA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			
5		${ }^{\text {d }}$ (off)	Drain Cutoff Current (Note 1)			3			3			3	nA	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$			
6		[DS(on)	Drain Source ON Resistance			3			6			8	Ω	$V_{D S} \leqslant 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			
7	DYNAM	$\mathrm{C}_{\text {dg(off }}$	Drain Gate OFF Capacitance			35			35			35	pF	$V_{\text {DS }}=0 \mathrm{~V} . \mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}$			$\mathrm{f}=1 \mathrm{MHz}$
8.		$\mathrm{C}_{\text {sgioff }}$	Source Gate OFF Capacitance			35			35			35					
9		$\begin{gathered} \mathrm{C}_{\mathrm{dg}(\mathrm{on})} \\ + \\ \mathrm{C}_{\text {sg(on) }} \end{gathered}$	Drain Gate plus Source Gate ON Capacitance			160			160			160		$V_{\text {US }}-V_{\text {GS }}-0 V$			
10		$\left.{ }^{t} \mathrm{~d} \text { fon }\right)$	Turn On Delay Time	15			15			15			ns	Switching Time Test Conditions			
$1 \uparrow$	C	t_{r}	Rise Time		20			20			20			$\begin{aligned} & V_{\text {OD }} \\ & V_{G S(o f f)} \\ & R_{L} \end{aligned}$	$\begin{aligned} & 1105 \\ & 1,5 \mathrm{~V} \end{aligned}$	1106 15 V	$\begin{aligned} & \mathrm{J} 107 \\ & 1.5 \mathrm{~V} \end{aligned}$
12		tdfoff)	Turn Off Delay Time		15			15			15				$-12 \mathrm{~V}$	-7V	5 V
13		If	Fail Time		20			20			20				50 S	50Ω	50Ω

1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
2. Pulse test duration $=\mathbf{3 0 0} \mu \mathrm{s}$; duty cycle $\leqslant \mathbf{3 \%}$.

n-channel JFETs designed for

Analog Switches

Choppers
Commutators
Low Noise Audio Amplifiers

BENEFITS

- Low Cost
- Automated Insertion Package
- Low Insertion Loss
$\mathrm{R}_{\mathrm{DS}(\text { on) }}<8 \Omega$ (J108)
- No Offset or Error Voltages Generated by Closed Switch

Purely Resistive
High isolation Resistance from Driver

- Fast Switching
${ }^{t_{D}}$ (on) $+\mathrm{t}_{\mathbf{r}}=5 \mathrm{~ns}$ Typical
- Low Noise

$$
\overline{\mathrm{e}}_{\mathbf{n}}=6 \mathrm{nV} / \sqrt{\mathrm{Hz}} \text { at } 10 \mathrm{~Hz}, \operatorname{Typ}(\mathrm{~J} 110)
$$

1. Approximataly doubles for every ${ }^{10} 0^{\circ} \mathrm{C}$ increase in T_{A}
2. Pulse Test duration $300 \mu 5$; duty cycle sa $\mathbf{3 \%}$.

Siliconix

Beef\&ectione5Curves NC

BENEFITS

- Low Cost
- Automated Insertion Package
- Low Insertion Loss
$\mathrm{R}_{\mathrm{DS}(\text { on })}<30 \Omega$ (J111)
- No Offset or Error Voltages Generated by Closed Switch

Purely Resistive
High Isolation Resistance from Driver

- Fast Switching
${ }^{\mathbf{t}} \mathrm{D}$ (on) $+\mathrm{I}_{\mathrm{r}}=13 \mathrm{~ns}$ Typical
- Short Sample and Hold Aoerture Time
$\mathrm{C}_{\text {gd(off) }}<5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{gs}(\mathrm{off})}^{\mathrm{g}}<\mathbf{5 \mathrm { pF }}$

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage. -35 V
Gate Current. 50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$). 360 mW
Operating Temperature Range. -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$ Lead Temperature Range
(1/16" from case for 10 seconds) 300 ${ }^{\circ} \mathrm{C}$

(-18)

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

TO-92 See Section 7

Characteristic				J111			$J 112$			$J 113$			UNIT	Test Conditions			
				Min	Typ	Max	Min	Typ	Max	Min	Typ	Max					
1	\$	${ }^{\text {G GSS }}$	Gate Reverse Current (Note 1)			-1			1			1	$n \mathrm{~A}$	$V_{\text {OS }}=0 \mathrm{~V}$	Ss $=15 \mathrm{~V}$		
2		$V_{\text {GSioff }}$	Gate Source Cutoff Voltage	3		10	-1		-5	-0.5		-3	V	$V_{D S}=5 V_{1} I_{D}=1 \mu \mathrm{~A}$			
3	$\begin{aligned} & \mathbf{T} \\ & \mathbf{A} \end{aligned}$	EvGss	Gate Source Breakdown Voitage	35			. 35			-35				$V_{D S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$			
4	$\begin{aligned} & \mathbf{T} \\ & \mathbf{I} \\ & \mathrm{C} \end{aligned}$	IDSS	Drain Saturabtion Current \{Note 2\%	20			5			2			mA	$V_{\text {DS }}=15 V_{,} V_{G S}=0 \mathrm{~V}$			
5		ID(off)	Drain Cutoft Current (Note 1)			-1			1			-1	nA	$V_{D S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$			
6		rosion)	Drain Source ON Resistance			30			50			100	12	$V_{D S}=0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			
7	$\left.\begin{aligned} & \mathrm{D} \\ & \mathrm{v} \\ & \mathrm{~N} \end{aligned} \right\rvert\,$	$\mathrm{C}_{\text {dg }(\text { fif })}$	Drain Gate OFF Capacitance			5			5			5	pF	$V_{\text {DS }}=0 \mathrm{~V}, \mathrm{~V}_{G S}=-10 \mathrm{~V}$		$f=1 \mathrm{MHz}$	
8		$\mathrm{C}_{\text {sgioff }}$	Source Gate OFF Capacitance			5			5			5					
9		Crigions $C_{\text {sgion }}$	Drain Gate ious Source Gate ON Capacitance			28			28			28		$V_{D S S}=V_{G S}=0$			
10	$\begin{gathered} \mathrm{A} \\ \mathrm{M} \\ \mathrm{I} \\ \mathrm{C} \end{gathered}$	${ }^{t} \mathrm{~d}(\mathrm{on)}$	Turn On Delay Time		7			7			7		n\$	Switching Time Test Conditions			
11		t_{t}	Rise Time		6			6			6				J11.	J:12	$\mathbf{\$ 1 1 3}$
12		$\mathrm{t}_{\mathrm{d} \text { (ot) }}$	Turn Off Delay Time		20			20			20			$V_{\text {GD }}{ }^{\text {GS(off) }}$	-124	$-7 \mathrm{~V}$	-5 V
13		t_{4}	Fall Time		15			15			15			R_{L}		1,600 52	$3,200 \mathrm{~s}$

NOTES:
NC

1. Approximatel γ doubler for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
2. Pulse Test duration $300 \mu \mathrm{~s}$; duty cycle $\leqslant 3 \%$.

n-channel JFET designed for.

■ Analog Switches

- Choppers

Commutators

BENEFITS

- No Offset or Error Voltages Generated by Closed Switch

Purely Resistive
High Isolation Resistance from Driver

- Very Fast Switching ${ }^{t_{D}}$ (on) $+t_{r}=6$ ns Typical
- Short Sample and Hold Aperture Time $\mathrm{C}_{\text {gd(off) }}<2 \mathrm{pF}$
$\mathrm{C}_{\mathrm{gs}(\text { off })}<2 \mathrm{pF}$

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage. , -25 V
Gate Current. 50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$). ... 360 mW
Operating Temperature Range. 55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$ Lead Temperature Range
(1/16" from case for 10 seconds) $300^{\circ} \mathrm{C}$

T0.92
See Section 7

Bottom View

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

[^9]Siliconix

p-channel JFETs designed for

Analog Switches
Choppers
Commutators
ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage (Note 1) 30V Gate Current. 50 mA Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$). 360 mW Operating Temperature Range. -55 to $135^{\circ} \mathrm{C}$ Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$ Lead Temperature Range
($1 / 16^{\prime \prime}$ from case for 10 seconds $1 . .$. $300^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Performance Curves PS See Section 5

BENEFITS

- Low Cost
- Simplifies Series-Shunt Switching when when Combined with J113, its N-ChanChannel Complement
- Low Insertion Loss
$\mathbf{R}_{\mathrm{DS}(\text { on })}<85 \Omega$ (J174)
- No Offset or Error Voltages Generated by Closed Switch

Purely Resistive
High Isolation Resistance from Driver

- Short Sample and Hold Aperture Time

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{sg}(\mathrm{off})}<5.5 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{dg}(\mathrm{off})}<5.5 \mathrm{pF}
\end{aligned}
$$

- Fast Switching $\mathbf{t}_{\mathbf{d}}(\mathbf{o n})+\mathbf{t}_{\mathbf{r}}=7 \mathrm{~ns}$ Typical

$$
\text { See Section } 7
$$

Bottom Viaw
(.18)

n-channel JFETs designed for.

General Purpose Amplifiers

TO-92
See Section 7

(-18)

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

[^10]$N P$

General Purpose Switching
ABSOLUTE MAXIMUM RATINGS ($\left.\mathbf{2 5}^{\circ} \mathbf{C}\right)$Gate-Drain or Gate-Source Voltage (Note 1). 25 V
Gate Current. 50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 360 mW
Operating Temperature Range. -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$ Lead Temperature Range
(1/16" from case for 10 seconds) $300^{\circ} \mathrm{C}$

See Section: 7
(.78)

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

C' aracteristic				5204			Unit	Test Conditions	
				Min	Typ	Max			
1	$\begin{gathered} S \\ T \\ A \\ T \\ I \\ C \end{gathered}$	'GSS	Gate Reverse Current (Note 2)			-100	pA	$V_{D S}=0, V_{G S}=-20 \mathrm{~V}$	
2		$V_{\text {GS(off) }}$	Gate-Source Cutoff Voltage	-0.5		-2.0	v	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{0}=10 \mathrm{nA}$	
3		$B V_{\text {GSS }}$	Gate-Source Breakdown Voltage	-25				$V_{\text {DS }}=0, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$	
4		' DSS	Saturation Drain Current (Note 3)		1.2		mA	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
5		${ }^{1} \mathrm{G}$	Gate Current (Note 2)		-35		pA	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$	
6	$\begin{aligned} & D \\ & Y \\ & N \\ & A \\ & M \\ & M \\ & 1 \\ & C \end{aligned}$	g_{fs}	Common Source Forward Transconductance (Note 3)		1500		$\mu \mathrm{mbo}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
7		$g_{\text {os }}$	Common-Source Output Conductance		2.5				
8		$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		4		pF		$\mathrm{f}=1 \mathrm{MHz}$
9		$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		1				
10		${ }^{\bar{e}}{ }_{n}$	Equivalent Short-Circuit Input Noise Voltage		10		$\sqrt{n \mathrm{HV}}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} \cdot \mathrm{~V}_{\mathrm{GS}}=0$	$f=1 \mathrm{kHz}$

NOTES:

1. Geometry is symmetrical. Units may be operated with source and drain leads interchanged
2. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
3. Pulse test duration $=2 \mathbf{m r}$.

n-channel JFETs designed for. . .
 General Purpose Amplifiers

n-channel JFETs designed for

Audio and Sub-Audio Amplifiers

TO-92
See Section 7

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage (Note 1). 40 V
Gate Current. 50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) . 360 mW
Operating Temperature Range.. -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. -55 to $150^{\circ} \mathrm{C}$
Lead Temperature Range
(1116" from case for 10 seconds) $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathbf{C}\right.$ unless otherwise noted)

Characteristic				J230			J231			J232			Unit	Test Conditions	
				Min	Typ	Max	Min	Typ	Max	Min	Typ	Max			
1	\mathbf{S}	IGSS	Gate Reverse Current (Note 2)			-250			-250			-250	pA	$\mathrm{V}_{\mathrm{DS}}=0 . \mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}$	
2		VGS(off)	Gate-Source Cutoff Voltage	-1		-3	-2		-5	-4		-6	V	$V_{D S}=20 \mathrm{~V}, \mathrm{I}^{\prime}=1 \mu \mathrm{~A}$	
3	$\begin{aligned} & A \\ & T \end{aligned}$	BVGSS	Gate-Source Breakdown Voltage	-40			-40.			-40				$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$	
4	1	IDSS.	Saturation Drain Current (Note 3)	0.7		3	2.		6	5		10	mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
5		${ }^{1} \mathrm{G}$	Gate Current (Note 2)		-10			-10			-10		pA	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$	
6	$\begin{aligned} & \mathrm{D} \\ & \mathbf{V} \end{aligned}$	g_{fs}	Common-Source Forward Transconductance (Note 3)	1,000		2,500	1,500		3,000	2,500		4,000	$\mu \mathrm{mho}$	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$f=1 \mathrm{kHz}$
7		9os	Common-Source Output Conductance			2			4			6			
8	$\begin{aligned} & \mathbf{A} \\ & \mathbf{M} \end{aligned}$	$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		12			12			12		pF		$f=1 \mathrm{MHz}$
9	$\begin{aligned} & 1 \\ & \mathrm{c} \end{aligned}$	Crss	Common-Source Reverse Transfer Capacitance		2			2			2				
10		\bar{e}_{n}	Equivalent Short Circuit Input Noise Voltage		8	30		8	30		8	30	$\frac{\mathrm{nV}}{\sqrt{\mathrm{~Hz}}}$	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$t=10 \mathrm{~Hz}$
11					2			2			2				$\mathrm{f}=1 \mathrm{kHz}$

1. Geometry is symmetrical. Unit may be operated with source and drain leads interchanged.
2. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
3. Pulse test duration $=2 \mathrm{~ms}$.

~=channelFETs designed for

General Purpose Amplifiers

TO-92

See Section 7

Bottam View

(-18)

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic				3270			J271			Unit	Test Conditions	
				Min	Typ	Max	Min	Typ	Max			
1	S	GSS	Gate Reverse Current (Note 2)			200			200	pA	$V_{D S}=0 . V_{G S}=20 \mathrm{~V}$	
2	T	$V_{\text {GS }}$ laff)	Gate.Source Cutoff Voltage	0.5		2.0	1.5		4.5	V	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{nA}$	
3	A	BVGSS	Gate-Source Breakdown Voltage	30			30				$V_{D S}=0, I_{G}=1 \mu \mathrm{~A}$	
4	1	loss	Saturation Drain Current (Note 3)	-2		-15	-6		-50	mA	$V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
5	C	I_{G}	Gate Current (Note 2)		15			60		pA	$\mathrm{VDG}^{-}-15 \mathrm{~V}, \mathrm{ID}^{-1} \mathrm{DSS}(\mathrm{min})$	
6	$\begin{gathered} \mathbf{D} \\ \mathbf{Y} \\ \mathbf{N} \\ \mathbf{A} \\ \mathbf{M} \\ \mathbf{I} \\ \mathbf{C} \end{gathered}$	$\mathrm{g}_{\text {f }}$	Common-Source Forward Transconductance (Note 3)	6,000		15,000	8,000		18,000	$\mu \mathrm{mho}$	$V_{\text {DS }}=-15 \mathrm{~V}_{r} \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
7		gos	Common-Source Output Conductance			200			500			
8		$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		32			32		$\rho \mathrm{F}$		$\mathrm{f}=1 \mathrm{MHz}$
9		$\mathrm{Cr}_{\text {rss }}$	Common Source Reverse Transfer Capacitance		4			4				
10		e_{n}	Equivatent Short-Circuit Input Noise Voltage		6			6		nV	$V_{D S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{DSS}(\mathrm{min})$	$f=1 \mathrm{kHz}$

NOTES:

1. Geometry is symmetrical. Units may be operated with source and drain leads interchanged
2. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
3. Pulse test duration $=2 \mathrm{~ms}$.

VHF/UHF Amplifiers Oscillators
 Mixers

Berforectione5Curves NZF

BENEFITS

- High Power Gain $20-23 \mathrm{~dB}$ Typical at 100 MHz , Common-Source $17.5-20.5 \mathrm{~dB}$ Typical at 100 MHz . Common-Gate
Low Noise Figure 1.3 dB Typical at 100 MHz
- High Dynamic Range Greater than 100 dB

T0.92 See Section 7

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage.-25 V
Gate Current.
10 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
360 mW
Operating Temperature Range. -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$
Lead Temperature Range
(1/16" from case for 10 seconds) $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise specified)

1. IDSS and $V_{G S S}$ (off) are selected into 5 ranges and labeled according to above tabla.
2. Pulse test $\mathrm{PW} \leqslant 300 \mu \mathrm{~s}$, duty evcle $\leqslant 3 \%$.

n-channel JFETs designed for.

VHF/UHF Amplifiers

Oscillators Mixers

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$ Gate-Drain or Gate-Source Voltage.
Gate Current 10 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 360 mW
Operating Temperature Range. -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$ Lead Temperature Range
$11 / 16^{\prime \prime}$ from case for 10 seconds) \qquad

Performance Curves NH

 See Section 5BENEFITS

- Characterized for Operation at 100 and 400 MHz
- Low Noise
$\mathrm{NF}=1.7 \mathrm{~dB}$ Typical at 100 MHz

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

n-channel JFETs designed for.

 VHF/UHF Amplifiers

 VHF/UHF Amplifiers
 - Oscillators

 Mixers

 Mixers}

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)	
Drain-Gate Voltage	V
Source-Gate Voltage	25 V
Forward Gate Current.	m
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient (Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$).	360 mW
Operating Temperature Range.	5 to $135^{\circ} \mathrm{C}$
Storage Temperature Range.. - 5 5to 150	
Lead Temperature Range	
(1/16" from case for 10	300

Performance Curves NZA

See Section 5

BENEFITS

- Industry Standard Part

In Low Cost Plastic Package

- High Power Gain

11 dB Typical at 450 MHz Common-Gate

- Low Noise
2.7 dB Typical at 450 MHz
- Wide Dynamic Range

Greater than 100 dB
■ Easily Matches to 75Ω Input
TO-92 See Section 7

Greater than 100 dB

EELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

n-channel JFETs

designed for.

Current Regulation Current Limiting Biasing

Linear Ramp and Staircase Generator

ABSOLUTE MAXIMUM RATINGS ($\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Peak Operating Voltage. 50 V
Forward Current. 20 mA
Reverse Current. 50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
360 mW
Operating Temperature Range. -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$
Lead Temperature Range
($1 / 16^{\prime \prime}$ from case for 10 seconds)
$.300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic					J500	J501	$J 502$	J503	J504	J505	Unit	Test Conditions
1	$\begin{aligned} & \mathbf{S} \\ & \mathbf{T} \\ & \mathbf{A} \\ & \mathbf{T} \\ & \mathbf{I} \\ & \mathbf{C} \end{aligned}$	'F1	Forward Current (Note 1)	Min	0.192	0.264	0.344	0448	0.600	0800	$m A$	$V_{F}=25 \mathrm{~V}$
2				Nominat	0.240	0.330	0.430	0.560	0.750	1.000		
3				Max	0.288	0.396	0.516	0.672	0.900	1.200		
4		POV	Peak Operating Voltage (Notes 1 and 2)	Min	50	50	50	50	50	50	V	$\mathrm{I}_{\mathrm{F}}=1.1 \mathrm{IFI}$ (Max)
5		V_{L}	Limiting Voltage (Note 31	Max	1.2	1.3	1.5	1.7	1.9	2.1		$\}_{F}=0.9 \mathrm{I}_{\mathrm{F}}(\mathrm{Mmin})$
6				Typ	0.8	0.9	1.1	1.2	1.4	1.5		
7	$\begin{aligned} & \mathbf{D} \\ & \mathbf{Y} \\ & \mathbf{N} \end{aligned}$	$Z_{\text {FI }}$	Small-Signal Dynamic impedance (Note 1)	Min	5.0	3.0	2.0	1.4	1.0	0.6	MS2	$V_{F}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$
8				Typ	8.0	6.0	4.4	3.4	2.5	1.9		
9		C_{F}	A node-Cathode Capacitance	Typ	2	2	2	2	2	2	pF	$V_{F}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$

NCL

1. Pulse test duration $=2 \mathrm{~ms}$
2. Maximum V_{F} where $I_{F}<1.1 I{ }^{F} /($ Max $)$ is guaranteed.
3. Minimum V_{F} required to insure $I_{F}>0.9 \mathrm{I}_{\mathrm{F}} \mathrm{I}_{(\mathrm{Min})}$.

Performance Curves NCL See Section 5

BENEFITS

- Low Cost
- Simple Two Lead Current Source
- Simplifies Floating Current Sources

No Power Supplies Required

- Good Operating Current Tolerance $\pm 20 \%$

T0-92 See Section 7

n-channel JFETs

 current regulator diodes designed for.
Current Regulation

- Current Limiting Biasing

Linear Ramp and Staircase Generator

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)
Peak Operating Voltage. 50 V
Forward Current. 20 mA
Reverse Current. 50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$). 360 mW
Operating Temperature Range. -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$
Lead Temperature Range
($1 / 16^{\prime \prime}$ from case for 10 seconds) $300^{\circ} \mathrm{C}$

Performance Curves NCL See Section 5

BENEFITS

- Low Cost
- Simple Two Lead Current Source
- Simplifies Floating Current Sources No Power Supplies Required
- Good Operating Current Tolerance $\pm 20 \%$

TO-92
See Section 7
ANOUE

cathode

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic					J506	J507	J508	J509	J510	$J 511$	Unit	Test Conditions
1	$\begin{aligned} & \mathbf{S} \\ & \mathbf{T} \\ & \mathbf{A} \\ & \mathbf{T} \\ & \mathbf{1} \\ & \mathbf{C} \end{aligned}$	${ }^{\prime} \mathrm{FI}$	Forward Current (Note 1)	Min	1.120	1.440	1.9	2.4	2.9	3.8	$m A$	$V_{F}-25 \mathrm{~V}$
2				Nominat	1.400	1.800	2.4	3.0	3.6	4.7		
3				Max	1.680	2.160	2.9	3.6	4.3	5.6		
4		POV	Peak Operating Voltage (Notes 1 and 2)	Min	50	50	50	50	50	50	V	$\lambda_{F}=1.1 \mathrm{I}^{\prime} \mathrm{I}_{\text {(Max }}$)
5		V_{L}	Limiting Voltage (Note 3)	Max	2.5	2.8	3.1	3.5	3.9	4.2		$t^{\prime}=0.9{ }^{\prime} \mathrm{FI}(\mathrm{Min})$
6				Typ	1.8	2.0	2.2	2.5	2.8	3.0		
7	$\begin{aligned} & \mathrm{D} \\ & \mathrm{Y} \\ & \mathrm{~N} \end{aligned}$	Z_{Fl}	Small-Signal Dynamic Impedance (Note 1)	Min	0.4	0.25	0.25	0.20	0.20	0.15	Ms2	$V_{F}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$
8.				Typ	1.4	1.0	0.70	0.60	0.50	0.30		
9		C_{F}	Anode-Cathode Capacitance	Typ	2	2	2	2	2	2	pF	$V_{F}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Pulse test duration $=2 \mathrm{~ms}$

7 Maximum V_{F} where $I_{F}<11 I_{F I(M a x)}$ is guaranteed
3. Minimum V_{F} required to insure $I_{F}>0.9$ l $_{\text {F } 1}\left(\mathrm{Min}^{\prime}\right)$

Current-Limiter Diode
V-r Characteristic

low-leakage pico-amp diodes designed for

High Impedance Diode Switching

High Dynamic Range Log Amps High Isolation Protection Circuits

BENEFITS

- Low Cost
ro. 92
See Section 7

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Forward Current. 10 mA
Total Device Dissipation . 360 mW
Storage Temperature Range. $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature
(1/16" from case for 10 seconds) $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathbf{2 5}^{\circ} \mathrm{C}\right)$

Characteristic					Min	Typ	Max	Unit	Test Conditions
1	$\begin{aligned} & S \\ & T \\ & A \\ & T \\ & I \\ & C \end{aligned}$	i_{R}	Reverse Current (Note 1)	JPAD50			-50	pA	$V_{R}=-20 \mathrm{~V}$
2				JPAD100			-100		
3				JPAD200			-200		
4				JPAD500			-500		
5		$B V_{R} \quad$ Breakdown Voltage (Reverse)			-35	-80		V	$\mathrm{I}_{\mathrm{R}}=-1 \mu \mathrm{~A}$
6		V_{F} Forward Volzage Drop				0.8	1.5	V	$1_{F}=5 \mathrm{~mA}$
7	D \mathbf{N} \mathbf{N}		Capacitance			1.5	2.0	pF	$V_{R}=-5 V, f=1 \mathrm{MHz}$
NOTE: 1. The JPAD type number denotes in maximum reverse current value in pico amps. Devices with I_{R} values intermediate to those shown are also available on request.									TO-106

n-channel JFET designed for. .

Analog Switches

- Choppers

Commutators

BENEFITS

- No Offset or Error Voltages Generated by Closed Switch

Purely Resistive
High Isolation Resistance from Driver

- Very Fast Switching
${ }^{\mathrm{t}} \mathrm{D}(\mathrm{on})+\mathrm{t}_{\mathrm{r}}=6 \mathrm{~ns}$ Typical
- Short Sample and Hold Aperture Time $\mathrm{C}_{\text {gd(off) }}<2 \mathrm{pF}$
$\mathrm{C}_{\mathrm{gs}(\mathrm{off})}<2 \mathrm{pF}$

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage -25 V
Gate Current . 50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
360 mW
Operating Temperature Range. -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. , -55 to $150^{\circ} \mathrm{C}$ Lead Temperature Range
(1/16" from case for 10 seconds) $300^{\circ} \mathrm{C}$$300^{\circ} \mathrm{C}$

TO-92 Lead-form
See Section 7

(-18)

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				Kt14			Unit	Test Conditions
				Min	TYp	Max		
1	S A	IGSS	Gate Reverse Current (Note 1)		-1 - A			$V_{D S}=0, V_{G S}=-15 V^{\text {c }}$
2		$V_{\mathrm{GS}\{\mathrm{Off}}$	Gate-Source Cutoff Voltage	-3		-10	V	$V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}$
3		BVGSS	Gate-Source Breakdown Voltage	-25				$V_{D S}=0, I_{G}=-1 \mu \mathrm{~A}$
4		IDSS	Saturation Drain Current (Note 2)	15			m m	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$
5		ID (off)	Drain Cutoff Current (Note 1)			1	nA	$V_{O S}=5 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=-10 \mathrm{~V}$
6		${ }^{\text {r }}$ DS $(0 n)$	Drain-Source ON Resistance			150	Ω	$V_{D S} \leqslant 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$
7	$\begin{gathered} \mathrm{D} \\ \mathrm{Y} \\ \mathrm{~N} \\ \mathrm{~A} \\ \mathrm{M} \\ \mathrm{I} \\ \mathrm{C} \end{gathered}$	$\mathrm{C}_{\text {dgfoff) }}$	Drain-Gate OFF Capacitance			2	pF	$V_{D S}=0 . V_{G S}=-10 \mathrm{~V}$
8		$\mathrm{C}_{\text {sgioff) }}$	Source-Gate OFF Capacitance			2		
9		$\begin{gathered} \mathrm{C}_{\text {dg (on) }} \\ + \\ \mathrm{C}_{\text {sglon) }} \\ \hline \end{gathered}$	Drain-Gate Plus Source-Gate ON Capacitance			8		$V_{D S}=V_{G S}=0 \quad{ }^{\text {a }}$
10		tdon)	Turn On Delay Time		3		กร	Switching Time Test Conditions$\begin{aligned} & V_{D D}=10 \mathrm{~V}, V_{G S(o f f)}=-12 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, V_{G S(i o n)}=0 \end{aligned}$
11		tr_{r}	Rise Time		3			
12		td (off)	Turn Off Delay Time		12			
13		tf	Fall Time		8			

[^11]2. Pulse test duration $=\mathbf{3 0 0} \mu \mathrm{s}$; duty cycle $\leqslant 3 \%$.

n-channel JFET designed for
 VHF/UHF Amplifiers Mixers

 Oscillators

 Oscillators}

Performance Curves NH See Section 5

BENEFITS

- Specified for 200 MHz Operation

T0.92
Ses Section 7

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Drain-Gate Voltage . 25 V
Source-Gate Voltage . 25 V
Drain-Source Voltage. 25 V
Forward Gate Current. 10 mA Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$). 360 mW
Operating Temperature Range. 55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. -55 to $150^{\circ} \mathrm{C}$
Lead Temperature Range
(1/16" from case for 10 seconds 1 $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				Min	Max	Unit	Test Conditions	
1	S	'GSS	Gate Reverse Current		-250	pA	$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
2					-15	nA		$T_{A}=+85^{\circ} \mathrm{C}$
3	TATIC	BVGSS	Gate-Source Breakdown Voltage	-30		V	${ }_{G}{ }^{\prime}=-1 \mu \mathrm{~A}, V_{O S}=0$	
4		$V_{\text {GS (off) }}$	Gate-Source Cutoff Voltage	-0.5	-8.0		$V_{D S}=15 \mathrm{~V}, I_{D}=1 \mu \mathrm{~A}$	
5		1DSS	Saturation Drain Current	4.0	25	mA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 7)	
6		rosion)	Drain-Source ON Resistance		300	Ω	${ }^{\prime} D=1 \mathrm{~mA}, V_{G S}=0$	
7		9fs	Common-Source Forward Transconductance	4,500	10,000	$\mu \mathrm{mhos}$	$V_{G S}=15 V_{1} V_{G S}=0$	$f=1 \mathrm{kHz}$
8		$\mathrm{Re}_{\left(\mathrm{yf}_{\mathrm{fs}}\right)}$	Common-Source Forward Transconductance	4,000				
9	D	$\mathrm{Re}\left(\mathrm{y}_{\mathrm{os}}\right)$	Common-Source Output Conductance		150			$f=200 \mathrm{MHz}$
10	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~A} \end{aligned}$	Refy ${ }_{\text {is }}$ \}	Common-Source Input Conductance		800			
11	$\begin{gathered} M \\ I \\ C \end{gathered}$	$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		6.0	pF		
12		$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacizance		2.0			,
13		NF	Noise Figure		3.0	d8	$V_{D S}=15 \mathrm{~V}, V_{G S}=0, R_{G}=1 \mathrm{~K} \Omega 2$	$\mathrm{f}=200 \mathrm{MHz}$
14					5.0		$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega, \mathrm{BW}=5 \mathrm{~Hz}$	$\mathrm{f}=10 \mathrm{~Hz}$
15		GPS	Common-Source Power Gain	15			$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$f=200 \mathrm{MHz}$

1. Pulse test $\mathrm{PW}=300 \mu \mathrm{~s}$; duty cycle $\leqslant 3 \%$.
n-channel JFETs designed for.
n-channel JFETdesigned for.

■ VHF/UHF Amplifiers

- Oscillators Mixers

Gate-Drain or Gate-Source Voltage. - 25 V	
Gate Current (FWD)	m
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient (Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) . 360 mW	
Operating Temperature Range. 5 -5 to $135^{\circ} \mathrm{C}$	
Storage Temperature Range. 5 -55 to 150 ${ }^{\circ} \mathrm{C}$	
Lead Temperature Range	
	$.300^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Volage. ,
Total Device Dissipation at $25^{\circ} \mathrm{C}$ AmbientOperating Temperature Range. -55 to $135^{\circ} \mathrm{C}$Lead Temperature Range
(1/16" from care for 10 seconds 1 $300^{\circ} \mathrm{C}$

n-channel JFETs designed for.

BENEFITS

- Characterized for Operation at 100 and 400 MHz
- Low Noise
$\mathrm{NF}=1.7 \mathrm{~dB}$ Typical at 100 MHz

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

n-channel JFETs

 designed for.
VHF/UHF Amplifiers

 Oscillators Mixers
'ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Drain-Gate Voltage . 25 V
Source-Gate Voltage . 25 V
Forward Gate Current. 10 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) . 360 mW
Operating Temperature Range. -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$
Lead Temperature Range
(1116" from case for 10 seconds) $300^{\circ} \mathrm{C}$

Sili 5
Beef@entionce6Curves NZA

BENEFITS

- Industry Standard Part

In Low Cost Plastic Package

- High Power Gain 11 dB Typical at 450 MHz Common-Gate
- Low Noise 2.7 dB Typical at 450 MHz
- Wide Dvnamic Range Greater than 100 dB
- Easily Matches to 75Ω Input

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

n-channel JFET designed for

VHF Amplifiers

Mixers

$\stackrel{\text { Siliconix }}{\text { Sin }}$

Performance Curves NH

 See Section 5
BENEFITS

- Low Noise

NF $=3 \mathrm{~dB}$ Typical at 400 MHz

- Wide Bandwidth
- LOW Cost

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathbf{C}$)

Gate-Drain or Gate-Source Voltage -30 V
Gate Current. 10 mA
To al Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$). 360 mW
Operatiny Temperature Range. -55 to $135^{\circ} \mathrm{C}$
S orage Temperature Range. -55 to ${ }^{150^{\circ} \mathrm{C}}$
Lead Temperature Range
($1 / 16^{\prime \prime}$ from case for 10 seconds) $300^{\circ} \mathrm{C}$

(-18)

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

BENEFITS

- Low Cost
- Automatic Insertion Package

TO-92
See Section 7

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Drain-Gate Voltage . 25 V
Source-Gate Voltage . 25 V
Drain-Source Voltage. 25 V
Forward Gate Current. 10 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$). 360 mW
Operating Temperature Range. -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$
Lead Temperature Range
(1/16" from case for 10 seconds)
$.300^{\circ} \mathrm{C}$

See

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				Min	$\frac{\text { Max }}{-2.0}$	$\frac{\text { Unit }}{\pi A}$	Test Conditions	
1.	$\left.\begin{aligned} & \mathbf{S} \\ & \mathbf{T} \\ & \mathbf{A} \end{aligned} \right\rvert\,$	'Gss	Gate Reverse Current				$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
2					-2.0	$\mu \mathrm{A}$		$\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$
3		$\mathrm{BV}_{\mathrm{Gss}}$	Gate-Source Breakdown Vottage	-25		V	$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
4	1	VGS(off)	Gate-Source Cutoff Voltage		-8.0		$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{iD}=2 \mathrm{nA}$	
5		Ioss	Saturation Drain Current	2.0	20	mA	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 1)	
6		$V_{\text {GS }}$	Gate-Source Voitage	-0.5	-7.5	V	$V_{\text {DS }}=25 \mathrm{~V}, 1 \mathrm{D}=200 \mu \mathrm{~A}$	
7	O\mathbf{Y}M$\mathbf{1}$C	9fs	Common-Source Forward Transconductance	2000	7500	umhos	$\mathrm{V}_{\mathrm{OS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
8		$\mathrm{Re}^{\left(y_{\mathrm{fs}}\right)}$	common-source Forward Transconductance	1600				$f=100 \mathrm{MHz}$
		$\frac{{ }^{R e}\left(y_{\text {os }}\right)}{A}$	Common-Source Output Conductance		200			
10		$\mathrm{Re}^{\text {(y }}$ is)	common-source input conductance		800			
11		$\mathrm{C}_{\text {iss }}$	Common-Source input Capacitance		7.0	pF		$\mathrm{f}=1 \mathrm{MHz}$
12		$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer capacitance		3.0			
NOTE: 1. Pulse test $\mathrm{PW}=300 \mu$; duty cycle $\leqslant 3 \%$.							NH	

n-channel JFET designed for
 VHF/UHF Amplifiers
 Mixers

Oscillators

See Section 7

ABSOLUTE MAXIMUM RATINGS $\left(\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$

Drain-Gate Voltage . 25 V
Source-Gate Voltage . 25 V
Drain-Source Voltage. 25 V
Forward Gate Current. 10 mA
Total :e Dissipation at $\mathbf{2 5}^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) . 360 mW
Operating Temperature Range. -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$
Lead Temperature Range
(1/16" from case for 10 seconds) $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Performance Curves NH See Section 5

BENEFITS

- Low Cost
- Automatic Insertion Package

Characteristic				Min	Max	Unit	Test Cortditions	
1	$\begin{aligned} & \mathbf{S} \\ & \mathbf{T} \\ & \mathbf{A} \\ & \mathbf{T} \\ & \mathbf{1} \\ & \mathbf{C} \end{aligned}$	'Gss	Gate Reverse Current		-1.0	пA	$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
2					-1.0	$\mu \mathrm{A}$		$\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$
3		BVGSS	Gate-Source Breakdown Voltage	-25		V	${ }^{\prime}{ }_{G}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
4		$V_{\text {GS(otf) }}$	Gate-Source Cutoff Voltage	-0.5	-8.0		$V_{D S}=15 \mathrm{~V}, I_{D}=10 \mu \mathrm{~A}$	
5		IDSS	Saturation Drain Current	1.5	24	mA	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 1)	
6	D$\mathbf{Y}$$\mathbf{N}$	$\mathrm{af}_{\text {f }}$	Common-Source Forsoard Transconductance	2000	7500	$\mu \mathrm{mhos}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
7		9 os	Common-Source Output Conductance		75			$f=1 \mathrm{kHz}$
8		Relyfs ${ }^{\text {f }}$	Common-Source Forward Transconductance	1600				
9		Re\{yos	Common-Source Output Conductance		200			$f=100 \mathrm{MHz}$
10	A	Re\{y $\left.{ }_{\text {is }}\right\}$	Common-Source Input Conductance		800			
11	C	$\mathrm{c}_{\text {iss }}$	Common-Source Input Capacitance		6.5	pF		
12		$\mathrm{C}_{\text {rss }}$	Common Source Reverse Transfer Capacitance		2.5			$f=1 \mathrm{MHz}$
13		NF	Noise Figure		2.5	dB	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, R_{G}=1 \mathrm{M} \Omega$	$\mathrm{f}=1 \mathrm{kHz}$
14					3.0		$V_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, R_{\mathrm{G}}=1 \mathrm{~K} \Omega$	$f=100 \mathrm{MHz}$

NOTE:

1. Pulse test, pulse width $=300 \mu 5$, duty cycle $\leqslant 3 \%$.

n-channel JFET designed for
 General Purpose Amplifiers

 \section*{Analog Switches}

 \section*{Analog Switches}}

Performance Curves NRL See Section 5

BENEFITS

- Low Cost
- Automatic Insertion Package

TO-92
See Section 7

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Drain-Gate Voltage . 25 V
Source-Gate Voltage . 25 V
Drain-Source Voltage. 25 V
Forward Gate Current. 10 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) . 360 mW
Operating Temperature Range. 55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$ Lead Temperature Range
(1/16" from case for 10 seconds) $300^{\circ} \mathrm{C}$

1. Pulse test $\mathrm{PW} \leqslant 630 \mathrm{~ms}$, difty cycle $\leqslant 10 \%$.

n-channel JFET designed for.
 General Purpose Amplifiers - Analog Switches

BENEFITS

- Low Cost
- Automatic Insertion Package

T0.92
ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Drain-Gate Voltage . 20 V
Source-Gate Voltage . 20 V
Drain-Source Voltage. 20 V
Forward Gate Current. 10 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) . 360 mW
Operating Temperature Range. 55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$
Lead Temperature Range
(1/16" from case for 10 seconds) $300^{\circ} \mathrm{C}$

See Section 7

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				Min	Typ	Max	Unit	Test Conditio	
2 3 4	SA\mathbf{T}C	${ }^{\text {IGSS }}$	Gate-Reverse Current		-. 01	100	nA	$V_{G S}=-10 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
		BVGSS	Gate-Source Breakdown Voltage	20			V	$\mathrm{IG}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
		$\mathrm{V}_{\mathrm{GS} \text { (off) }}$ ate-source Cutoff Voltage		-0.5		-10.0		$V_{D S}=10 \mathrm{~V} . \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}$	
		'0ss	Seturation Drain Current	0.5		20	mA	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} \cdot \mathrm{~V}_{\mathrm{GS}}=0$	lote 1)
5	$\underset{\sim}{\mathbf{Y}}$	gfs	Common-Source Forward Transconductance	5W			$\mu \mathrm{mh}$ o	$V_{D S}=10 \mathrm{~V} \cdot \mathrm{~V}_{G S}=0$	$\mathrm{f}=1 \mathrm{kHz}$
6		Sos	Common-Spurcee Qutput Conductance		10				
7	A	$\mathrm{C}_{\text {iss }}$	common-source Input Capacitance		4.5		pF		$\mathrm{f}=\mathbf{1} \mathrm{MHz}$
8	$\stackrel{M}{\mathrm{M}}$	$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		10				

NOTE:

1. Puise test $\mathrm{PW} \leqslant 630$ msec, duty cycle $\leqslant 10 \%$.

n-channel JFET designed for

BeefSectiont5Curves NH

BENEFITS
- Low Cost
- Automatic Insertion Package

TO-92
See Section 7

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$	
Drain-Gate Voltage	25 V
Source-Gate Voltage	25 V
Drain-Source Voltage.	25 V
Forward Gate Current.	10 mA
Total Dwice Dissipation at $25^{\circ} \mathrm{C}$ Ambient (Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$).	$360 \mathrm{~mW}$
Operating Temperature Range.	55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range.	-55 to $150^{\circ} \mathrm{C}$
Lead Temperature Range	
(1/16" from case for 10 seconds)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				Min	Typ	Max	Unit	Test Condit	
1	$\begin{aligned} & S \\ & T \\ & A \\ & \mathbf{T} \\ & \mathbf{1} \\ & \mathbf{C} \end{aligned}$	${ }^{\text {G GSS }}$	Gate Reverse Current		-0.01	-100	nA	$V_{G S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
2		$B V_{G S S}$	Gate-Source Breakdown Voltage	-25			V	$\mathrm{I}_{G}=-10 \mu \mathrm{~A}, \mathrm{~V}_{D S}=0$	
3		$V_{\text {GS (off) }}$	Gate-Source Cutoff Voltage	-0.5		-10.0		$V_{D S}=10 \mathrm{~V}, 1_{D}=1 \mu \mathrm{~A}$	
4		IDSS	Saturation Drain Current	1		25	mA	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0,($ Note 1$)$	
5		9_{59}	Common-Source Forward Transconductance	1000		7500	umho	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
6	$\begin{aligned} & \mathbf{D} \\ & \mathbf{Y} \\ & \mathbf{N} \end{aligned}$	$\mathrm{Re}_{\left(y_{f s}\right)}$	Common-Source Forward Transconductance	800					$f=100 \mathrm{MHz}$
7		$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		3.5		p ${ }^{\prime}$		$\mathrm{f}=1 \mathrm{MHz}$
8		$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		0.85				

NOTE:
i. Pulse test $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 3 \%$.

pchannel JFETs designed for.

- Analog Switches
 - Choppers

Commutators

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage (Note 1) 30V
Gate Current. 50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$). 360 mW
Operating Temperature Range.. -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$
Lead Temperature Range
(1116" from case for 10 seconds)
$300^{\circ} \mathrm{C}$

Performance Curves PS

 5ee Section 5TO. 92 See Section 7

BENEFITS
 BENEFITS

- Low Insertion Loss

RDS(on) $=7552$ Maximum (P1086E)
o Offset or Error Voltages Generated
$\mathrm{R}_{\text {DS (on) }}=7552$ Maximum (P1086E)
No Offset or Error Voltages Generated by Closed Switch

Purely Resistive

(-18)

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				P1086		P1087		Unit	Test Conditions			
				Min	Max	Min	Max					
1		BVGSS	Gate-Source Breakdown Voltage	30		30		V	${ }^{\prime} \mathrm{G}^{\prime}=1 \mu \mathrm{~A}$	$V_{D S}=0$		
2		IGSS	Gate Reverse Current		2		2	nA	$\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			
3		${ }^{1}$ D(off)	Drain Cutoff Current		-10		-10		$\begin{aligned} & V_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=12 \mathrm{~V}(\mathrm{P} 1086 \mathrm{E}) \\ & \mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}(\mathrm{P} 1087 \mathrm{E}) \end{aligned}$			
4	S				-0.5		-0.5	$\mu \mathrm{A}$				$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
	A	IDGO Drain Reverse Current			2		2	$n \mathrm{~A}$	$V_{D G}=-15 \mathrm{~V}, \mathrm{I}=0$			
5	T				0.1		0.1	$\mu \mathrm{A}$				$T_{A}=85^{\circ} \mathrm{C}$
6	c	$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage		10		5	V	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mu \mathrm{~A}$			
7		! DSS	Saturation Drain Current	-10		-5		mA	$V_{D S}=-20 \mathrm{~V}, V_{G S}=0$			
8		$V_{\text {DS }}$ (on)	Drain-Source ON Voltage		-0.5		-0.5	V	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=-6 \mathrm{~mA}(\mathrm{P} 1086 \mathrm{E}), \mathrm{I}_{\mathrm{D}}=-3 \mathrm{~mA}(\mathrm{P} 1087 \mathrm{E})$			
9		rosiont	Static Drain-Source ON Resistance		75		150	Ω	${ }^{1} \mathrm{~B}=-1 \mathrm{~m}$, $V_{G S}=0$		
10	$\begin{aligned} & \mathbf{D} \\ & \mathbf{Y} \\ & \mathbf{N} \end{aligned}$	${ }^{\text {ras }}$ (on)	Drain-Source ON Resistance		75		150	Ω	$\mathrm{l}^{\circ}=0, \mathrm{~V}$	$S=0$		$\mathrm{f}=1 \mathrm{kHz}$
11		$C_{\text {iss }}$	Common-Source Input Capacitance		45		45	pF	$V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			$\mathrm{f}=1 \mathrm{MHz}$
12		$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		10		10		$\begin{aligned} & V_{\mathrm{DS}}=0, V_{\mathrm{GS}}=12 \mathrm{~V}(\mathrm{P} 1086 \mathrm{E}) \\ & \mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}(\mathrm{P} 1087 \mathrm{E}) \end{aligned}$			
13	$\begin{gathered} \mathbf{s} \\ \mathbf{W} \\ \mathbf{I} \\ \mathbf{T} \\ \mathbf{c} \\ \mathbf{H} \end{gathered}$	tion)	Turn-ON Delay Time		15		15	ns	$V_{D D}=-6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}\{\text { (on\} }}=0$			
14		t_{r}	Rise Time		20		75		P1086E	$V_{\text {GS (off) }}$	ID (on)	A_{L}
15		${ }^{\text {t }}$ (loff)	Turn-OFF Delay Time		15		25			12 V	6 mA	910Ω
16		t.	Fall Time		50		100		P1087E	7 V	-3mA	$1.8 \mathrm{~K} \Omega$

1 Due to symmetrical geometry, there units may be operated with source and drain leads interchanged.

n-channel JFETs designed for

Analog Switches

- Commutators

■ Choppers
Integrator Reset Switch
(ABSOLUTEMAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Reverse Gate-Drain or Gate-Source Voltage
-40 V
Gate Current
10 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$). 360 mW
Operating Temperature Range. 55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$
Lead Temperature Range
(1/16" from case for 10 seconds) \qquad
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				PN4091		PN4092		PN4093		Unit	Test Conditions					
				Min	Max	Min	Max	Min	Max							
1		BVGSS	Gate-Source 8reakdown Voltage	-40		-40		-40		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$					
2		${ }^{1}$ DGO	Drain Reverse Current		200		200		200	pA	$V_{G S}=-20 \mathrm{~V}, \mathrm{t}_{S}=0$					
3					400		400		400	nA			150°			
4		ID(off) Drain Cutoff Current							200	pA	$V_{D S}=20 \mathrm{~V}$	$V_{G S}=-6 V$				
5									400	nA			150°			
6							200			$p A$		$V_{G S}=-8 V$				
7	S						400			nA			150°			
8	$\begin{aligned} & \mathrm{T} \\ & \mathbf{A} \end{aligned}$				200					0 A		$V_{G S}=-12 \mathrm{~V}$				
9	r				400					nA			150°			
10	C	VGStoff)	Gate-Source Cutoff Voltage	-5	-10	-2	-7	-1	-5	V	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{0}=1 \mathrm{nA}$					
11		'DSS	Saturation Drain Current (Note 1)	30		15		8		mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$					
12		Vosion)	Drain-Source ON Vottage						0.2	V	$V_{\mathrm{GS}}=0$	$\mathrm{l}_{\mathrm{D}}=2.5 \mathrm{~mA}$				
13							0.2					$1 \mathrm{D}^{2}=4 \mathrm{~mA}$				
14					0.2							$\mathrm{iD}_{\mathrm{D}}=6.6 \mathrm{~mA}$				
15		rDSton)	Static Drain-Source ON Resistance		30		50		80	5	$V_{G S}=0.1 \mathrm{D}=1 \mathrm{~mA}$					
16	$\begin{aligned} & \mathbf{D} \\ & \mathbf{Y} \\ & \mathbf{N} \end{aligned}$	${ }^{\text {rassion) }}$	Drain-Source ON Resistance		30		50		80	Ω	$\mathrm{V}_{\mathrm{GS}}=0,1 \mathrm{D}$		$f=1$	kHz		
17		$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		16		16		16	pF	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		$\mathrm{f}=1 \mathrm{MHz}$			
18		Crss	Common-Source Reverse Transfer Capacitance		5		5		5		$V_{D S}=0 . V_{G S}=-20 \mathrm{~V}$					
19	$\begin{gathered} \mathbf{s} \\ \mathbf{w} \end{gathered}$	$\underbrace{\text { r }}$ (on)	Turn-ON Delay Time		15		15		20	ns	$V_{D D}=3 \vee, V_{G S(o n)}=0$					
20		t_{5}	Rise Time		10		20		40		PN4091	ID(on) $V_{\text {GS(off) }}$ R_{L} 6.6 mA -12 V 425Ω 4 -8 700 2.5 -6 1120				
21		${ }^{1} \mathrm{fff}$	Turn-OFF Time		40		60		80		PN4092 PN4093					
NOTE: 1. Pulsewidth $=300 \mu s$, duty cycte $\leqslant 3 \%$																

Performance Curves NC

 See Section 5
BENEFITS

- Low Insertion Loss

High Accuracy in Test Systems
RON $^{2}<30 \Omega$ (PN4091)

- High Off-Isolation

ID(off) $<200 \mathrm{pA}$

- High Speed $t_{\text {rise }}<10 \mathrm{~ns}$ (PN4091)
- Short Sample and Hold Aperture Time $\mathrm{C}_{\mathrm{rss}}<5 \mathrm{pF}$

TO-92
Ses Section 7

n-channel JFETs designed for.
 General Purpose Amplifiers

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage (Note 1)
Gate Current . 50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$).
, 360 mW
Operating Temperature Range. -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. -55 to $150^{\circ} \mathrm{C}$
Lead Temperature Range
(1/16" from case for 10 seconds)
$.300^{\circ} \mathrm{C}$

Performance Curves NP See Section 5

BENEFITS

- Low Cost
- High Input Impedance

$$
\mathrm{I}_{\mathrm{G}}=35 \mathrm{PA} \text { Typically }
$$

- Low Noise
$\widetilde{\mathrm{e}}_{\mathrm{n}}=5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Typically @ 1 kHz

TO-92
See Section 7

Bottom View (-18)

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				PN4302		PN4303		PN4304		Unit	Test Conditons	
				Min	Max	Min	Max	Min	Max			
1	$\begin{aligned} & S \\ & T \\ & A \\ & T \\ & 1 \\ & C \end{aligned}$	${ }^{\text {IGSS }}$	Gate Reverse Current (Note 2)		1		1		-1	na	$\begin{aligned} & V_{G S}:-10 \mathrm{~V}, \\ & V_{D S}=0 \end{aligned}$	
2					0.1		0.1		-0.1	$\mu \mathrm{A}$		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
3		BVGSS	Gate-Source Breakdown Voltage	-30		-30		-30		V	$I_{G}=-1 \mu A, V_{D S}=0$	
4		$V_{\text {GStoff }}$	Gate-Source Cutoff Voltage		-4.0		-6.0		-10		$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$	
5		I DSS	Saturation Drain Current (Note 3)	0.5	5.0	4.0	10	0.5	15	mA	$\begin{aligned} & V_{D S}=20 \mathrm{~V} \\ & V_{G S}=0 \end{aligned}$	
6	$\begin{gathered} O \\ Y \\ \mathrm{~N} \\ \mathrm{~A} \\ \mathrm{M} \\ \mathrm{I} \\ \mathrm{C} \end{gathered}$	gfs	Common-Source Forwara Transconductance (Note 3)	1000		2000		1000		umbo		$\mathrm{f}=1 \mathrm{kHz}$
7		9 gos	Common-Source Output Conductance		50		50		50			
8		$\mathrm{Crss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance		3		3		3	pF		$\mathrm{f}-1 \mathrm{MHz}$
9		$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		6		6		6			
10		CDG	Drain-Gate Capacitance		2		2		2		$\begin{aligned} & V_{D G}=10 \mathrm{~V}, \\ & I_{S}=0 \end{aligned}$	$\mathrm{f}=140 \mathrm{kHz}$
19		NF	Noise Figure		2.0		2.0		3.0	d8	$\begin{aligned} & V_{D S}=10 \mathrm{~V} . \\ & V_{G S}=0 \end{aligned}$	$\begin{aligned} & f=1 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{gen}}=1.0 \mathrm{Ms} \end{aligned}$
12		$\left\|y_{f s}\right\|$	Common-Source Short Circuit Forward Transadmittance (Note 3)	700		1400		700		untho	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} \\ & \mathrm{v}_{\mathrm{GS}}=0 \end{aligned}$	$\mathrm{f}=10 \mathrm{MHz}$

NOTES:
7. Geometry is symmetrical Units may be operated with source and drain leads interchanged.

2 Approximately doubles for every $10^{\circ} \mathrm{C}$ increape in T_{A}
3. Pulse test duration $=2 \mathrm{ma}$

n-channel JFETs designed for

- Analog Switches Commutators - Choppers

BENEFITS

- Low Insertion Loss
- No Offset or Error Voltages Generated by Closed Switch

Purely Resistive
High Isolation Resistance from Driver

- Low Cost

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)
Reverse Gate-Drain or Gate-Source Voltage 40 V
Forward Gate Current. 50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$). 360 mW
Operating Temperature Range. -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$ Lead Temperature Range
($1 / 16^{\prime \prime}$ from case for 10 seconds) $300^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)
TO-92
See section 7

Characteristic				PN4391		PN4392		PN4393		Unit	Test Conditions			
				Min	Max	Min	Max	Min	Max					
1	IGSS		Gate Reverse Current		1.0		-1.0		-1.0	nA	$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$			
2				-200		200		-200	100 C					
3		$B V_{G S S}$		Gate-Source Breakdown Voltage	-40		40		-40		V	${ }^{\prime} \mathrm{G}^{-\cdots 1} / \sim$ A	DS $=0$	
4		1 ${ }^{\text {(aff }}$)	Drain Cutoff Current						1.0	nA	$V_{\text {DS }}=20 \mathrm{~V}$	$V_{G S}=-5 \mathrm{~V}$		
5									200				$100^{\circ} \mathrm{C}$	
6							1.0					$\mathrm{V}_{\mathrm{GS}}=-7 \mathrm{~V}$		
7							200						$100^{\circ} \mathrm{C}$	
8					1.0							$V_{G S}=-12 \mathrm{~V}$		
9					200								$100^{\circ} \mathrm{C}$	
10		$V_{\text {GS }}$ (off)	Gate-Source Cutoff Vaitage	-4	10	-2	-5	-0.5	3	\checkmark	$\mathrm{V}_{\mathrm{DS}}-20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$			
11		IDSS	Saturation Drain Curreni (Note 1)	50	150	25	75	5	30	mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			
12		VDS\{on)	Drain Source ON Voltage						0.4	V	$\mathrm{V}_{\mathrm{GS}}=0$	$\mathrm{I}_{\mathrm{D}}=3 \mathrm{~mA}$		
13							0.4					${ }^{1} \mathrm{D}=6 \mathrm{~mA}$		
14					0.4							$\mathrm{I}_{\mathrm{D}}=12 \mathrm{~mA}$		
15		roston)	Static Drain-Source ON Resistance		30		60		100	Ω	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$			
16		rdsion)	Drain-Source ON Resistance		30		60		100	3	$V_{G S}=0, V_{D S}=0$		$\mathrm{f}=1 \mathrm{kHz}$	
17		$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		14		14		14	pF	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		f :- 1 MHz	
18		$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance						3.5		$V_{D S}=0$	$\mathrm{V}_{G S}=-5 \mathrm{~V}$		
19	\bigcirc						3.5					$\mathrm{V}_{G S}-7 \mathrm{~V}$		
20	N				3.5							$V_{G S}=-12 \mathrm{~V}$		
21		${ }^{\text {tdton) }}$	Turn-ON Delay Time		15		15		15	ns	$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\text {GSiont }}-0$			
22	S	${ }_{4}$	Rise Time		5		5		5			Vton) VGStaff	R_{L}	
23		${ }_{\text {taloff }}$	Turn-OFF Delay Tirne		20		35		50		PN4391 PN4392	$\begin{array}{ll} 2 \mathrm{~mA} & 12 \mathrm{~V} \\ 6 & 7 \end{array}$	800Ω 1.6 K	
24		${ }_{\text {tf }}$	Fall Time		15		20		30		PN4393	\cdots	3.2 K	

NC
NOTE:
1 Pulse test required. pulse width $=300 \mu \mathrm{~s}$, duty cycle $=3 \%$.

n-channel JFETs designed for. .

\author{

- VHF Amplifiers - Mixers
}

BENEFITS

- Low Noise
$\mathrm{NF}=3 \mathrm{~dB}$ Typical at 400 MHz
- Wide Band High $\mathbf{9 f}_{\mathrm{f}} / \mathrm{C}_{\text {iss }}$ Ratio

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)

Gate-Drain or Gate-Source Voltage.. -30 V

TO-92
See section 7

Bottom View

Gate Current. 10 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$). 360 mW
Operating Temperature Range. 55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$
Lead Temperature Range
(1/16" from case for 10 seconds)
$300^{\circ} \mathrm{C}$

NOTE;

1. Pulse test duration $=300 \mu \mathrm{~s}$

Low and Medium Frequency Amplifiers

BENEFITS

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage. - 25 V
Gate Current (FWD) . 10 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) \qquad
m. 360 mW

Operatină Ternoerature Range 55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. 55 to $150^{\circ} \mathrm{C}$ Lead Temperature Range
($1 / 16^{\prime \prime}$ from case for 10 seconds) $300^{\circ} \mathrm{C}$

T0.92
See Section 7

Bortam View

*ELECTRICAL CHARACTERISTICS ($\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic				Min	Max	Unit	Test Conditions		
1	S		Gate Reverse Current		-10	nA	$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		
2		GSS			-0.6	$\mu \mathrm{A}$			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
3	ATIC	BVGSS	Gate-Source Breakdown Voltage	-25		V	$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$		
4		$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	-0.4	-8.0		$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}$		
5		V_{GS}	Gate-Source Vottage		-7.5		$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$		
6		IDSS	Saturation Drain Current	1.0	40	mA	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		
7		$\mathrm{r}_{\text {ds }}$ (on)	Drain-Source ON Resistance		500	Ω	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=0$		$\mathrm{f}=1 \mathrm{kHz}$
8		9fs	Common-Source Forward Transconductance	2000	9000	$\mu \mathrm{m}$ ¢	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		
9	0	905	Common-Source Output Conductance		200				
10	\mathbf{V} \mathbf{N}	g_{5}	Common-Source Forward Transconductance	1800					$\mathrm{f}=1 \mathrm{MHz}$
11	M d	$\begin{aligned} & \mathrm{C}_{\mathrm{iss}} \\ & \mathrm{C}_{\mathrm{rss}} \end{aligned}$	Common-Source Input Capacitance common-source Reverse Transfer Capacitance		20 5.0	pF			
13		NF	Common-Source Spot Noise Figure		3.0	de	$V_{D S}=15 \mathrm{~V} \cdot \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	$\mathrm{R}_{\mathrm{G}}=150 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{NBW}=150 \mathrm{~Hz} \end{aligned}$
14		eN	Equivalent Short Circuit Input Noise Voltage		50	$\frac{\mathrm{nV}}{\sqrt{\mathrm{~Hz}}}$			

* JEDEC registered data

n-channel JFET designed for

Siliconix

BeefGarationefCurves NH

VHF/UHF Amplifiers Mixers

■ Oscillators
BENEFITS

- Specified for 200 MHz Operation

TO-92

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Drain-Gate Voltage 30 V
Source-Gate Voltage 30 V
Drain-Source Voltage. 30 V
Forward Gate Current. 10 mATotal Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$).360 mW
Operating Temperature Range. -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. -55 to $150^{\circ} \mathrm{C}$
Lead Temperature Range
(1/16" from case for 10 seconds) $300^{\circ} \mathrm{C}$

See Section 7

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic				Min	Max	Unit	Test Conditions	
1	5	${ }^{\prime} \mathrm{GSS}$	Gate Reverse Current		-250	$p A$	$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
2					-15	$n \mathrm{~A}$		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$
3	A$\mathbf{T}$$i$$C$	BV GSS	Gate-Source Breakdown Voltage	-30		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{D S}=0$	
4		$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	$\bigcirc 0.5$	-8.0		$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}$	
5		1 DSS	Saturation Drain Current	4.0	25	mA	$V_{\text {DS }}-15 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$ (Note 1$)$	
6		rDS(on)	Drain-Source ON Resistance		300	Ω	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{G S}=0$	
7	$\begin{gathered} D \\ Y \\ N \\ A \\ M \\ I \\ C \end{gathered}$	$\mathrm{g}_{\text {S }}$	Common-Source Forward Transconductance	4.500	10,000	μ mhos	$V_{D S}=15 \mathrm{~V}, V_{G S}=0$	$\mathrm{f}=1 \mathrm{kHz}$
8		$\mathrm{Re}_{(\mathrm{yffs} \text {) }}$	Common-Source Forward Transconductance	4,000				
9		$\mathrm{Re}_{\left(\mathrm{y}_{0 \mathrm{os}}\right)}$	Common-Source Output Conductance		150			$f=200 \mathrm{MHz}$
10		$\mathrm{Re}_{\left(y_{i s}\right)}$	Common-Source Input Conductance		800			
11		$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		6.0	pF		$f=1 \mathrm{MHz}$
12		$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		2.0			$\mathrm{f}=1 \mathrm{MH}$
13		NF	Noise Figure		3.0	dB	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{R}_{\mathrm{G}}=1 \mathrm{~K} \Omega$	$f=200 \mathrm{MHz}$
14					5.0		$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega, \mathrm{BW}=5 \mathrm{~Hz}$	$f=10 \mathrm{~Hz}$
15		Gps	Common-Source Power Gain	15			$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=200 \mathrm{MHz}$

NOTE:

NH

1. Pulse test $\mathrm{PW}=300 \mu \mathrm{~s}$; duty cycle $<3 \%$.n-channel JFETs designed for

SilifPInx

Performance Curves NC See Section 5

- Analog Switches Choppers
 ■ Commutators

NOTE:

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathbf{C}$ unless otherwise noted)
BENEFITS

- Low Insertion Loss
$R_{\text {DS(on) }}<30 \Omega$ (U1897E)
- No Error or Offset Voltage Generated by Closed Switch

Purely Resistive

n-channel silicon JFET

designed for

VHF Amplifiers Mixers

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage.. 30 V
Forward Gate Current. 10 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$).
360 mW
Operating Temperature Range. -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range.. -55 to $150^{\circ} \mathrm{C}$
Lead Temperature Range
(1/16" from case for 10 seconds) $300^{\circ} \mathrm{C}$

Beefobactione5Curves I.JH

BENEFITS

- Low Noise $\mathrm{NF}=3 \mathrm{~dB}$ Typical at 400 MHz

- Wideband

High $\mathrm{G}_{\mathrm{fs}} / \mathrm{C}_{\text {iss }}$ Ratio

- Specified for Operation at 400 MHz

TO-92 See Section 7

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

NOTE:

1. Pulse test duration $=300 \mu \mathrm{~s}$.

PERFORMANCE CURVES $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PERFORMANCE CURVES (Cont'd) $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Drain-Source ON Resistance vs Gate-Source Voltage

Capacitance vs Gate-Source Voltage

Low-Level ON Drain-Source Voltage vs Gate-Source Voltage

Drain-Source Leakage Current vs Temperature

n-channel JFETs designed for . . .

- Analog Switches
- Commutators
- Choppers
- Integrator Reset Switch

TYPE	PACKAGE
Single	TO-18
Dual	TO-71
Single	TO-92
	To-92 Leed-form
	Chip
Single	Chip
Dual	

PERFORMANCE CURVES ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Output Characteristic

VDS - DRAIN-SOURCE VOLTAGE (VOLTSY
Transfer Characteristics

Transconductance Characteristics

Output Characteristic

VOS - DRAIN SOURCE VOLTAGE (VOLTS)
Transfer Characteristics

VGS - GATE SOURCE VOLTAGE (YOLTS)
Transconductance Characteristics

BENEFITS:

- No Offset or Error Voltage Genarated by Closed Switch. Purely Resistive. High Isolation Resistance From Driver
- High Off-Isolation ID(off) $<100 \mathrm{pA}$
- High Spead ton <20 n5

PRINCIPAL DEVICES
2N3970-72, 2N4091-93, 2N4391-93
2N4856-61, 2N4856A-61A, U200-02, UCR2N 2N5564-66
2N5638-40, 2N5653-54, J111-13, PN4091-93, PN4302-04, PN4391-93, U1897-99
J111-18- 11 13-18, PN4302-18 - PN4304-18, PN4391-18 - PN4393-18, U1897-18-U1899-18 All of above single devices 2N5566 CHP

Output Characteristic

VOS DRAIN-SOURCE VOLTAGE IVOLTSI
Transfer Characteristics

Transconductance Characteristics

PERFORMANCE CURVES (Cont'd) $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

n-channel JFET
 current regulator diode designed for . . .

- current Regulation
- Current Limiting
- Biasing

TYPE	PACKAGE
Single	TO-92
Single	Chip

BENEFITS:

- Simple Two Lead Current Source
- Simplifies Floating Current Sources No Power Supplies Required
- Law Cost

PRINCIPAL DEVICES
J500-505, J506-511
J500CHP-505CHP, J506CHP-511 CHP

PERFORMANCE CURVES ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Typical Variation of 10 with Temperature
Steady State and Pulsed Value

Siliconix

n-channel JFET designed for . . .

- Low and Medium Frequency Single and Differential Amplifiers
- High Input Impedance Amplifiers

BENEFITS:

- Wide Dynamic Range
$\operatorname{IG}_{\mathrm{G}}$ Specified @ VDG $=20 \mathrm{~V}$
- Low Capacitance $\mathrm{C}_{\mathrm{iss}}<4 \mathrm{pF}$
- Low Output Conductance

TYPE	PACKAGE	PRINCIPAL DEVICES
Dual	TO-71	2N3954, 2N3954A, 2N3955, 2N3955A, 2N3956-8,
		2N5452-54
Single	TO-72	2N3684-7
Dual	Chip	2N3955CHP, 2N3956CHP-8CHP, 2N5454CHP
Single	Chb	2N3684CHP-7CHP

PERFORMANCE CURVES $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

n-channel JFET designed for . . .

- VHF/UHF Amplitiers
- Oscillators
- Mixers
- Low Input Capacitance High Speed Switch

TYPE	PACKAGE
Single	TO-72
Single	TO-92
Single	TO-92 Lead-form
Single	Chip

Siliconix

 BENEFITS:- Low Noise
$\mathrm{NF}=3 \mathrm{~d}$ R Typical @ 400 MHz
- Wideband High $\mathrm{g}_{\mathrm{f}} / \mathrm{C}_{\text {iss }}$ Ratio

PERFORMANCE CURVES $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Output Characteristic

Transfer Characteristics

Transconductance Characteristics

Drain Current \& Transconductance ws Gate-Source Voltage

Common-Source Forward
Transconductance vs Drain Current

Common-Source Output Conductance vs Drain-Source Voltage

'ON' Resistance \& Output Conductance vs Gate-Source Cutoff Voltage

$V_{\text {GSioft }}$ - GATE-SOURCE CUTOFF VOLTAGE (VOLTS.
Common-Source Output Conductance vs Drain Current

Orain Current, Transconductance and 'ON' Resistance vs Ambient Temperature

S Parameters S_{11} Common-Source vs Frequency

S Parameters S_{21} Common-Source vs Frequency

S Parameters S_{12} Common-Source vs'Frequency

5 Parameters S $_{22}$ Common-Source vs Frequency

Common-Source Input Admittance vs Frequency

Common-Source Forward
Transadmittance vs Frequency

Common-Source Reverse
Transfer Admittance vs Frequency

Common-Source Output Admittance vs Frequency

Gate Operating Current vs Drain-Gate Voltage

Common-Source Capacitances vs Gate-Source Voltage

Gate Current vs Ambient Temperature

Equivalent Input Noise Voltage vs Frequency

Eiliconix

n-channel JFET designed for . . .

- Low ON Resistance Analog Switches
- Commutators
- Choppers
- Integrator Reset Capacitors
- Low Noise Audio Amplifiers

TYPE	PACKAGE
Single	TO-39
Single	TO-52
Single	TO-92
Single	TO-92 Lead-form
Single	Chip

PERFORMANCE CURVES ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Forward Transconductance vs Drain Current

Drain Cutoff Current ws
Ambient Temperature

ON Resistance vs Ambient Temperature

Resistance vs Normalized Gate-Source Voltage

BENEFITS:
Siliconix

- Low Insertion Loss
- Small Error in Measurement Systems VDSion) $<50 \mathrm{mV}(2 \mathrm{~N} 5432)$
- High Off-isolation ID (off) $<\mathbf{2 0 0} \mathbf{p A}$
- High Speed $\mathrm{t}_{\mathrm{d}(\mathrm{on})}<4$ ns
- Low Noise Audio-Freq Amplification㫙 $<2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz

PRINCIPAL DEVICES
U320-2
2N5432-34
J108-10
J108-18-110-18
All of the above devices

Common-Source Capacitance ws Normalized Gate-Source Voltage

Equivalent Input Noise Voltage and Noise Current vs Frequency

Gate Currents vs Drain-Gate Voltage

Input Admittance Common Gate
vs Frequency

Output Admittance Common Gate vs Frequency

Forward Transfer Admittance Common Gate vs Frequency

Gain Intermodulation Characteristics

Reverse Transfer Admittance Common Gate vs Frequency

n-channel JFET current regulator diode designed for . . .

- Current Regulation
- currant Limiting
- Biasing
- Low Voltage References

TYPE	PACKAGE
Single	TO-18 (2-iead $)$
Single	Chip

PERFORMANCE CURVES ($25^{\circ} \mathrm{C}$ unless otherwise noted)

If-hEGULATOR CURRENT (mA)
Temperature Coefficient $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{j} \leqslant 25^{\circ} \mathrm{C}$ vs Regulator Current

Capacitance ws Forward Voltage

VF - FORWARD VOLTAGE [VOLTS)

Knee Impedance vs
Regulator Current

IF - REGULATOR CURRENT (mA)
Temperature Coefficient $25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{j}} \leqslant 125^{\circ} \mathrm{C}$ us

Regulator Current

BENEFITS:

- Simple Two Lead Current Source
- Current Insensitive to Temperature Changes. Temperature Caefficient Better Than 0.15\%/ ${ }^{\circ} \mathrm{C}$ On All Devices
- T0-18 Package for Improved Current Contra
- Simplifies Floating Current Sources No Power Supplier Required

> PRINCIPAL DEVICES
> CR022 Thru CR062, U508 CR022CHP Thru CRO62CHP

Limiting Voltage @ 0.8 IF vs
Regulator Current

Thermal Resistance vs Power Dissipation

NOTE: IF, Regulator Current is specified under pulse conditions. In operation. final current will be a function of junction temperature. IF (steady state $)=I F \times\left[\mathbf{1}+\theta_{\mathrm{I}}\left(\mathbf{T}_{\mathbf{j}}-\mathbf{2 5} \mathbf{5}^{\circ} \mathrm{C}\right)\right]$ where θ_{I} is the temperature coefficient of I_{F} and T_{j} is the junction temperature.
T_{j} mav be found by $T_{j}=T_{a m b}+\theta_{j-a} P D=T_{\text {case }}+\theta_{j-c} P D . T_{j}$ must not exceed $150^{\circ} \mathrm{C}$. $\frac{1}{\theta_{\mathbf{j}-\mathrm{c}}}$ or $\frac{1}{\theta_{\mathbf{j}-\mathbf{a}}}$ is the derating factor for all devices.

TYPE	PACKAGE	PRINCIPAL DEVICES
Single	T0-18(2-lead $)$	CR068 Thru CRI50
Single	Chip	CRO68CHP Thry CR150CHP

PERFORMANCE CURVES ($25^{\circ} \mathrm{C}$ unless otherwise noted)

n-channel JFET current regulator diode designed for . . .

- current Regulation
- Current Limiting
- Biasing
- Low Voltage References

Knee Impedance us Regulator Current Temperature Coefficient $25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{j}} \leqslant 125^{\circ} \mathrm{C}$ vs Regulator Current

CURRENT (IMA)

Limiting Voltage@ 0.8 IFvs Regulator Current

Thermal Resistance vs Power Dissipation

Capacitance vs Forward Voltage

NOTE: IF. Regulator Current is specified under pulse conditions. In operation, final current will be a function of junction temperature. IF (steady state) $=\operatorname{IF} \times\left[1+\theta_{1}\left(\mathrm{~T}_{\mathrm{j}}-25^{\prime \prime} \mathrm{C}\right)\right]$ where θ_{I} is the temperature coefficient of I_{F} and $\mathbf{T}_{\mathbf{j}}$ is the junction temperature.
$\mathrm{T}_{\mathbf{j}}$ may be found by $\mathrm{T}_{\mathbf{j}}=\mathrm{T}_{\mathbf{a m b}}+\theta_{\mathbf{j}-\mathrm{a}} \mathbf{P D}=\mathrm{T}_{\mathbf{c} \text { ase }}+\theta_{\mathbf{j}-\mathrm{c}} \mathbf{P D} . \mathrm{T}_{\mathbf{j}}$ must not exceed $150^{\circ} \mathrm{C} . \frac{1}{\theta_{\mathrm{j}-\mathrm{c}}}$ or $\frac{1}{\theta_{\mathrm{j}-\mathrm{a}}}$ is the derating factor for all devices.

n-channel JFET current regulator diode designed for . . .

- Current Regulation
- Current Limiting
- Biasing
- Low Voltage References

TYPE	PACKAGE
Single	TO-18 (2-lead $)$
single	Chip

PERFORMANCE CURVES $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Regulator Current

If-REGULATOR CURRENT(mA)
Temperature Coefficient $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{j}} \leqslant 25^{\circ} \mathrm{C}$ 《s Regulator Current

Capacitance vs Forward Voltage

VF - FOAWARD VOLTAGE (VOLTS)

Knee Impedance $v s$ Regulator Current

If-REGULATOR CURRENT (MA)
Temperature Coefficient $25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{j} \leqslant 125^{\circ} \mathrm{C}$ vs Regulator Current

Limiting Voltage 0.8 IF Vs Regulator Current

Thermal Resistance vs
Power Dissipation

NOTE: IF, Regulator Current is specified under pulse conditions. In operation. final current will be a function of junction temperature. IF (steady state) $=\operatorname{IF} \times\left[1 \mathbf{t} \theta_{I}\left(\mathrm{~T}_{\mathrm{j}}-\mathbf{2 5} \mathrm{C}\right)\right]$ where θ_{ρ} is the temperature coefficient of $I F$ and T_{j} is the junction temperature.
T_{j} may be found by $\mathrm{T}_{\mathrm{j}}=\mathbf{T a m b}+\theta_{\mathrm{j}-\mathrm{a}} \mathrm{PD}=\mathrm{T}_{\mathbf{c a s e}}+\theta_{\mathrm{j}-\mathrm{c}} \mathrm{PD} . \mathrm{T}_{\mathrm{j}}$ must not exceed $150^{\circ} \mathrm{C}, \frac{1}{\theta \mathrm{j}-\mathrm{c}}$ ar $\frac{1}{}$ is the derating factor for all devicas. .

monolithic dual mhannel JFET designed for . . .

 fiers- Impedance Convertars
- Precision Instrumentation Amplifier.
- comparator.

TYPE	PACKAGE
Dual	TO-71
Dual	Chip

PERFORMANCE CURVES $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Transfer Characteristics Low $\mathrm{V}_{\mathrm{GS}(\mathrm{off})}$

VGS - GATE-SOURCE VOLYAGE (VOLTS\}

Transconductance Characteristics Low $\vee_{\text {GS(off) }}$

Output Characteristics Medium $\mathrm{V}_{\mathrm{GS}(\mathrm{off})}$ Unit

Transfer Characteristics Medium V_{GS} (off)

VGS ~ GATE-SOURCE VOLTAGE [VOLTS)

Transconductance Characteristics Medium $\mathrm{V}_{\mathrm{GS} \text { (off) }}$

PRINCIPAL DEVICES
2N5196-9, 2N5545-47, U231-35
$2 N 5199 \mathrm{CHP}, ~ U 232 \mathrm{CHP}-35 \mathrm{CHP}$
2N5547CHP

Transfer Characteristics
High $V_{\text {GS(off) }}$

Transconductance Characteristics
High $V_{\text {GS (off) }}$

PERFORMANCE CURVES (Cont'd) ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Static Drain-Source O N Resistance

$V_{\text {GSioft }}$-- GATE SOURCE CUTOFF VOLTAGE (VOLTS)

Common-Source Output Conductance

Gate Leakage Currents vs Ambient Temperature

Equivalent Input Noise Voltage vs Frequency

Normalized ON Resistance

Common-Source Output Conductance vs Drain Current

Gate Leakage Currents vs Drain-Gate Voltage

vs Ambient Temperature

IDSS and $g_{f s}$ ws Gate-Source Cutoff Voltage

$V_{G S(O f)}$ - GATESCURCE CUTOFF VOLTAGE (VOLTS)
Common Source
Forward Transconductance vs Drain Current

Capacitance vs Gate-Source Voltage

monolithic
 dual n-channel JFET designed for...

- FET Input Amplifiers
- Low and Medium Frequency Amplifiers
- Impedance Converters
- Precision Instrumentation Amplifies
- Comparators

PERFORMANCE CURVES ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Transfer Characteristics Low $\mathrm{V}_{\mathrm{GS}(\mathrm{off})}$ Unit (-1.5V)

Output Characteristics
Medium $\mathrm{V}_{\mathrm{GS}(\mathrm{fff})}$ Unit (-2.2 V)

VDS - DRAIN.SOURCE VOLTAGE IVOLTSJ

Transfer Characteristics Medium $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ Unit (-2.2 V)

Drain Current and Transconductance vs Gate-Source Cutoff Voltage

Forward Transconductance vs Drain Current

10 - DAAIN CURAENT (mA)

PERFORMANCE CURVES (Con't) ($25^{\circ} \mathrm{C}$ unless otherwise noted)
Transconductance vs Gate Source Voltage

Transconductance vs Gate Source Voltage
Medium $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ Unit (-2.2 V)

Gate Operating Current vs Ambient Temperature

Output Conductance vs Drain Gate Voltage

VDG - DRAIN GATE VOLTAGE (VOLTS)

Equivalent Short Circuit Input Noise vs Frequency

Capacitance vs Gate Source Voltage

$V_{G S}$ - GATE SOUACE VOLTAGE iVOLTS)

Capacitance vs Drain to Gate Voltage

n-channel JFET designed for...

- Small Signal Amplifiers
- Choppers
- Voltage-Controlled Resistors

TYPE	PACKAGE
Single	TO-18
Dual	TO-71
Single	TO-92
Single	TO-92 Lead-form
Single	Chip

PERFORMANCE CURVES $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Transconductance Characteristics

VGS - GATE-SOURCE VOLTAGE \{VOLTS!

Output Characteristic

Transfer Characteristics

Trarsconductance Characteristics

BENEFITS:

- Law Noise NF $<1 \mathrm{~dB}$ at 1 kHz
- Operation From Low Power Supply Voftages. $V_{\text {GS }}$ (off) $<1 \mathrm{~V}$ (2N4338)
- High Off-Isolation As a Switch ${ }^{1}$ D(off) < 50 PA
- High Input Impedance

PRINCIPAL DEVICES
2N3368-70, 2N3436-8, 2N3458-60,
2N4338-41, VCR4N
2N5196-9. U231-5, 2N5545-47
J201-203, J204, PN4302-04 J201-18-203-18, J204-18,
All of the above
PN4302-18-4304-18

Output Characteristic

Transfer Characteristics

Transconductance Characteristics

Transfer Characteristics

VGS - GATE-SOURCE VOLTAGE [VOLTS)

Transconductance Characteristics

Gate Currents ws Ambient Temperature

Drain Current and Transconductance vs Gate-Source Cutoff Voltage

$V_{\text {GS(oft }}$ - GATE SOURCE CUTOFF VOLTAGE (VOLTS)
Common-Source Output Conductance vs Drain Current

Common-Source Capacitances vs Gate-Source Voltage

Gate Operating Current vs Drain-Gate Voltage

ON Reristance \& Output Conductance vs Gate-Source Cutoff Voltage

VGSiffl - GATE SOURGE CUTOFF VOLTAGE (VOLTS]
ON Resistance vs Ambient Temperature

Common-Source Forward Transconductance vs Drain Current

Equivalent Input Noise Voltage and Noise Current vs Frequency

monolithic dual n -channel JFET designed for . . .

- General Puppose Differential Amplifiers

TYPE	PACKAGE
Dual	TO-71
Dual	Chip

PERFORMANCE CURVES ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Transfer Characteristics
Low $V_{\text {GS(off) }}$

Output Characteristics
Medium VGS $_{\text {(off) }}$ Unit

Transfer Characteristics Medium $\mathrm{V}_{\mathrm{GS}(\mathrm{off})}$

Transeonductance Characteristics Medium $V_{\text {GS (off) }}$

BENEFITS:

- Low Cost
- Hig̣h Input Impedance

PRINCIPAL DEVICES
U410-12
U411CHP, U412CHP

Transconductance Characteristics High V_{GS} (off)

PERFORMANCE CURVES (Cont'd) ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Common Source Output Admittance vs Drain-Source Voltage

Leakage Current vs Ambient Temperature

Equivalent Input Noise Voltage vs Frequency

Normalized ON Resistance
vs Ambient Temperature

Common-Source Output Conductance vs Drain Current

Gate Operating Current
vs Drain-Gate Voltage
Gate Operating Current
vs Drain-Gate Voltage

DRAIN-GATE VOLTAGE IVOLTSI
$I_{\text {DSS }}$ and $g_{f s}$ vs Gate-Source Cutoff Voltage
 $V_{\text {GStoff) }}$ - GATE SOURCE CUTOFF VOLTAGE Common Source Forward Transconductance vs Drain Current

Capacitance us Gate-Source Voltage

FORWARD TRANSCONDUCTANCE $\{\mu \mathrm{mhos}$)
 (FORWARD TRANSCONDUCTANCE (jmhos)

monolithic
 dual n-channel JFETs designed for . .

- Low Leakage FET Input Op Amps
- pH Meters
- Electrometers

TYPE	PACKAGE
Dual	TO-78
Dual	Chip

PERFORMANCE CURVES $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Transconductance vs Gate Source Voltage Transconductance vs Gate Source Voltage Common-Source Output Conductance Low $\mathrm{V}_{\mathrm{GS}(\mathrm{off})}$ Unit (1.0 V)

PERFORMANCE CURVES (Cont'd) $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

On Resistance vs Ambient Temperature

Output Conductance vs Drain to Gate Voitage

gg - urain to gate voltage (VOLTS)

Leakage Current vs Temperature

Equivalent Input Noise Voltage ws
Frequency

Capacitance vs Drain Gate Voltage

Gate Operating Current vs Drain-Gate Voltage

nshannel JFET designed for . . .

- Small Signa: Amplifiers
- VHF Amplifiers
- Oscillators
- Mixers
- Switches

TYPE	PACKAGE
Single	TO-72
Single	$\overline{30.92}$
Duai	TO-71
Single	Chip

PERFORMANCE CURVES ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Transconductance Characteristics

Output Characteristic

Transfer Characteristics

VGS-GATE-SOURCE VOLTAGE (VOLTS)

Transconductance Characteristics

BENEFITS:

- Wide Input Dynamic Range High IG Breakpoint Voltage
- High Gain
- Low Insertion Loss Switches

PRINCIPAL DEVICES
2N3821-4, 2N4220-2, 2N4220A-22A 2N4223-24. 2N5556-58 2N3819, 2N5457-9, MPF109, MPF111 2N3921-2, 2N4084-5, 2N5045 7, U401-6 All of the above except $2 N 3819$

Drain Current \& Transconductance us Gate-Source Voltage

'ON' Resistance vs Ambient Temperature

PERFORMANCE CURVES (Con't) $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Equivalent Input Noise Voltage and Noise Current vs Frequency

Common-Source Capacitances vs Gate-Source Voltage

VGS - GATE-SOURCE VOLTAGE (VOLTS)
Gate Operating Current vs Drain-Gate Voltage

Static Drain-Source 'ON' Resistancevs Gate-Source Cutoff Voltage

Common-Source Output Admittance vs Drain-Source Voltage

Common-Source Forward
Transadmittance vs Frequency

Common-Source Reverse Transfer Admittance vs Frequency

Common-Source Forward Transconductance vs Drain Current

Common-Source Output Admittance vs Drain Current

1 D - DRAIN CURRENT (mA)

Common-Source input Admittance vs Frequency

Common-Source Output Admittance vs Frequency

Drain Current and Transconductance vs Ambient Temperature

n-channel JFET
designed for . .

- Low Noise Amplifiers
- Single and Differential Amplifiers

TYPE	PACKAGE
Dual	TO-71
Single	TO-72
Single	TO-92
Single	TO-92 Lead-form
Dual	Chip
Single	Chip

PERFORMANCE CURVES $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Transfer Characteristics

Transconductance Characteristics

Output Characteristics

Transfer Characteristics

Transconductance Characteristics

Output Characteristics

Transfer Characteristics

Transconductance Characteristics

PERFORMANCE CURVES (Cont'd) $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Saturation Drain Current and
Forward Transconductance vs. Gate-Source Cutoff Voltage

Drain Current \& Transconductance vs Ambient Temperature

Static Drain-Source 'ON' Resistance vs Gate-Source Cutoff Voltage

Drain-Source 'ON' Resistance vs Ambient Temperature

Common-Source Output Conductance vs Drain-Source Voltage

Common-Source Forward Transconductance vs Drain Current

Approximate Noise Figure vs Input Noise Voltage

Leakage Currents vs Ambient Temperature

Common-Source Output Conductance vs Drain Current

Common-Source Capacitance ws Gate-Source Voltage

Equivalent Input Noise Voltage and Noise Current vs Frequency

Gate Operating Current ws Drain-Gate Voltage

n-channel JFET designed for . . .

- Ultra-High Input Impedance Amplifiars Electrometers
pH Meters
Smoke Detectors

TYPE	PACKAGE
Single	TO-72
Dual	TO.78
Single	Chip
Dual	Chip

PERFORMANCE CURVES ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Transfer Characteristics

Transconductance Characteristics

Output Characteristic

Transfer Characterirticr

Transconductance Characteristics

Output Characteristic

Transconductance Characteristics

PERFORMANCE CURVES (Cont'd) ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Drain Current \& Transconductance us Gate-Source Cutoff Voltage

Leakage Currents ws Ambient Temperature

ON Resistance \& Output Conductance vs Gate-Source Cutoff Voltage

Leakage Currents vs Drain-Gate Voltage

Common-Source Forward Transconductance vs Drain Current

Common-Source Output Conductance vs Drain Current

Equivalent Input Noise Voltage and Noise Current vs Frequency

n-channel JFET
designed tor. . .

- Analog Switches
- Commutators
- Choppers

TYPE	PACKAGE
Single	TO-52
Single	TO-92
Single	TO-92 Lead-form
Single	Chip

BENEFITS.

- Very Low Insertion Loss

RDS(on) < 2.5 Ohms (U290)

- High Off-Isolation

PRINCIPAL DEVICES
U290-1
J105-7
J105-18-107-18
U290CHP-1CHP J105CHP-7CHP

PERFORMANCE CURVES ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Output Characteristic

Drain-Source 'ON' Resistance vs Ambient Temperature

Leakage Current vs Drain-Gate Voltage

Saturation Drain Current and Drain-Sour- 'ON' Resistancevs Gate-Source Cutoff Voltage

Leakage Currents vs Ambient Temperature

Common-Source Capacitance ws Gate-Source Voltage

Draw-Source Resistance vs Normalized Gate-Source Voltage

Equivalent Input Noise Voltage vs vs Frequency

n-channel JFET designed for. . .

- VHF/UHF Amplifiers
- Front End High Sensitivity Amplifiers
- Oscillators
- Mixers

TYPE	PACKAGE
Single	TO-52
Single	TO.72
Single	TO-92
Dual	TO.99
Single	TO.92 Lead-form
Single	Chip
Dual	Chip

PERFORMANCE CURVES ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Drain Current \& Transconductance vs Gate-Source Cutoff Voltage

$V_{\text {GSIOFfI }}$ - GATE SOURCE CUTOFF VOLTAGE (VOLTS)

Gate Operating Current vs Drain-Gate Voltage

ON Resistance \& Output Conductance vs Gate-Source Cutoff Voltage

VGS(off) - GATESOURCE CUTOFF VOLTAGE (VOLTS)

Equivalent Input Noise Voltage vs Frequency

Common-Source Output Conductance vs Drain Current

n-channel JFET designed for . . .

- High Frequency Amplifiers
- Mexers
- Oscillators

TYPE	PACKAGE
Single	TO-52
Dual	TO-78
Dual	TO-71
Single	Chip
Dual	Chip

PERFORMANCE CURVES $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Output Characteristic

Transfer Characteristics

Transconductance Characteristics

Common-Source Output Conductance
vs Drain Current

Leakage Currents vs Drain-Gate Voltage

Forward Transconductance vs Drain Current

BENEFITS

- High Power Gain
- Low Input Capacitance

PRINCIPAL DEVICES
U312
2NE91ヶ-12, U257
U440-41
$\mathrm{U} 312 \mathrm{CH}{ }^{\mathrm{P}}$
2N5912CHP U257CHP

Saturation Drain Current and Forward Transconductance vs Gate-Source Cutoff Voltage

Equivalent Input Noise Voltage vs Frequency

Common-Source Capacitances vs Gate-Source Voltage

u

dechannel JFET

- General Purpose Amplifiers and Attenuators

TYPE	PACKAGE
Single	TO-18
Single	TO-72
Single	Chip

PERFORMANCE CURVES ($25^{\circ} \mathrm{C}$ unless otherwise noted)

-

Transfer Characteristic

Noise Figure vs Generator Resistance

Gate Reverse Current ws Ambient Temperature

Common-Source Capacitances vs Gate-Source Voltage
 Noise Figure vs Frequency

PRINCIPAL DEVICES
2N2608, 2N2608JAN, 2N2843
2N3329-32, 2N3909, VCA5P 2N2608CHP, 2N2843CHP, $2 \mathrm{~N} 3329 \mathrm{CHP}-32 \mathrm{CHP}, 2 \mathrm{~N} 3909 \mathrm{CHP}$ VCRSPCHP

Drain Current \& Transconductance vs Gate-Source Voltage

Common-Source Output Conductance vs Drain Current

Equivalent Input Noise Voltage vs Frequency

PERFORMANCE CURVES $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Transfer Characteristic

Noise Figure vs Generator Resistance

Gate Reverse Current us Ambient Temperature

Common-Source Capacitance vs Gate-Source Voltage

Noise Figure vs Frequency

f - FAEOUENCY (kHz)

Drain Current \& Transconductance vs Gate-Source Voltage

Common-Source Output Conductance vs Drain Current

Equivalent Input Noise Voltage vs Frequency

PERFORMANCE CURVES $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Transfer Characteristics

Transconductance Characteristics

Common-Source Capacitances vs Gate-Source Voltage

Equivalent Input Noise Voltage vs Frequency

Drain Current \& Transconductance vs Gate-Source Voltage

PERFORMANCE CURVES ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Transfer Characteristics

Transconductance Characteristics

Common-Source Output Conductance vs Drain Current

Common-Source Capacitance vs Gate-Source Voltage

Gate Operating Current vs Drain-Gate Voltaqe

BENEFITS:

- Law Insertion Loss in Switching Systems RON $<75 \Omega$ (2N5114)
- Short Sample and Hold Aperture Time $\mathrm{C}_{\text {rss }}<7 \mathrm{pF}$
- High Off-Isolation ID(off) $<500 \mathrm{pA}$

PRINCIPAL DEVICES
2N5018-19, 2N5114-16, U304-6
J174-7. J270-1. P1086-87. P1086E
J174-18 - 177-18, J270-18-271-18
P1086-18-87-18
2N5018CHP-19CHP, 2N5114CHP-16CHP
U304CHP-6CHP, P1086CHP-87CHP J270CHP-27rCHP

Equivalent Input Noise Voltage and Noise Current vs Frequency

Saturation Drain Current and Drain-Source ON Resistance
vs. Gate-Source Cutoff Voltade

cpplicotion

notes

APPLICATION NOTE

An Introduction to FETs

INTRODUCTION

The basic principle of the field-effect transistor (FET) has been known since J.E. Likenfeld's patent of 1925. The theoretical description of a FET made by Schockley in 1952 paved the way for development of a classic electronic device which provides the designer with the means by which he can accomplish nearly every circuit function. The field-effect transistor earlier was known as a "unipolar" transistor, and the term refers to the fact that current is transported by carriers of one polarity (majority), whereas in the conventional bipolar transistor carriers of both polarities (majority and minority) are involved.

This Application Note provides an insight into the nature of the FET, and touches briefly on its basic characteristics, terminology and parameters, and typical applications.

The following list of FET applications indicates the versa tility of the FET family:

Amplifiers	Switches	Current Limiters
Small Signal	Chopper-type	Voltage-Controlled
Law Distortion	Analog Gate	Resistors
High Gain	Commutator	Mixers
Low Noise		Oscillators
Selective		
D.C.		
High-Frequency		

This very wide range of FET applications by no means implies that the device will replace the more widely-known bipolar transistor ${ }^{\text {n }}$ every case. The simple fact is that FET charaçteristics - which are very different from those of bipolar devices - can often make possible the design of technically superior (and sometimes cheaper) circuits. This comment applies nòt only to networks employing discrete devices and conventional components such as resistors and capacitors, but also extends to both linear and digitalintegrated circuits.

In fact, FET technology today allows a greater packaging density in large-scale integrated circuits (LSi) than would ever be possible with bipolar devices.
(Although there is nu industry-accepted definition of LSI, apparently when the equivalent circuit of an IC containsi more than 1,000 active elements (500 gates) or is "very complex", the end product may be called LSS. With a typical LSI chip measuring less than 200×200 mils, this is highdensity packaging indeed.)

The family tree of FET devices (Figure I) may be divided. into two main branches, junction FETs (JFETs) and Insulated Gate FETs (or MOSFETs, metal-oxide-silicon field-effect transistors). Junction FETs are inherently depletion-mode devices, and are available in both P_{-}and N -Channel canfigurations. MOSFETs are available in both enhancement or depletion modes, and exist as both N - and P-Channel devices. The two main FET groups depend on different phenomena for their operation, and will be discussed separately.

FET Family Trees

 Figure 1
Junction FETs

In its most elementary version, this transistor consists of a piece of high-resistivity semiconductor material (usually silicon) which constitutes a channel far the majority carrier flow. The magnitude of this current is controlled by a voltage applied to a gate, which is a reverse-biased PN junction formed along the channel. Implicit in this description is the fundamental difference between FET and bipolar devices: when the FET junction is reverse-biased the gate current is practically zero, whereas the base current of the bipolar transistor is always some value greater than zero. The FET is a highinput resistance device, while the input resistance of the bipolar transistor is comparatively low. If the channel is doped with a donot impurity, N-type material is formed and the channel current will consist of elections. If the channel is doped with an acceptor impurity, P-type material will be formed and the channel current will consist of holes. N-Channel devices have greater conductivity than P-Channel types, since electrons have higher mobility than do holes; thus N Channel FETs tend to be more efficient conductors than their P-Channel counterparts.

Junction FETs are particularly suited to manufacture by modern planar epitaxial processes. Figure 2 shows this process in an idealized manner. First, N-type silicon is deposited
siliconix

epitaxially (single-crystai condensation surface) onto monocrystalline P-type silicon, so that crystal integrity is maintained. Then a layer of silicon dioxide is grown on the surface of the N-type layer, and the surface is etched so that an acceptor-type impurity can be diffused through into the silicon. The resulting cross-section is shown in Figure 2C, and demonstrates how a P-type annulus has been formed in the layer on N-type silicon. Figure 2D shows how a further sequence of oxide growth, etching, and diffusion can produce a channel of N -type material within the substrate.

In addition to the channel material, a FET contains two ohmic (non-rectifying) contacts, the source and the drain. These are shown in Figure 2E. Since a symmetrical geometry is shown in the idealized FET chip, it is immaterial which contact is called the source and which is called the drain; the FET will conduct current equally well in either direction and the source and drain leads are usually interchangeable.
(For certain FET applications, such as amplifiers, an asymmetrical geometry is preferred for lower capacitance and improved frequency response. In these cases, the source and drain leads should not be interchanged.)

Figure 2E also shows how the N-Channel is embedded in the P-type silicon substrate, so that the gate above the channel becomes part of this substrate. Figure $\mathbf{3}$ shows how the FET functions. If the gate is connected to the source, then the applied voltage (V_{DS}) will appear between the gate and the drain. Since the PN junction is reverse-biased, little current will flow in the gate connection. The potential gradient established will form a depletion layer, where almost all the electrons present in the N-type channel will be swept away. The most depleted portion is in the high field between the gate and the drain, and the least-depleted area a between the gate and the source. Because the flow of current along the channel from the (positive) drain to the (negative) source is really a flow of free electrons from source to drain in the N -type silicon, the magnitude of this current will fall as more silicon becomes depleted of free electrons. There is a limit to the drain current (I_{D}) which increased V_{DS} can drive through the channel. Thir limiting current is known as IDSS (Drain-to-Source current with the gate Shorted to the source). Figure 3B shows the almost complete depletion of the channel under these conditions.

Figure 3C shows the output characteristics of an N-Channel JFET with the gate short-circuited to the source. The initial rise in I_{D} is related to the buildup of the depletion layer as $V_{D S}$ increases. The curve approaches the level of the limiting current $I_{\text {DSS }}$ when I_{D} begins to be pinched off. The physical meanng of this term leads to otte definition of pinch-off voltage, V_{P}, which is the value of \mathbf{V}_{DS} at which rhe maximum I DSS flows.

(A) N-channel FET working below saturation (VGS $=0$). (Depletion shown only in channel region).

(B) N-channel FET working in saturation retion ($\mathrm{V}_{\mathrm{GS}}=0$)

(C) Idealized output characteristic for $V_{G S}=0$,

Figure 3

In Figure 4, consider the case where $\mathbf{V}_{\mathbf{D S}}=0$, and where a negative voltage $\mathrm{V}_{G \mathbf{S}}$ is applied to the gate. Again, a depletion layer has built up. If a small value of V_{DS} were now applied, this depletion layer would limit the resultant channel current to a value lower than would be the case for $\mathrm{V}_{\mathrm{GS}}=0$. In fact, at a value of $\left|\mathrm{V}_{\mathrm{GS}}\right| \geqslant\left|\mathrm{V}_{\mathrm{P}}\right|$ the channel current would be almost entirely cut off. This cutoff voltage is referred to as the gate cutoff voltage, and may be expressed by the symbol \mathbf{V}_{P} or by $\mathrm{V}_{\mathrm{GS} \text { (off) }}$. $\mathrm{V}_{\mathbf{P}}$ has been widely used in the past, but $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ is now more commonly accepted since it eliminates the ambiguity between gate cut-off and drain pinch-off. $\mathrm{V}_{\mathrm{GS}(\mathrm{off})}$ and $\mathbf{V}_{\mathbf{P}}$, strictly speaking. are equal in magnitude but opposite in polarity.

N-channea FET Shoring Deplation Due To Gate-Source Vol tage ($V_{D S}=0$)

The mechanisms of Figure 3 and 4 react together to provide: a family of outnut characteristics as shown in Figure 5A. The area below the pinchoff voltage locus is known as the triode or "below pinchoff" region; the area above pinchoff is often referred to as the pentode or saturation region. FET behavior in these regions is comparable to that of a power grid vacuum tube, and for this reason FETs operating in the saturation region may be used as excellent amplifiers. Note that in the "below pinchoff" region both V_{GS} and V_{DS} control the channel current, while in the saturation region V_{DS} has little effect and \mathbf{V}_{GS} essentially controls I_{D}.

Figure 5 B relates the curves of Figure 5 A to the actual circuit arrangement, and shows the number of meters which may be connected to display the conditions relevant to any combination of V_{DS} and $\mathrm{V}_{\text {GS }}$. Note that the direction of the arrow at the gate gives the direction of current flow for the forward-bias condition of the junction. In practice, however, it is always reverse-biased.

(A) Family of output characteristics for N-channei FET

(B) Circuit arrangement for N-channel FET.

Figure 5

The P-Channel FET works in precisely the same way as does the N-Channel FET. In manufacture, the planar process is essentially reversed, with the acceptor impurity diffused first onto N -type silicon, and the donor impurity diffused later to form a second N-type region and leave a P-type chan-
nel. In the P-Channel FET, the channel current is due to hole movement, rather than to electron mobility. Consequently, all the applied polarities are reversed, along with their directions and the direction of current flow. Figure 6A shows the circuit arrangement for a P-Channel FET, and Figure 6B shows the output characteristics of the device. Note that the curves are shown in another quadrant than those of the N Channel FET, in order to stress the current directions and polarities involved.

In summary, a junction FET consssts essentially of a channel of semiconductor material along which a current may flow whose magnitude is a function of two voltages, $V_{D S}$ and $\mathbf{V}_{\text {GS }}$. When $\mathbf{V}_{\text {DS }}$ is greater than V_{P}, tho channel current is controlled largely by \mathbf{V}_{GS} alone, because \mathbf{V}_{GS} is applied to a reverse-biased junction. The resulting gate current is extremely small.

(A) Circuit arrangement for ${ }^{P}$-channel FET

(B) Family of output characteristics for P-channel FET

Figure 6

mOSFETs

The metal-oxide-silicon FET (MOSFET) depends for its operation on the fact that it is not actually necessary to form a semiconductor junction on the channel of a FET in order to achieve gate control of the channel current. Instead, a metallic gate may be simply isolated from the channel by a thin layer of silicon dioxide, as shown in Figure 7A. Although the bottom of the insulating layer is in contact with the Ptype silioan substrate, the physical processes which occur at this interface dictate that frec electrons will accumulate at the interface, spontaneously forming an N-type channel. Thus a conducting path exists between the diffused N-type source and drain regions. Further, the MOSFET will behave

(A) Idealized cross-section through an N -channel depletion type MOSFET

(B) Circuit arrangement for N -channel depletion MOSFET

(C) Family of output characteristics for the Siliconix 2N363: N-channel depletion MOSFET

Figure 7
in a manner similar to the N -Channel junction FET when a voltage of the correct polarity is applied to the channel, as in Figure 7B.

Output characteristics of an N-Channel MOSFET are shown in Figure 7C. Because there is no junction involved, \mathbf{V}_{GS} can be reversed without engendering a gate current; the gate may be made either positive or negative with respect to the source. Under these circumstances, still more free electrons will be attracted to the channel region, and \mathbf{I}_{D} will become greater than I IDSS. This mode of operation is represented by tho higher members of the family of ourput characteristics. Because the application of a negative gate voltage causes the channcl to be depleted of free electrons - thus reducing $\mathrm{I}_{\mathrm{D}}{ }^{-}$ the device just described is called a depletion-mode MOSFET.

The foregoing has established that the depletion-mode MOSFET is a "normally-ON device: when $\mathrm{V}_{\mathrm{GS}}=0$, a conducting path exists between source and drain. In many circuits a "normally-OFF" device would be useful, a condition which leads to the concept of an enhancement-mode MOS. FET. In the latter device, an increasing voltage applied to the gate will enhance channel conduction, and depletion will never occur, I_{D} being zero when $\mathrm{V}_{\mathrm{GS}}=0$.

A P-Channel enhancement-mode MOSFET is shown in Figure 8. Here, an acceptor impurity has been diffused into an N-type substrate to form P-type source and drain regions. No conducting channel exists between the source and the drain, because no matter how the drain-source voltage is applied one of the PN junctions will always be reverse-biased. On the other hand, if a negative voltage is applied to the gate, a field will be set up in such a direction as to attract holes into the upper layer of the substrate and produce a P-type channel. A family of output characteristics for a typical MOSFET is shown in Figure 86 , The idealized cross-section illustrated in Figure 8A may be used to show how the characteristics of Figure 8C come about. Refer to Figure 9 for an extension of this phenomenon.

If a constant (negative) gate voltage, $\left(\mathrm{V}_{\mathrm{GS}(\mathrm{K})}\right)$ is applied, then an essentially-uniform P-Channel depletion layer will be induced, as in Figure 9A. If a negative drain voltage is applied, then current, \mathbf{I}_{D}, will flow through the drain. As $\left|\mathbf{V}_{\mathrm{DS}}\right|$ increases, I_{D} also increases. However, the voltage between the drain and the gate decreases, so that the thickness of the channel at the drain end is reduced as in Figure $9 B$. Therefore, the relationship of I_{D} versus $V_{D S}$ will even-

(A) |deailized cross-section through a P-chanmel enhancement MOSFET

(B) Circuit arrangementfor P-channel enhancement MOSFET

(C) Famlly of outpur characteristics tor a P-channel enhancement MOSFCT
tually reach a limiting value when $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$, and the channel becomes pinched off. This condition is shown in Figure 9 C .

Different values.of V_{GS} give rise to limiting valuer of I_{D}; so that the characteristic family of output curves which was shown in Figure ${ }^{8}$ is realized. Characteristics of depletionmode MOSFETs also come about for the same reason, except that members of the output characteristics family also exist for V_{GS} values of zero or reversed polarity. The P-Channel enhancement-mode MOSFET is currently the most popular member of the FET family in current use, and is in fact the basic element in many LSI integrated circuits.

In principle it is possible to manufacture the remaining two members of the MOSFET family, the P-Channel depletion. mode and the N-Channel enhancement-mode devices. Be. cause of the spontaneous formation of an N-Channel at a silicon/silicon-djoxide interface, the fabrication processes involved become quite difficult on a volume production basis. Much work has gone into the development of practical MOSFET processes for these devices, and N-Channel deple-tion-mode types are now becoming generally available.

Idealized approach of pinch-otf,
(A) $V_{D S}=0$, (B) $\mathbf{N}_{\mathbf{D S}}{ }^{i<N_{G S}}$, (C) $\mathbf{N}_{\mathbf{D S}}{ }^{i}>\mathbf{N}_{\mathbf{G S}}{ }^{1}$

FET Characteristics
The FET enjoys certain inherent advantages over bipolar transistors because of the unique construction and method of operation of the field-effect device. These characteristics include:

- Low noise
- No thermal runaway
- Low distortion and negligible intermodulation products
- High input impedance at low frequencies
- Very high dynamic range ($>100 \mathrm{~dB}$)
- Zero temperature coefficient Q point
- Junction capacitance independent of device current

The transfer function of a FET approximates to a squarelaw response, and the second and higher-order derivatives of g_{m} are near zero; thus strong second and negligible higherorder harmonics are produced. Intermadulation products are extremely low.

The input impedance of a FET is simply the impedance of a reverse-biased PN junction, which is on the order of 10^{10} to $10^{12} \Omega$. In practice, the input impedance is limited by the value of the shunt gate resistor used in a self-bias commonsource circuit configuration. At RF frequencies, the input impedance drop is proportional to the square of the frequency; for example, in a 2 N 4416 FET , the input impedance would be $22 \mathrm{~K} \Omega$ at 100 MHz . Also, the input susceptance increases linearly with frequency, since it is a simple parasitic capacitance.

The FET has very high dynamic range, in excess of 100 dB . Thus it can amplify very small signals because it produces very little noise, or it can amplify very large signals because it has negligible intermodulation distortion products. It also has a zero temperature coefficient bias paint (zero TC paint) at which changes in temperature do not change the quiescent operating point.

Junction FET capacitances are more constant over wide current variation than are the same parameters in a bipolar device. This inherent stability allows high-frequency (VHF through L-band) oscillators to be built which are far more stable than oscillators using low-frequency crystals and multiplier stages.

FET Terminology and Parameters

Any introduction to the nature, behavior, and applications of fieid-effect transistors requires that certain questions be answered on FET electrical quantities and parameters i n particular, the most important parameters, and the means by which they can be measured. The following discussion will define specific FET parameters and their associated subscript notations, and present basic test circuits and results.

Major parameters include:

- $\mathrm{I}_{\text {DSS }}$ - Drain current with the gate shorted to the source
- $\mathrm{V}_{\mathrm{GS}(\text { off })}$ - Gate-source cutoff voltage
- I GSS - Gate-to-source current with the drain shorted to the source
- $\mathrm{BV}_{\mathrm{GSS}}$ - Gate-to-source breakdown voltage with the ©rain shorted to the source
- g_{f} - Common-source forward transconductance
- C_{gs} - Gate-source capacitance
- C_{gd} - Gate-drain capacitance

Special attention should be given to the subscript " s " because it has two different meanings and three possible uses. In FET notations, an "s" for the first or second subseript identifies the source terminal as a node point for voltage reference or current flow. However, when using triple subscript notation, an " s " far the third subscript does not refer to the FET source terminal. It is an abbreviation for "shorted", and signifies that all terminals not designated by the first two subscripts must be tied together andshorted to the common terminal, which is always the second subscript. Therefore, the term $\mathbf{I}_{\text {GSS }}$ refers to the gate-source current with the drain tied to the source.

Because of the typical low input and output admittance of the FET, four-pole admittance equations are commonly used to describe electrical characteristics of the FET:

$$
\begin{equation*}
\mathrm{I}_{1}=\mathrm{Y}_{11} \mathrm{~V}_{11}+\mathrm{Y}_{21} \mathrm{~V}_{22} \tag{1}
\end{equation*}
$$

When Y_{11}, Y_{21}, Y_{12} and Y_{22} are defined as the input, reverse transfer, forward transconductance, and output admittances respectively, Equation 1 reduces to

$$
\begin{aligned}
& \mathrm{i}_{1}=\mathrm{y}_{\mathrm{i}} \mathrm{v}_{11}+\mathrm{y}_{\mathrm{r}} \mathrm{v}_{22} \\
& \mathrm{i}_{2}=\mathrm{y}_{\mathrm{f}} \mathrm{v}_{11}+\mathrm{y}_{\mathrm{o}} \mathrm{v}_{22}
\end{aligned}
$$

For a three-lead FET, 11 usually corresponds to the gatesource terminal and 22 corresponds to the drain-source terminal (i.e., the device is connected in the common-source mode). Thus

$$
\begin{align*}
& \dot{i}_{\mathrm{i}}=y_{\mathrm{is}} v_{\mathrm{gs}}+y_{\mathrm{rs}} v_{\mathrm{ds}} \tag{3}\\
& \mathrm{~b}=y_{\mathrm{fs}} v_{\mathrm{gs}}+y_{\mathrm{os}} v_{\mathrm{ds}}
\end{align*}
$$

Here, the second subscript for the y parameters designates the source lead as the common or ground terminal.
$\mathbf{I}_{\text {DSS }}-$ Drain Current at Zen, Gate Voltage (\mathbf{I}_{D} at $\mathbf{V}_{\mathbf{G S}}=0$)
By itself, I DSS merely refers to the drain current that will flow for any applied $V_{\text {DS }}$ with the gate shorted to the source. However, when a particular value for V_{DS} is given, equal to or greater than $\mathrm{V}_{\mathbf{P}}$ (see Figure 10), $\mathrm{I}_{\text {DSS }}$ indicates the drain saturation current at zero gate voltage. Some FET data sheets label $\mathrm{I}_{\mathrm{DSS}}$ for V_{DS} greater than V_{P} as $\mathrm{I}_{\mathrm{D}(\text { (on) })}$.

$\underset{\underset{\text { Figure }}{ } 10}{\text { FET Characteristic at }} \mathbf{V}_{\text {GS }}=0$

$\mathbf{V}_{\mathbf{G S}(\text { off })}$ - Gate-Source Cutoff Voltage

The resistance of a semiconductor channel is related to its physicaldimensions by $\mathrm{R}=\rho \mathrm{L} / \mathrm{A}$, where

$$
\begin{aligned}
& \rho=\text { resistivity } \\
& \mathrm{L}=\text { length of the channel } \\
& \mathrm{A}=\mathrm{W} \times \mathrm{T}=\text { cross-sectional area of channcl }
\end{aligned}
$$

In the usual FET structure, L and W are fixed by device geometry, while channel thickness T is the distance between the depletion layers. The position of the depletion layer can be varied either by the gate-source bias voltage or by the drain-source voltage. When \mathbf{T} is reduced to zero by any combination of V_{GS} and V_{DS}, the depletion layers from the opposite sides come in contact, and the a-c or incremental channel resistance, ${ }^{\mathrm{r}}$ DS, approaches infinity. Asearlier noted, this condition is referred to as 'pinch-off' or "cutoff' be. cause the channel current has been reduced to a very thin sheet, and current will no longer be conducted. Further increases in V_{DS} (up to the junction reverse-bias breakdown) will cause little change in I_{D}. Accordingly, the pinch-off region is also referred to as the pentode or "constant-current" region.

In Figure 10, pinch-off occurs with $\mathrm{V}_{\mathrm{GS}}=0$. In Figure II, \mathbf{V}_{GS} controls the magnitude of the saturated I_{D}, with increases in $V_{G S}$ resulting in lower valuer of constant \mathbf{I}_{D}, and smaller values of V_{DS} necessary to reach the "knee" of the curve. The current scale in Figure 11 has been normalized to a specific value of $\mathbf{I}_{\text {DSS }}$.

The knee of the curve is important to the circuit designer because he must know what minimum $\mathbf{V}_{\mathbf{D S}}$ is needed a reach the pinch-off region with $\mathrm{V}_{\mathbf{G S}}=0$. When appropriate bias voltage is applied to the gate, it will pinch off the channel so that no drain current can flow; $V_{D S}$ has no effect until breakdown occurs. The specific amount of V_{GS} that produces pinch-off is known as the gate-source cutoff voltage, $\mathrm{V}_{\mathrm{GS} \text { (off) }}$.

$\mathbf{V}_{\text {GS(off) }}$ Test Procedure

Although the magnitude of $\mathrm{V}_{\mathrm{GS}(\mathrm{off})}$ is equal to the pinch: off woltage, $\mathbf{V}_{\mathbf{P}}$, defined by the pinch-off knee in Figure 10 , rapid curvature in the area makes it difficult to define an) precise point as V_{p}. Taking a second derivative of $\mathrm{V}_{\mathrm{DS}} / \mathrm{I}_{\mathrm{D}}$ would yield a peak corresponding to the inflection point at the knee, which approximates V_{p}. However, this is not a simple measurement for production quantities of devices. \mathbf{A} better measure is to approach the cutoff point of the I_{D} versus $V_{G S}$ characteristic. This is easier than trying to specify the location of the knee of the I_{D} versus $V_{D S}$ output characteristic.

A typical transfer characteristic I_{D} versus V_{GS} is shown in Figure 12. The curve can be closely approximated by

$$
\begin{equation*}
\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}}\left(1-\frac{\mathrm{v}_{\mathrm{GS}}}{\mathrm{v}_{\mathrm{GS}(\mathrm{off})}}\right)^{2} \tag{4}
\end{equation*}
$$

Typical ID vs $V_{G S}$ Transfer Characteristic

Equation 4 and Figure 12 indicate that at $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{GS} \text { (off) }}$, $I_{D}=0$. In a practical device, this cannot be true because of leakage currents. If \mathbf{I}_{D} is reduced to less than 1 percent of $I_{\text {DSS }}, V_{G S}$ will be within 10 percent of the $V_{G S(\text { off })}$ value indicated by Equation 4. If $\mathbf{I}_{\mathbf{D}}$ is reduced to 0.1 percent of $\mathrm{I}_{\text {DSS }}$, the indicated $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ error will be reduced to about 3 percent. For a true indication of $\mathrm{V}_{\mathrm{GS}(\mathrm{off})}$, and a realistic picture of the parameters of Figure 12, care must be taken that leakage currents do not result in an error in the $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ reading. Typically, at room temperature, 1 percent of $I_{\text {DSS }}$ is still well above leakage currents but is low enough to give a fairly accurate value of \mathbf{V}_{GS} (off)

A typical circuit for measuring $\mathrm{V}_{\mathrm{GS}(\text { off })}$ is shown in Figure 13. At $V_{G S}=0$, the value of $I_{D S S}$ can be measured. Then, by increasing $V_{G S}$ until I_{D} is 0.01 percent of $\mathbf{I}_{\text {DSS }}$, the value of $\mathrm{V}_{\mathrm{GS}(\text { off })}$ is obtained. From a production standpoint. it is more convenient to specify I_{D} at some fixed value (such as $I n A$), rather than as a certain percentage of $I_{D S S}$. Thus a pinchoff voltage specification may be given as indicated in Table I

Circuit for Measuring $\mathbf{V}_{\mathbf{G S}}(\mathbf{O F F})$ Figure 13

Table 1
Typical Pinch-Off Voltage Speeificatian

	Characteristic	Min	Max	Units
$V_{\text {GS(off }}$	Gate-source pincti-ulf vultape ul: $V_{D S}=-5 \mathrm{~V}, I_{D}=-1 \mu \mathrm{~A}$	1	4	Volts

Another method which provides an indirect indication of the maximum value of $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ is shown in Table II. The characteristic specified is $\mathbf{I}_{\mathbf{D} \text { (off) }}$, whereas the parameter of interest is $\mathrm{V}_{\mathrm{GS}}=8$ volts. The specification does say that the maximum $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ is approximately 8 volts, but no provision is made for stating a minimum V_{GS} (off), as was done in Table I. Therefore, another test must be made if $\mathrm{V}_{\mathrm{GS}(\text { off })(\min)}$ is to be specified.

Table 11
Indication of Maximum $\mathbf{V}_{\mathbf{p}}$

$I_{\text {GSS }}$ - Gate-Source Cutoff Current

The input gate of a P-Channel FET appears as a simple PN junction; thus the input $\mathrm{d}-\mathrm{c}$ input characteristic is analogous to a diode V-I curve, as is shown in Figure 14.

P-Channel FET Input Gate Characteristic Figure 14

In the normal operating mode, with V_{GS} positive for a P Channel device, the gate is reverse-biased to a voltage between zero and $V_{G S(o f f)}$. This results in a d. gate-source resistance which is typically more than $100 \mathrm{M} \Omega$. The gate current is both voltage- and temperature-sensitive. Figure IS shows this relationship for $\mathbf{I}_{\mathbf{G S S}}$ versus temperature and v_{GS}.

If the gate-source junction becomes forward-biased, (negative voltage in a P-Channel device) or if V_{GS} exceeds the reverse-bias breakdown for the junction, the input resistance will then become very low.

The FET is normally operated with a slight reverse bias applied to the gate-source; hence a good measure of the d-c input characteristic is to check the gate current at a value of gate-channel voltage that is below the junction break. dawn rating. In device evaluation, there are three common measurements of gate current: $\mathbf{I}_{\mathrm{GDO}}, \mathbf{I}_{\mathrm{GSO}}$, and the combined measurement $\mathrm{I}_{\mathrm{GSS}}$. These measurement circuits are shown in Figure 16.

The question is, should $\mathbf{I}_{\mathrm{GDO}}$ and $\mathbf{I}_{\mathrm{GSO}}$ be measured separately, or will one measurement of IGSS suffice? One thing is certain: $\mathbf{I}_{\mathrm{GSO}}+\mathrm{I}_{\mathrm{GDO}}>\mathrm{I}_{\mathrm{GSS}}$, because the drain and the source are not completely isolated. They are, in fact, electrically connected via channel resistance. For most FETs, if V_{G} is greater than $\mathrm{V}_{\mathrm{GS}(\mathrm{off})}$, the difference between $\left(\mathrm{I}_{\mathrm{GSO}}{ }^{+} \mathrm{I}_{\mathrm{GDO}}\right)$ and $\mathrm{I}_{\mathrm{GSS}}$ is small; therefore, the measurement of $\mathrm{I}_{\mathrm{GSS}}$ is a realistic means of controlling both $\mathrm{I}_{\mathrm{GDO}}$ and $\mathrm{I}_{\mathrm{GSO}}$.

In a circuit, V_{GD} may be biased between zero and $\mathrm{BV}_{\mathrm{GDS}}$, while V_{GS} will be between zero and V_{GS} (off) : therefore, $\mathbf{I}_{\mathbf{G}}$ is not necessarily the same as $\mathbf{I}_{\mathbf{G S S}}$.

BV $_{\text {GSS }}$ - Gate-Source Breakdown Voltage

FET input terminals have been previously described as having NP or PN junctions, depending on the channel material. As such, the junction breakdown voltage is a necessary parameter.

A useful equivalent circuit for a FET is the distributed constant network shown in Figure 17, for a P-Channel FET. If an N -Channel device is being evaluated, the diodes would be reversed. In mast applications, the gate-drain voltage is greater than the gate-source voltage; thus the gate-drain breakdown rating is most important. However, it is also pos-
sible to consider the gate-source junction breakdown and the apparent drain-source breakdown (i.e., in Figure 17, when a high negative voltage is applied from drain to source, CR_{1} will break down while CR_{n} becomes forward-biased).

Some device manufacturers use a $\mathrm{BV}_{\mathrm{GDO}}$ rating, which means they are only checking diode CR ${ }_{1}$. A better method is to use a $\mathbf{B V}_{\text {GSS }}$ rating (gate-source breakdown with the drain shorted to the source), because it checks both CR_{1} and CR , in addition to exposing the weakest breakdown path along the entire gate-channel junction. The $\mathrm{BV}_{\text {GSS }}$ test also allows the user to interchange source and drain lead connections without worry about devise breakdown ratings.

Admittedly, a $\mathrm{BV}_{\text {GSS }}$ test will reject same units which might pars a $\mathrm{BV}_{\mathrm{GDO}}$ test; the number rejected, however, will be insignificant compared to the advantage of providing symmetrical operation.

Test Procedures for $\mathbf{B V}_{\mathbf{G S S}}$

Junctions may break down softly or sharply; junctions with soft knee breakdown are undesirable. Without examining each individual unit on a curve tracer, devices with a soft knee may be eliminated by selecting a low current level for breakdown measurement (see Figure 18).

g_{fs} - Transconductance

Transconductance, $g_{f s}$, is ${ }_{\text {a measure }}$ of the effect of gate voltage upon drain current:

$$
\begin{equation*}
\mathrm{g}_{\mathrm{fs}}=\frac{\Delta \mathrm{I}_{\mathrm{D}}}{\Delta \mathrm{~V}_{\mathrm{GS}}}, \mathrm{~V}_{\mathrm{DS}}=\text { constant } \tag{5}
\end{equation*}
$$

The interrelation of g_{fs} to the parameters $\mathrm{I}_{\mathrm{DSS}}$ and $\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}$ should be noted. Equations 4,6 and 7 describe the value of I_{D} and $g_{f S}$ in a $F E T$ for any value of $V_{G S}$ between zero and $\mathrm{V}_{\mathrm{GS}}(\mathrm{OFF})$.

$$
\begin{align*}
& \mathrm{g}_{\mathrm{fs}}=\mathrm{g}_{\mathrm{fso}}\left(1-\frac{\mathrm{v}_{\mathrm{GS}}}{\mathrm{~V}_{\mathrm{G}} S(\mathrm{off})}\right) \tag{6}\\
& \mathrm{g}_{\mathrm{fso}}=-\frac{\mathrm{I}_{\mathrm{DSS}}}{\mathrm{~V}_{\mathrm{GS}(\mathrm{off})}} \tag{7}
\end{align*}
$$

where $\mathrm{g}_{\mathrm{fso}}$ is the value of g_{fs} at $\mathrm{V}_{\mathrm{GS}}=0$ and $\mathrm{I}_{\mathrm{DSS}}$ is the value of I_{D} at $\mathrm{V}_{\mathrm{GS}}=0$. With these equations, the value of g_{fs} can be calculated with a fair degree of accuracy (? O percent) if $\mathrm{I}_{\mathrm{DSS}}$ and V_{GS} (off) are known.

Figure 19 shows normalized curves for I_{D} and g_{f} as functions of V_{GS} in a P-Channel FET. These curves were obtained from actual measurements on typical diffused channel FETs, such as the 2 N 2606 . The curves agree very well with Equations 4 and 6 until $\mathrm{V}_{\mathrm{GS}(\text { off })}$ is approached. For there curves, $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ was assumed to be the value of V_{GS} where $\mathrm{I}_{\mathrm{D}} / \mathrm{I}_{\mathrm{DSS}}=0.001$.

Normalized Curves tor ID_{D} and gif_{5} as Functions of $V_{G S}$

Figure 19

The drain current of a JFET operating in the triode (below pinch-off) region can be accurately predicted by using Equation 8, where

$$
\begin{equation*}
\mathrm{I}_{\mathrm{D}} / \text { triode }=\mathrm{I}_{\mathrm{DSS}}\left(\frac{\mathrm{~V}_{\mathrm{DS}}}{\overline{\mathrm{~V}}_{\mathrm{GS}(\mathrm{off})}}\right)^{1 / 2} \tag{8}
\end{equation*}
$$

Specifications for g_{f} are shown in Tables III and IV. Note that there is a difference in the test conditions specified for the N-Channel 2N3823 and the P-Channel 2N3329. The gate voltage for the 2 N 3823 is established as zero, This means that g_{fs} is measured at $\mathbf{I}_{\mathrm{D}}=\mathbf{I}_{\mathrm{DSS}}$, as in Table III.

Table IV (2N3329)

Characteristic

The test conditions shown in Table IV specify a certain value for $\mathrm{I}_{\mathrm{D}}(-1 \mathrm{~mA}$ far the 2 N 3329$)$. This means that for each unit tested, V_{GS} is adjusted until \mathbf{I}_{D} equals the specified value. The conditions specified in Table III simplify testing of the g_{fs} parameter by eliminating the necessity of adjusting V_{GS} - Figures 20 and ?I show typical test setups for the two methods.

Teast Cireuit for gifs with $V_{G S}=0$ Figure 20

Test Circuit far $g_{f s}$ with I_{D} Specified Figure 21

Junction FET Capacitances

Associated with the junction between the gate and the channel of a FET is a capacitance whose value and geometric distribution are functions of the applied voltages V_{GS} and V.DS. Because of the complexity of dealing with such a distributed capacitance, a simplification is made so that two lumped capacitances, C_{gs} and C_{gd}, exist between the gate and the source and drain, respectively. (A much smaller capacitance, C_{ds}, also exists between the drain and the source, stemming mainly from the device package; this header capacitance is small enough so that it can be ignored for most purposes.)

Data sheets quote C_{gs} and C_{gd} (or other capacitances from which they may be derived) for specified operating conditions. Occasionally, graphs are included which show the variations of C_{gs} and C_{gd} as the result of changing conditions of $\mathrm{V}_{\mathrm{DS}}, \mathrm{V}_{\mathrm{GS}}$ and temperature. If these data are not presented, an estimate of inter-electrode capacitance values may be made by assuming that these values vary inversely with the square root of the bias voltage. The temperature variations will be very small, because they depend on the $-2.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ change in junction potential difference.

Assuming that the FET is properly biased - that is, that the d-c conditions are met by the external circuitry - it is possible to construct an incremental equivalent circuit from which the small-signal or a-c performance may be predicted. Such an equivalent circuit is shown in Figure 22.

The equivalent capacitance from the gate to the source, C_{gs}, is shunted by a very large input resistance, I_{gs}, with both of these parameters being characteristic of a reverse-biased junction. Similarly, the equivalent capacitance from the gate to the drain is shunted by the very large resistance $r_{g d}$. (For most purposes, r_{gs} and r_{gd} may be neglected, and the gate impedance of the FET treated as pure capacitance). At the drain side of the equivalent circuit the small capacitance $\mathrm{C}_{\mathrm{ds}}-$ which stems from the header material - is shunted by the incremental channel resistance, $\mathfrak{r}_{\mathbf{d s}}$. This resistance is capable of wide variations, depending on bias conditions. Since the equivalent circuit is fundamentally relevant to the pinch-off or saturated condition, ${ }_{r} d s$ will be on the order of megohms.

The incremental channel current is given by the transconductance, $g_{f s}$, multiplied by the incremental gate voltage. For the smali signal, \mathbf{v}_{gs}, this is manifested in the equivalent circuit by the current generator $\mathrm{g}_{\mathrm{fs}} \mathrm{v}_{\mathrm{gs}}$. Notice that the conventional direction of flow of this current is such that i_{d} flows into the FET, in a "positive" direction.

Many circuits can be designed around the equivalent circuit for the junction FET. The actual values of gfs_{5} adn r_{ds} can be measured as previously mentioned; there remains only the requirement to establish the methods of determining $\mathrm{Cgs}_{\mathrm{s}}$ and $\mathrm{Cgd}_{\mathrm{gd}}$.

First, assume that the FET is in operation and that the drain is connected to the source via a large capacitor, i.e., the drain and source are short-circuited to a-c. Under these circumstances, a capacitance measurement between the gate and the source will give

$$
\begin{equation*}
\mathrm{C}_{\mathrm{gss}}\left(\text { or } \mathrm{C}_{\mathrm{iss}}\right)=\mathrm{C}_{\mathrm{gs}}+\mathrm{C}_{\mathrm{gd}} \tag{9}
\end{equation*}
$$

Second, assume that the gale and source are short-circuited to a-c in a similar manner. A capacitance measurement between the drain and the source will now give

$$
\begin{equation*}
C_{d s s}\left(\text { or } C_{o s s}\right) \approx C_{g d} \tag{10}
\end{equation*}
$$

The alternative symbols $C_{i s s}$ and Coss simply refer to measurements made at the input (gate) and the output (drain) respectively. An alternative symbol for C_{gd} is C [ss, which refers to the "reverse" capacitance.

In data sheets. it is customary to state $\left(=C_{\text {iss }}\right) C_{\text {Mss }}$ and $\mathrm{C}_{\mathrm{dss}}\left(=\mathrm{C}_{\text {oss }}\right) \cdot \mathrm{C}_{\text {rss }}$ is often given in place of $\mathrm{C}_{\text {uss }}$ because if $C_{\mathrm{ds}} \ll \mathrm{C}_{\mathrm{Oss}+}$ which is usually the case, then $\mathrm{C}_{\mathrm{rss}} \cong \mathrm{C}_{\text {oss }}$ Equations (9) and (10) an be used in those instances where it is necessary to extract C_{gs} and C_{gd}, as in

$$
\begin{equation*}
\mathrm{C}_{\mathrm{gs}}=\mathrm{C}_{\mathrm{iss}}-\mathrm{C}_{\mathrm{gd}}=\mathrm{C}_{\mathrm{iss}}-\mathrm{C}_{\mathrm{rss}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{C}_{\mathrm{gd}}=\mathrm{C}_{\mathrm{rss}} \tag{12}
\end{equation*}
$$

Remember that all capacitance measurements should be made at the same bias levels, since the capacitances are functions of applied voltages. To indicate the order of the capacitance $_{\text {S }}$ to be found in a junction FET, consider the values given in the data sheet for the Siliconix E202 N-channe FET. They are given as

$$
\mathrm{C}_{\text {iss }}(\text { at } \mathrm{VDS}=20 \mathrm{~V} \text { and } \mathrm{f}=\mathrm{I} \mathrm{MHz})=5 \mathrm{pF} \text { max. }
$$

and

$$
\left.\mathrm{C}_{\mathrm{rss}}^{(\mathrm{at}} \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} \text { and } \mathbf{F}=1 \mathrm{MHz}\right)=2 \mathrm{pF} \max .
$$

Hence, at a drain-source voltage of 20 V and a frequency of I MHz, $\mathrm{C}_{\mathrm{gs}}=5-2=3 \mathrm{pF}$ maximum. Even though the FET is physically symmetrical, bias conditions have forced the capacitances to be unequal.

APPLICATION NOTE

Audio-Frequency Noise Characteristics of Junction FETs

INTRODUCTION

The purpose of this application note is to identify and characterize audio frequency noise in junction field-effect transistors. Emphasis is placed on basic device characteristics rather than on end applications, since it is important far the circuit designer to know the salient noise behavior of the FET, and how those characteristics may he specified by production-oriented test parameters.

Defining FET Noise Figure

For analysis, it is convenient to represent noise in a FET by assuming that an ideal noise-free device has two external noise sources, $\overline{\mathrm{e}}_{\mathrm{N}}$ and $\overline{\mathrm{i}}_{\mathrm{N}}$. These noise sources are chosen to have the same output as would an actual noisy FET. An equivalent circuit is shown in Figure I

Representing Noise in an Ideal FET
Figure 1

A noise factor (F) is a Figure of Merit of a device with respect to the resistance of a generator. To calculate a noise
factor, a source resistor \mathbf{R}_{G}, with a thermal noise voltage ${ }^{-}{ }_{\mathrm{T}}$, is added to the circuit.

A noise factor (F) may be defined as
$F=\frac{\text { Total available output noise power }}{\text { Noise power at output due to thermal noise of } R_{G}}$ or

Noise Dower outpu1 due $10 \mathrm{R}_{\mathrm{G}}$ + noise Dower out-
$F=$ put due to FET
Noise power output due to R_{G}
or
$F=1+\frac{\text { Noise power output due to } \mathrm{KE} \mathrm{E}}{\text { Noise power output due to } \mathrm{R}_{\mathrm{G}}}$
or

$$
\mathrm{F}=1+\frac{\text { Gain } \mathrm{X} \text { noise power of } \mathrm{FET} \text { referred to input }}{\text { Gain } X \text { noise power due to } \mathrm{R}_{\mathrm{G}}}
$$

Woise power of FET referred to input
$\mathrm{F}=1+\frac{}{\text { Noise power due to } \mathrm{R}_{\mathrm{G}}}$

The thermal noise voltage across R_{C} is ${ }^{(1)}$

$$
\begin{equation*}
\overline{\mathrm{e}}_{\mathrm{T}}=\sqrt{4 \mathrm{k} \overline{\mathrm{R}}_{\mathrm{G}} \overline{\mathrm{~B}}} \tag{1}
\end{equation*}
$$

where $\mathrm{k}=1.380 \times 10^{-23}$ Joules $/{ }^{\circ} \mathrm{K}$ (Boltzmann's Constant), $\mathrm{T}=$ temperature in ${ }^{\circ} \mathrm{K}$. and $\mathrm{B}=$ bandwidth in Hz. Therefore noise power due to $\mathbf{R}_{\mathbf{G}}$ is

$$
\begin{equation*}
\frac{2}{\mathrm{e}_{\mathrm{G}}^{\mathrm{T}}}-\frac{4 \mathrm{kTR} \mathrm{~B}}{-\frac{\mathrm{N}^{1 N} \mathrm{R}_{\mathrm{G}}}{}}=4 \mathrm{kTB} \tag{2}
\end{equation*}
$$

The noise power of the FET referred to the input is

When expressions far the noise power of both the FET and R_{G} are substituted, the noise factor becones

$$
\begin{equation*}
\mathrm{F}=1+\frac{\bar{e}_{\mathrm{N}}{ }^{2}+\overline{\mathrm{i}}_{\mathrm{N}} \mathrm{R}_{\mathrm{G}}^{2}}{4 \mathrm{KTR}_{\mathrm{G}} \mathrm{~B}} \tag{4}
\end{equation*}
$$

A noise figure (NF) expressed in dB indicates the presence of added noise power from the FET or another active device. The noise figure is always given with reference to a standard, specifically the generator resistance \mathbf{R}_{G} :

$$
\begin{equation*}
N F=10 \log _{10}[F] \tag{5}
\end{equation*}
$$

The noise figure of the FET is

$$
\begin{equation*}
N F=10 \log _{10}\left[1+\frac{\bar{e}_{N}^{2}+\overline{\mathrm{i}}_{N}^{2} R_{G}^{2}}{4 \mathrm{kTR} \mathrm{R}_{\mathrm{G}}{ }^{B}}\right] d \mathrm{~dB} \tag{6}
\end{equation*}
$$

When junction FET noise is expressed in terms of the noise figure (NF), an inherent disadvantage arises in that the noise figure value is dependent upon the value of the generator resistance. R_{G}. Therefore, the $\overline{\mathrm{e}}_{\mathrm{N}}, \overline{\mathrm{i}}_{\mathrm{N}}$ method remains ar the best way to quantitatively express the noise characteristics of the FET itself.

Describing Junction FET Noise Characteristics

Junction FET $\overline{\mathrm{e}}_{\mathrm{N}}$ and $\overline{\mathrm{i}}_{\mathrm{N}}$ characteristics are frequencydependent within the audio noise spectrum, and take a form as shown in Figure 2.

$\overline{\mathrm{e}}_{\mathrm{N}}$, the equivalent short circuit input noise voltage (with the exception of the $1 / \mathrm{f}^{\mathrm{n}}$ region), is defined as ${ }^{(2)}$

$$
\begin{equation*}
\overline{\bar{e}}_{N}=\sqrt{4 k R_{N} B} \tag{7}
\end{equation*}
$$

where $R_{N} \cong 0.67 / \mathrm{g}_{\mathrm{f}}$, the equivalent resistance for noise. The \bar{e}_{N} except in the $1 / \mathrm{f} \mathrm{n}$ region, closely approximates the equivalent thermal noise voltage of the channel resistance.

In the so-called $1 / \mathrm{f}^{\mathrm{n}}$ region, $\overline{\mathrm{e}}_{\mathrm{N}}$ is expressed as

$$
\begin{equation*}
\overline{\mathrm{e}}_{\mathrm{N}}=\sqrt{4 \mathrm{KR}_{\mathrm{N}} \mathrm{~B}\left(1+\bar{f}_{1} / \mathrm{f}^{\mathrm{I}}\right)} \tag{8}
\end{equation*}
$$

where n varies between I and 2 and is device- and lot-oriented.

The characteristic bulge in $\overline{\mathrm{e}}_{\mathrm{N}}$ in the $1 / \mathrm{f}^{\mathrm{n}}$ region has been observed to some extent in all junction FETs submitted to test. The breakpoint or corner frequency shown as \mathfrak{f}_{1} in Figure 2 is lot- and device design-oriented, and varnes from about 100 Hz to 1 kHz .

As indicated in Equations (7) and (8), $\overline{\mathrm{e}}_{\mathrm{N}}$ is inversely proportional to the square root of the transconductance of the FET $\left(\bar{e}_{\mathrm{N}} \propto 1 / \sqrt{\mathrm{g}_{\mathrm{f}}}\right) \cdot \overline{\mathrm{e}}_{\mathrm{N}}$ can be lowered by a factor of $1 / \sqrt{\mathrm{N}}$ if N devices with matched electrical characteristics are connected parallel. For example, when

$$
\begin{equation*}
\mathrm{N}=2 \tag{9}
\end{equation*}
$$

let

$$
\begin{equation*}
\overline{\mathrm{e}}_{\mathrm{N} 1}=\overline{\mathrm{e}}_{\mathrm{N} 2} \tag{10}
\end{equation*}
$$

and let

$$
\begin{equation*}
\mathrm{g}_{\mathrm{fs} 1}=\mathrm{g}_{\mathrm{fs} 2} \tag{11}
\end{equation*}
$$

Thus.

$$
\mathrm{g}_{\mathrm{fs}} \text { TOTAL }=2 \mathrm{~g}_{\mathrm{fs} 1} \text { or } 2 \mathrm{~g}_{\mathrm{f} 2}
$$

From Equation (7)

$$
\begin{equation*}
\overline{\mathrm{e}}_{\mathrm{N} 1}=\sqrt{4 \mathrm{k} \overline{\mathrm{~T}}\left(0.67 / \mathrm{g}_{\mathrm{fs} 1}\right) \mathrm{B}} \tag{13}
\end{equation*}
$$

and

$$
\overline{\mathrm{e}}_{\mathrm{N}} \text { TOTAL }=\sqrt{4 \mathrm{kT}\left(0.67 / 2 \mathrm{~g}_{\mathrm{fs} 1}\right) \mathrm{B}}
$$

Thus,

$$
\overline{\mathrm{e}}_{\mathrm{N}} \mathrm{TOTAL}=\frac{1}{\sqrt{2}} \overline{\mathrm{e}}_{\mathrm{N} 1}
$$

A second way to achieve tow \bar{e}_{N} is to use a device with a large gate area. Empirically, $\overline{\mathrm{e}}_{\mathrm{N}}$ is inversely proportional to the square of the gate area (e_{N} a $\mathrm{t} / \mathrm{A}_{\mathrm{G}}{ }^{2}$), independent of g_{f}. This large gate area philosophy has been followed in the
design of the Siliconix 2N4867A FET, and noise performance of the device is discussed later in this Application Note. A major advantage of this type of design is that $\overline{\mathrm{e}}_{\mathrm{N}}$ is significantly lowered and $\overline{\mathrm{i}}_{\mathrm{N}}$ also remains at a low value.

The equivalent open-circuit input noise current, $\overline{\mathrm{i}}_{\mathrm{N}}$, with the exception of the shot noise region shown in Figure 2, is due to thermally-generated reverse current in the gate channel junction. It is defined as

$$
\begin{equation*}
\overline{\mathrm{i}}_{\mathrm{N}}=\sqrt{2 \mathrm{qI}_{\mathrm{G}}}{ }^{\mathrm{B}} \tag{16}
\end{equation*}
$$

where $\mathrm{q}=1.602 \times 10^{-19}$ coulomb (the magnitude of the elcctron charge), I_{G} is the measured DC operating gate current in amperes, and B is bandwidth in Hz . The expression is accurate only when the measured gate current is the result of bulk device conductance. It is possible fur the measured gate current tube due to conductance stemming from contamination across the leads of the semiconductor package.

At higher frequencies, as in the shot noise region shown in Figure $2, \overline{\mathrm{i}}_{\mathrm{N}}$ can be approximated as being equal to the Nyquist ther al noise current generated by a resistor: (3)

$$
\begin{equation*}
\overline{\mathrm{i}}_{\mathrm{N}}=\sqrt{\frac{4 \mathrm{kTB}}{\mathrm{R}_{\mathrm{p}}}} \tag{17}
\end{equation*}
$$

where R_{p} is the real part of the gate-to-source input impedance. The breakpoint or corner frequency f_{2} in Figure 2 is lot- and device design-oriented and can vary from 5 kHz to 50 kHz .

Another form of noise found in junction FETs is known as "popcorn" or burst noise; the term popcorn noise was oniginated in the hearing aid industry because of noise or level shifts which are present in input stages, and which resemble the sound of corn popping.

Popcorn noise is a form of random burst input noise current which remains at the same amplitude, and which is confined to frequencies of 10 Hz or lower. The suitability of a FET device is dependent on the amplitude of the burst, its duration, and its repetition rate. The origins of popcorn noise are not completely identified, but are believed to be caused by intermittent contact in aluminum-silicon interfaces and by contamination in the oxidation processes.

A test circuit to measure popcorn noise in differential junction FET amplifiers is shown in Figure 3. In practice, popcorn noise is evaluated on an engineering basis, and not on a production-line basis. No correlation between $1 / \mathrm{f}$ noise at 10 Hz and popcorn noise has yet been found in junction FETs. However, if the amplitude of the burst is large and occurs frequently, then $1 / \mathrm{f} \mathbf{n}$ noise voltage ($\overline{\mathrm{e}}_{\mathrm{N}}$) is masked and difficult to evaluate at 10 Hz .

The graph in Figure 4 shows "moderate" burst noise observed in a group of junction FET differential amplifiers which were measured in the test circuit.

Popcorn Noise in Differentiat Amplifiers

 Figure 4
Operating Point Considerations

Unlike bipolar transistors, where $\overline{\mathrm{e}}_{\mathrm{N}}$ and $\overline{\mathrm{i}}_{\mathrm{N}}$ characteristios vary directly with change in collector current (C), similar characteristics in junction FETs will vary only slightly as drain current (I_{D}) is varied. This is true so long as the FET is biased so that the drain-source voltage is greater than the pinch-off voltage $\left(\mathrm{V}_{\mathrm{DS}}>\mathrm{V}_{\mathrm{p}}\right.$ or $\left.\mathrm{V}_{\mathrm{GS}(\text { off })}\right)$.

The $\overline{\mathrm{e}}_{\mathrm{N}}$ in junction FETs will be lowest when the device; are operated at $\mathrm{V}_{\mathrm{GS}}=0\left(\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}}\right)$, where transconductance $\left(\mathrm{g}_{\mathrm{fs}}\right)$ is at its highest value. This will be true only if device dissipation is maintained very low in relation to the total dissipation capability of the FET.

The curves in Figure 5 illustrate changes in $\overline{\mathrm{e}}_{\mathrm{N}}$ as the operating drain current ($\mathbf{I}_{\mathbf{D}}$) is varied. Note that the lowest $\overline{\mathrm{e}}_{\mathrm{N}}$ did not occur at $\mathrm{V}_{\mathrm{GS}}=0$, because of high power dissipation and a resultant rise in junction temperature at the operating point.

$\overline{\mathbf{e}}_{\mathrm{N}}$ Changes vs $\mathbf{I D}_{\mathrm{D}}$ Variations
Figure 5
The optimum (lowest) $\overline{\mathrm{I}}_{\mathrm{N}}$ in depletion-mode junction FETs should occur at $\mathrm{V}_{\mathrm{GS}}=0\left(\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}}\right)$. In practice, very little change will be seen in ${ }^{i_{N}}$ when the operating point is changed. provided that the drain-gate voltage is maintained below the gate current (I_{G}) breakpoint and power dissipation is kept at a low level. The curves in Figure 6 illustrate $\overline{\mathrm{i}}_{\mathbf{N}}$ characteristics as a function of drain-gate voltage at points below, on, and above the I_{G} breakpoint voltage.

In circuit design, particular attention must be paid to draingate voltage (\mathbf{V}_{DG}) to minimize gate current (I_{G}) under operating conditions. The critical drain-gate voltage (I_{G} breakpoint voltage) can be anywhere from 8 to 40 V , depending on device design. ${ }^{(4)}$ Gate operating current $\left(\mathbf{I}_{\mathrm{G}}\right)$ should not he considered equal to gate reverse current $\left(\mathbf{I}_{\mathbf{G S S}}\right)$ in linear amplifier applications. $\mathbf{I}_{\mathbf{G S S}}$ is only an indjcation of reverse-biased junction leakage under non-operating conditions. The Curves in Figures 7 and 8 show how $\mathbf{I}_{\mathbf{G}}$ breakpoint is related to basic device design. Device designs with a high $\mathrm{g}_{\mathrm{f}} / \mathrm{C}_{\mathrm{iss}}$ ratio have low breakpoint volt. ages, typically at $\mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}$, whereas high μ devices ($\mu=\mathrm{r}_{\mathrm{ds}}{ }^{\prime} \mathrm{g}_{\mathrm{fS}}$). have much higher I_{G} breakpoints, typically $V_{D G}=20-30 \mathrm{~V}$.

Characteristics of $\overline{\mathbf{e}}_{\mathbf{N}}$ and $\overline{\mathbf{i}}_{\mathbf{N}}$ at Low Temperature

Three equations presented earlier ((7). (16) and (17)) show that $\overline{\mathrm{e}}_{\mathrm{N}}$ and $\overline{\mathrm{i}}_{\mathrm{N}}$ are temperature dependent. $\overline{\mathrm{e}}_{\mathrm{N}}$ and $\overline{\mathrm{i}}_{\mathrm{N}}$ are proportional to \sqrt{T}, and both will be reduced if the temperature is lowered. In Equation (16), $\overline{\mathrm{i}}_{\mathrm{N}}$ is proportional to $\sqrt{\mathrm{I}_{\mathrm{G}}} ; \mathrm{I}_{\mathrm{G}}$ will halve for each temperature drop of 10 to $\mathrm{I} 1^{\circ} \mathrm{C} . \overline{\mathrm{e}}_{\mathrm{N}}$ is also proportional to $\sqrt{\mathbf{R}_{\mathrm{N}}}$, where $\mathrm{R}_{\mathrm{N}} \cong$ $0.67 / \mathrm{g}_{\mathrm{fs}}$. Thus when g_{fs} is increased, which is typical of junction FETs operating at low temperature, $\overline{\mathrm{e}}_{\mathrm{N}}$ will also lower.

In Figure $9, \mathrm{~g}_{\mathrm{fs}}$ has been plotted vs temperature for a silfcon junction FET, and the iow temperature limitation caused by a dropoff in $g_{f s}$ is clearly shown.

In connection with the plot of $g_{f s}$ vs temperature, note that the relationship can vary from approximately 0.2% to 1% per degree C. The $g_{f s}$ slope depends upon the basic design of the FET, and upon the proximity af the drain current operating paint to ${ }^{\mathbf{I}} \mathbf{D Z}$, the zero temperature coefficient point.

The major application for junction FETs at low temperature is in charge-sensitive amplifiers. ${ }^{(5)}$ For best performance in this type of application, a high $\mathrm{g}_{\mathrm{fs}} / \mathrm{C}_{\mathrm{iss}}$ ratio is required. Recommended Siliconix FET types far such applications are the 2 N 4416 (NH geometry) and the U311 (NZA geometry).

Test Measurements

By definition, $\overline{\mathrm{e}}_{\mathrm{N}}$ and $\overline{\mathrm{f}}_{\mathrm{N}}$ are referred to the input of the device under teat. To measure $\overline{\mathrm{e}}_{\mathbf{N}}$, the test circuit shown in Figure 10 will prove useful.

Test Circuit to Measure $\overline{\mathbf{e}}_{\mathbf{N}}$
Figure 10

The following procedure should be used to make the e_{N} test:

1. Set tunable filter to required $f_{\text {low }}$ and $f_{\text {high }}$. Adjust oscillator to mean center frequency ($\mathrm{f}_{\text {mean }}=$ $\left[\mathrm{f}_{\text {low }} \cdot \mathrm{f}_{\text {high }}\right]^{1 / 2}$).
2. Set $V_{\text {osc }}$ to 100 mV with Switch 1 in position(1.) Compute $V_{\text {in } 1}=10^{-1} \times \frac{10^{2}}{10^{6}}=10^{-5} \mathrm{~V}=10 \mu \mathrm{~V}$.
3. Measure $V_{\text {out } 1}$. Compute overall gain as $A,=\frac{V_{\text {out } 1}}{V_{\text {in } 1}}=$ $\frac{V_{\text {out }}}{10 \mu \mathrm{~V}}$
$10 \mu \mathrm{~V}$.
4. Set Switch I to position (2) and measure $V_{\text {out2 }}$.

Compute $V_{i n 2}$, the equivalent short-circuit input noise voltage $\left(\bar{e}_{\mathrm{N}}\right)$, using A from Step 3. $\mathrm{V}_{\mathrm{in} 2}=$ $\frac{V_{\text {out } 2}}{A_{v}}=\bar{e}_{\mathrm{N}}$ in volts over bandwidth $f_{\text {low }}$ to $f_{\text {high }}$.

An alternate method of performing the above test is to use a Quan-Tech Transistor Noise Analyzer consisting of a Model 2173 Control Unit and a Model 2181 Filter. The analyzer has provision far measuring $\overline{\mathrm{e}}_{\mathrm{N}}$ and determining, NF with various values of R_{G} in FET and bipolar devices with selectable test conditions. The measuring system has a constant gain of 10,000 . The analyzer records output noise. at selected frequencies between 10 Hz and 100 kHz in the device under test, with the scale shown as the actual output divided by 10,000 . This is then the output noise referred to the input. The equivalent bandwidth fur testing is 1 Flz .

There are certain instances where the test circuit or the Transistor Noise Analyzer are not adequate to measure $\overline{\mathrm{e}}_{\mathrm{N}}$ at certain frequencies over certain bandwidths in the $1 / \mathrm{f}^{n}$ region. The rms noise over a bandwidth from $f_{\text {low }}$ to $f_{\text {high }}$. where there is a $1 / \mathrm{E}^{\mathrm{n}}$ characteristic over the entire range, can be computed as

$$
\begin{equation*}
\bar{e}_{\mathrm{N}}=\left[\overline{\mathrm{e}}_{\mathrm{N}} \text { known }\right] \cdot\left[\mathrm{f}_{\text {known }} \cdot \mathrm{l}_{\mathrm{nl}}\left(\frac{\mathrm{f}_{\text {high }}}{\mathrm{f}_{\text {low }}}\right)\right]^{1 / 2 n} \tag{18}
\end{equation*}
$$

Figure 11 represents this equation graphically. For example, $\overline{\mathrm{e}}_{\mathrm{N}}$ known $=70 \times 10^{9} \mathrm{~V} / \sqrt{\mathrm{Hz}}$ at 10 Hz . How much noise is in the band from 4.5 to 5.5 Fz ? The noise has a $1 / \mathrm{f}^{1}$ characteristic over the entire range. Thus

$$
\begin{equation*}
e_{N}=\left[70 \times 10^{-9}\right] \cdot\left[10 \cdot \ln \left(\frac{5.5}{4.5}\right)\right] 1 / 2 \quad \text { Volts } \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\overline{\mathrm{e}}_{\mathrm{N}}=99.16 \times 10^{-9} \mathrm{~V} / \sqrt{\mathrm{Hz}} @ 4.975 \mathrm{~Hz} \tag{20}
\end{equation*}
$$

4.975 Hz is the mean center frequency where $\mathrm{f}_{\text {mean }}=$ $\left(f_{\text {low }} \cdot f_{\text {high }}\right)^{1 / 2}$.

Compating rms Noise Over a Bandwidth Figure 11
$\overline{\mathrm{i}}_{\mathrm{N}}$ measurements are difficult to implement at best. At frequencies below f_{2} in Figure $2, \overline{\mathrm{i}}_{\mathrm{N}}$ is assumed to have a constant level or "white" noise characteristic which may be correlated to gate current, $\mathrm{I}_{\mathrm{G}^{+}}$From Equation (16) I_{G} is established as the measured bulk gate current. Because measured gate current $\left(\mathbf{I}_{\mathbf{G}}\right)$ is the result of all conductances at the gate, the resultant gate current and the computed $\overline{\mathrm{i}}_{\mathrm{N}}$ due to bulk material can be assumed to be this value or less.

The total equivalent input noise of the FET can be approximated by ${ }^{(6)}$

$$
\begin{equation*}
\overline{\mathrm{e}}_{\mathrm{ni}}^{2}=\overline{\mathrm{e}}_{\mathrm{T}}^{2}+\overline{\mathrm{e}}_{\mathrm{N}}^{2}+\overline{\mathrm{i}}_{\mathrm{N}}^{2} \cdot \mathrm{R}_{\mathrm{G}}^{2} \tag{21}
\end{equation*}
$$

where ${ }^{-} \mathrm{T}_{-}^{2}$ is the thermal noise of the generator resistance R_{G} and $\overline{\mathrm{e}}_{\mathrm{ni}}{ }^{2}$ is the total noise referred to the input. This approximation assumes that the equivalent noise voltage and the current generators vary independently. Equation (21) implies that $\overline{\mathrm{i}}_{\mathrm{N}}{ }^{2}$ can be calculated if $\overline{\mathrm{e}}_{\mathrm{N}}{ }^{2}, \overline{\mathrm{e}}_{\mathrm{T}}{ }^{2}$ and total noise $\overline{\mathrm{e}}_{\mathrm{ni}_{\mathrm{i}}}{ }^{2}$ are known. The difficulty here is that in MOS or junction FETs, the R_{G} must be very large to detect the anticipated small value of $\overline{\mathrm{i}}_{\mathrm{N}}$. However, when R_{G} is very large $\overline{\mathrm{e}}_{\mathrm{T}}{ }^{2}$ is much greater than $\overline{\mathrm{i}}_{\mathrm{N}}{ }^{2} \cdot \mathrm{R}_{\mathrm{G}}{ }^{2}$. For example, over a 1 H bandwidth at $25^{\circ} \mathrm{C}$, if R_{G} is equal to $100 \mathrm{M} \Omega$, then

$$
\begin{align*}
& \overline{\mathrm{e}}_{\mathrm{T}} 2=4 \mathrm{kTR}_{\mathrm{G}}=4 \times 1.38 \times 10^{-23} \times 2.95 \times 10^{2} \times 10^{8}= \\
& 1.63 \times 10^{-12} \mathrm{~V} / \sqrt{\mathrm{Hz}} \tag{22}
\end{align*}
$$

Anticipated $\overline{\mathrm{i}}_{\mathrm{N}}$ is

$$
\begin{equation*}
\overline{\mathrm{i}}_{\mathrm{N}} \approx 10^{-15} \text { Amperes } / \sqrt{\mathrm{Hz}} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\mathrm{J}}_{\mathrm{N}}{ }^{2}=10^{30} \text { Amperes } / \sqrt{\mathrm{Hz}} . \tag{24}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\overline{\mathrm{i}}_{\mathrm{N}}{ }^{2} \cdot \mathrm{R}_{\mathrm{G}}{ }^{2}=10^{-30} \cdot 10^{16}=10^{-14} \mathrm{~V} / \sqrt{\mathrm{IZ}} \tag{25}
\end{equation*}
$$

Therefore, $\overline{\mathrm{i}}_{\mathrm{N}}{ }^{2} \cdot \mathrm{R}_{\mathrm{G}}{ }^{2}$ is much less than $\overline{\mathrm{e}}_{\mathrm{T}}{ }^{2}$, which renders this method of finding $\overrightarrow{\mathrm{i}}_{\mathrm{N}}$ impractical for most common MOS FETs or junction FETs.

An improved method of measuring $\overline{\mathrm{i}}_{\mathrm{N}}{ }^{2}$ is to substitute a low-loss mica capacitor for resistor $\mathbf{R}_{\mathbf{G}}$. The mica capacitor by definition does not have equivalent thermal noise voltage, and thus Equation (21) becomes

$$
\begin{equation*}
\overline{\mathrm{e}}_{\mathrm{ni}}^{2}=\overline{\mathrm{e}}_{\mathrm{N}}{ }^{2}+\overline{\mathrm{i}}_{\mathrm{N}}^{2} \cdot \mathrm{X}_{\mathrm{C}}^{2} \tag{26}
\end{equation*}
$$

(where $\mathrm{X}_{\mathrm{C}}=$ capacitive reactance)

$$
\overline{\mathrm{i}}_{\mathrm{N}}=\frac{\left(\overline{\mathrm{e}}_{\mathrm{ni}}^{2}-\overline{\mathrm{e}}_{\mathrm{N}}^{2}\right)^{1 / 2}}{\mathrm{X}_{\mathrm{C}}}
$$

When a 10 pF mica capacitor was used in the evaluation circuit (up to a frequency of 100 Hz) a correlation of from 80 to 90% was obtained when compared to $\overline{\mathrm{i}}_{\mathrm{N}}{ }^{2}$ computed from measured gate current readings.

At frequencies above 100 Hz direct computation of $\overline{\mathrm{i}}_{\mathrm{N}}$ via the capacitor method becomes unwieldy because of the rapid decrease in capacitor reactance at these frequencies.

In calculating $\overline{\mathrm{i}}_{\mathrm{N}}$ at higher frequencies, an alternate method is to measure $\left(R_{p}\right)$ the real part of the gate-source impedance of the FET. (7) When R_{p} is measured at various frequencies, the equivalent short-circuit input noise current $\left(\bar{i}_{N}\right)$ can be computed as a function of frequency (See Equation (17)). A convenient instrument to measure R_{p} is the Hewlett-Packard Type 250A Rx meter or equivalent. The Type 250A $R x$ meter can measure R_{p} accurately up to 200 K ohms. As is shown in Figure 12, this establishes the low frequency limit of 20 MHz for $\overline{\mathrm{i}}_{\mathrm{N}}$ computed via direct measurement of R_{p} for the Siliconix FET Type 2N4117A. For frequencies between 100 Hz and $20 \mathrm{MHz}, \overline{\mathrm{i}}_{\mathrm{N}}$ must be extrapolated, as is shown in Figures I2 and 13. For FET types with lower R_{p} (such as the Siliconix 2 N 4393) $\overline{\mathrm{i}}_{\mathrm{N}}$ can be computed down to 2 MHz , and hence extrapolated \mathbf{N} between 100 Hz and 100 kHz is more accurate.

Low Frequency Limit tor Calculated $\overline{\mathrm{i}}_{\mathrm{N}}$ Figure 12

Extrapolated $\bar{i}_{\mathbf{N}}$ vs Frequency
 Figure 13

The following are representative e_{N}, i_{N} curves for Siliconix J-FET products. Of particular importance is the geometry which by its design governs the basic noise characteristics of product types derived from it.

FET Naise Characteristics by Geometry
Figure 14

CONCLUSION

Contemporary junction FETs have noise voltages $\left(\overline{\mathbf{e}}_{\mathrm{N}}\right)$ equal to those found in low-noise bipolar transistors. Each type of device has a different operating mechanism: the FET is voltage-actuated, while the bipolar transistor is currentactuated. Hence, FETs have an inherently lower noise current ($\overline{\mathrm{i}}_{\mathrm{N}}$) and are preferred over bipolar devices in most audio-frequency applications where low-noise performance is a design requirement.

When bias points are properly selected, as described in this Application Note, the excellent low-noise characteristics of high $g_{f_{s}}$ junction FETs can be realized.

The curves shown in Figure 14 are representative of $\overline{\mathrm{e}}_{\mathbf{N}}$ and $\overline{\mathbf{i}}_{\mathrm{N}}$ performance of Silicanix junction FETs. Of particular importance in these curves is the process geometry by which the basic design of the FET governs the noise characteristics of product types derived from it. Readers are invited to refer to the Siliconix FET catalog for full geometry performance data, and for specific part numbers stemming from the generic process geometries.

In the measurement section of this Application Note, it was shown that direct $\overline{\mathrm{e}}_{\mathrm{N}}$ measurements can readily be made. $\overline{\mathrm{i}}_{\mathrm{N}}$ can be guaranteed at frequencies below 100 Hz by measuring the DC operating gate current $\left(\mathbf{I}_{\mathrm{G}}\right)$. When \mathbf{I}_{G} is
known; $\overline{\mathbf{i}}_{\mathrm{N}}$ can be extrapolated from frequencies below 100 Hz to predict noise performance at frequencies to 100 kHz .

REFERENCES

(1) Nyquist, H., "Thermal Agitation of Electric Charge in Conductors," Phys. Review 32 (1928), p 110.
(2) Van der Ziel, A., "Thermal Noise in Field-Effect Transistors," Proceedings of the IRE, Vol. 50, August 1962, pp 1808-1812.
(3) Fitchen, F.C. and Motchenbacher, C.D., LOW NOISE ELECTRONIC DESIGN, 1st Edition, John Wiley 8 Sons, New York, 1973, pp 103-107.
(4) MacDonald, Charles L., "Behavior of FET Gate Current," Siliconix incorporated Application Note, April, 1969.
(5) Radeka, V., 'Field-Effect Transistors in ChargeSensitive Amplifiers," National Academy of Sciences, National Research Council Publication 1184.
(6) Op. cit., LOW NOISE ELECTRONIC DESIGN, pp 30-31.
(7) Op. cit., LOW NOISE ELECTRONIC DESIGN, pp 103-107.

APPLICATION NOTE

FETs for Video Amplifiers

INTRODUCTION

The field-effect transistor lends itself well to video amplifier applications. Gain bandwidth products in excess of $250 \mathbf{M H z}$ may be easily achieved using simple one or two transistor circuits. DC input resistances in the tens of megohms range may also be easily achieved while input capacitances may be significantly reduced to less than 1 pF by well known circuit techniques. Video amplifiers have applications in communications and pulse amplifying circuits and normally operate up to 100 MHz .

Behavior of FET Input Resistance

A prime FET parameter, input impedance, has a large effect in determining the frequency response of a FET video amplifier. It is not a simple RC network but one in which the real and imaginary parts are a function of frequency.

The voltage generator source resistance $\mathbf{R}_{\mathbf{g}}$ and the FET input impedance $Z_{i \Uparrow 1}$ form a frequency sensitive attenuation network. The larger the \mathbf{R}_{g}, the worse will be the frequency response, and vice versa. Examining this in greater detail, consider the input equivalent circuit of a FET connected in the common source configuration,
where
R_{gs} and $\mathrm{R}_{\mathrm{gd}}=$ bulk series gate resistance
C_{gs} and $\mathrm{C}_{\mathrm{gd}}=$ bulk series gate capacitance
$\mathrm{G}_{\text {oss }} \quad=$ output conductance

Figure 1

For this analysis the gate source leakage resistance has been ignored due to its high value. Redrawing the input equivalent circuit as a simple parallel RC combination results in

Figure 2
where

$$
\begin{align*}
G_{1} & =\operatorname{Re}\left|Y_{i n}\right| \\
& \frac{-\omega^{2}\left[T_{1} C_{1}\left(1+\omega^{2} T_{2}^{2}\right)+T_{2} C_{2}\left(1+\omega^{2} T_{1}^{2}\right)\right]}{I-\left(\omega^{2} T_{1} T_{2}\right)^{2}+\omega^{2}\left(T_{1}^{2}+T_{2}^{2}\right)} \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
\mathrm{B}_{1} & =\operatorname{Im}\left|\mathrm{Y}_{\text {in }}\right| \\
& \frac{-\omega\left[\mathrm{C}_{1}\left(1+\omega^{2} \mathrm{~T}_{2}^{2}\right)+\mathrm{C}_{2}\left(1+\omega^{2} \mathrm{~T}_{1}^{2}\right)\right]}{1-\left(\omega^{2} \mathrm{~T}_{1} \mathrm{~T}_{2}\right)^{2}+\omega^{2}\left(\mathrm{~T}_{1}^{2} t \mathrm{~T}_{2}^{2}\right)} \tag{2}
\end{align*}
$$

where

$$
\begin{align*}
& \mathrm{T}_{1}=\mathrm{C}_{\mathrm{gd}} \mathrm{R}_{\mathrm{gd}} \\
& \mathrm{~T}_{2}=\mathrm{C}_{\mathrm{gs}} \mathrm{R}_{\mathrm{gs}} \tag{3}
\end{align*}
$$

The input resistance varies inversely with the square of the frequency (see Figures 3 and 4) while the input reactance is inversely proportional to the frequency (see Figure 3).

In common-source circuits, $1 / \mathrm{G}_{1}$ will typically fall to $<2 \mathrm{~K}$ ohms at 100 MHz while C_{j} remains substantially constant at least up to 1000 MHz . Figures 3 and 4 below exhibit these relationships.

To maintain low input capacitance, and thus a high input impedance over a wide frequency range, feedback may be applied to most circuits. Such techniques are explored in "FET and Bipolar Cascade" section (page 5). The effect of \mathbf{R}_{g} on the frequency response is shown in Figures $6,9,11$, 13 where various amplifier configurations are investigated.

Circuits to Consider

Five video amplifier circuits are considered. They are:

Common-Source Configuration

Shunt-Peaked Common-Source Configuration
Source Follower
Cascode Amplifier
FET and Bipolar Cascade

Common-Source Circuit ${ }^{1}$

The circuit of Figure 5 features high input impedance and high voltage gain. The drain resistor is set at 560 ohms to maintain good bandwidth which, with 50 -ohm generator impedance, is determined primarily by the drain load components. These are:
$\mathrm{R}_{\mathrm{D}}=560 \Omega$
$\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{\mathrm{gd}}+\mathrm{C}_{\mathrm{D}}+\mathrm{C}_{\mathrm{S}}$
$\mathrm{C}_{\mathrm{gd}}=2.0 \mathrm{pF}, \mathrm{C}_{\mathrm{D}}$ the VTVM probe, 3.0 pF , and C_{S} is circuit stray capacitance of 3 pF .
$\mathrm{C}_{\mathrm{T}}=2+2+3=7 \mathrm{pF}$

Figure 5

The $3-\mathrm{dB}$ frequency ω_{3} is given by:

$$
\begin{align*}
\omega_{3} & =\frac{1}{\mathrm{C}_{\mathrm{T}} \mathrm{R}_{\mathrm{D}}} \tag{7}\\
& =\frac{1}{7 \times 10^{-12} \times 560} \tag{8}\\
\omega_{3} & =255 \times 10^{6} \tag{9}\\
\mathrm{f}_{3} & =3 \mathrm{YMHz} \tag{10}
\end{align*}
$$

The low frequency voltage gain for this configuration is given by:

$$
\begin{align*}
& A_{V}=\frac{g_{f s} R_{D}}{1+g_{f s} R_{S}} \tag{11}\\
& A_{V}=4.9 \tag{12}
\end{align*}
$$

where
$\mathrm{g}_{\mathrm{fs}}=15 \mathrm{mmho}$ when $\mathrm{I}_{\mathrm{D}}=12 \mathrm{~mA}$, the quiescent current

$$
\begin{align*}
& R_{D}=560 \mathrm{n} \tag{13}\\
& \mathrm{R}_{\mathrm{S}}=47 \Omega \tag{14}
\end{align*}
$$

Measured Performance

Figure 6 shows the frequency response of the circuit. The low-frequency gain was measured at 4.5 and the $3-\mathrm{dB}$ bandwidth at 44 MHz giving a gain bandwidth product of 197 MHz . This compares with a calculated gain bandwidth of 191 MHz .

Figure 6

Effect of Increasing Generator Impedance
If the generator resistance R_{g} is increased to IK ohm, the input time constant of the FET is increased. The bandwidth of the amplifier is now determined primarily by the input time constant which consists of generator impedance ($\mathrm{R}_{\mathrm{g}}=1 \mathrm{~K}$ ohm) shunted by C_{in} (see Figure 7).

Figure 7
where

$$
\begin{align*}
\mathrm{C}_{\text {in }} & =\left(1+\frac{\mathrm{g}_{\mathrm{fs}} \mathrm{R}_{\mathrm{D}}}{1+\mathrm{g}_{\mathrm{fs}} \mathrm{R}_{\mathrm{S}}}\right) \mathrm{C}_{\mathrm{gd}}+\left(1-\frac{\mathrm{g}_{\mathrm{fS}} \mathrm{R}_{\mathrm{S}}}{1+\mathrm{g}_{\mathrm{fs}} \mathrm{R}_{\mathrm{S}}}\right) \mathrm{C}_{\mathrm{gs}}+\text { Strays } \\
& =(5.9 \times 3.5)+(0.6 \times 10)+3 \tag{15}\\
\mathrm{C}_{\mathrm{in}} & =30 \mathrm{pF} \tag{16}
\end{align*}
$$

where

$$
\begin{align*}
\mathrm{C}_{\mathrm{gd}} & =3.5 \mathrm{pF} \tag{17}\\
\mathrm{C}_{\mathrm{gs}} & =10 \mathrm{pF} \tag{18}
\end{align*}
$$

The corresponding 3-dB frequency is given by:

$$
\begin{align*}
\omega_{3} & =\frac{I}{\mathrm{C}_{\mathrm{in}} \mathrm{R}_{\mathrm{g}}} \tag{19}\\
& =\frac{1}{30 \times 10^{-12} \times 10^{3}}=\frac{10^{9}}{30} \tag{20}\\
\mathrm{f}_{3} & =5.3 \mathrm{MHz} \tag{21}
\end{align*}
$$

which agrees closely with the measured bandwidth as shown in Figure 6.

Shunt-Peaked Common-Source Circuit

The frequency response of the resistance-loaded commonsource circuit may be significantly extended by shunt peaking at the gate and/or drain. Consider first the gate circuit. Here an inductor may be connected in shunt with the gate and set to such a value that it forms a tuned circuit with the FET input capacitance. The frequency of resonance is determined by:

$$
\begin{equation*}
\mathrm{f}_{0}=\frac{1}{2 \pi \sqrt{\mathrm{LC} \mathrm{C}_{\text {in }}}} \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{c}_{\mathrm{in}}=\mathrm{C}_{\mathrm{iss}}+\mathrm{C}_{\text {Stray }}+\mathrm{C}_{\text {Miller }} \tag{23}
\end{equation*}
$$

The response of an input signal of frequency f_{0} will then be boosted to ari extent depending on the loaded Q of the tuned circuit; the loaded Q in tuin is dependent on the unloaded Q of inductor $\mathrm{L}, \mathrm{R}_{\mathrm{g}}$ and the FET input resistance.

Next consider shunt peaking in the drain circuit. In Figure 8 the inductor L is set to such a value that a low Q tuned circuit is formed; the resonating capacitance C is the parallel combination of C_{gd} plus stray and load capacitances. for a flat response, the LC circuit 1 s tuned to the $3-\mathrm{dB}$ frequency of the resistance loaded circuit of Figure 5. (See Appendix.)

Figure 8
The required value of L is:
$\mathrm{L}=\frac{\mathrm{R}_{\mathrm{D}}}{2} \mathrm{C}^{2}$, and for the circuit in Figure 8.

$$
\begin{equation*}
=0.78 \mu \mathrm{H} \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{R}_{\mathrm{D}}=560 \Omega \tag{26}
\end{equation*}
$$

$\mathrm{C}=\mathrm{C}_{\mathrm{gd}}+\mathrm{C}_{\text {Stray }}+\mathrm{C}_{\text {VTVM PROBE }}$
$\mathrm{C}=1.2+1.3+2.5=5 \mathrm{pF}$
Due to the low circuit Q (about 5), the value of L is not critical.

The 3-dB bandwidth shown in Figure 9 now extends to 67 MHz giving a gain bandwidth product of:

$$
\begin{equation*}
67 \times 4.2=281 \mathrm{MHz} \tag{29}
\end{equation*}
$$

Figure 9

When R_{S} is bypassed by a 0.1 capacitor, the low frequency voltage gain is given simply by:

$$
\begin{align*}
A_{V} & =g_{f s} R_{D} \tag{30}\\
& =15 \times 10^{-3} \times 560 \tag{31}\\
& =8.4(18,5 \mathrm{~dB}) \tag{32}
\end{align*}
$$

The gain bandwidth product tends to remain constant whether R_{S} is bypassed or not and this effect is shown in Figure 9.

Source-Follower Circuit ${ }^{2}$

A 5300 is used in the FET source-follower circuit, Figure 10 , because of its low input capacitance and high g_{fs} which remains high at the frequency range of interest. A source follower exhibits a high input impedance and low output impedance. The real part of the output impedance is the reciprocal of $\varepsilon_{f s}$ which is independent of frequency up to about 600 MHz . The input capacitance is $\mathrm{C}_{\mathrm{gd}}+\mathrm{C}_{\mathrm{gs}}\left(\mathrm{I}-\mathrm{A}_{\mathrm{V}}\right)$ which. in this case. is approximately 1.5 pF maximum. The input capacitance is also independent of frequency and independent of load when the load is larger than the output resistance R_{O}.

The frequency response is dependent mainly on the generator internal impedance. For example, when R_{g} is increased to 1 K ohm the bandwidth falls to 80 MHz . In this particular circuit, the low-frequency voltage gain is 0.94 .

The input resistance is proportional to $1 / \mathrm{f}^{2}$ as explained in the section, "Behavior of Input Resistance," and at some high frequency will go negative, particularly if the source resistor is large. For example, with the circuit in Figure 10 , the input resistance is high at 10 MHz but in the negative resistance region at 100 MHz . However, when \mathbb{R}_{S} is 1000 ohms, the input resistance is real at this frequency.

The voltage gain of a source follower is given by:

$$
\begin{equation*}
\mathrm{A}_{\mathrm{V}}=\frac{\mathrm{g}_{\mathrm{fs}} \mathrm{R}_{\mathrm{S}}}{1+\mathrm{g}_{\mathrm{fS}} \mathrm{R}_{\mathrm{S}}} \tag{33}
\end{equation*}
$$

Thus $\mathbf{A}_{\mathbf{V}}$ is almost independent of $\mathbf{R}_{\mathbf{S}}$ when $\mathbf{R}_{\mathbf{S}}$ is large. Using typical values for the J300 (or $1 / 2 \mathrm{~N} 5912$) in Figure 10 , the drain current is $3 \mathrm{~mA}, \mathrm{gfs}_{\mathrm{fs}}$ is 5 mmho and $\mathrm{R}_{\mathrm{S}} 4700$ ohms,

$$
A_{V}=0.96
$$

which is near the measured value of 0.94 . Measured performance is shown in Figure 11. The output resistance of this source follower is given by:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{o}}=\frac{1}{\mathrm{~g}_{\mathrm{fs}}}=\frac{1}{5 \times 10^{-3}}=200 \Omega \tag{34}
\end{equation*}
$$

and in this circuit, \mathbf{R}_{0} was measured at 165 ohms. The source follower is a useful versatile circuit which may be used as an impedance converter, level shifter, buffer stage. or as an input circuit to an op amp or feedback amplifier.

Figure 11

Cascode Circuit

The cascode circuit has applications as a buffer amplifier for use with high stability oscillators or in low level power am. plifiers ${ }^{2}$ mainly due to its low reverse transfer characteristics. The advantages and considerations of this configuration, Figure 12, are similar to those listed for the commonsource circuit. An extra advantage exists in the cascode circuit, namely the low input capacitance:

$$
\begin{align*}
& \mathrm{C}_{\mathrm{in}}=\mathrm{C}_{\mathrm{gs}}+\left(1-\mathrm{A}_{\mathrm{V}}\right) \mathrm{C}_{\mathrm{dg}} \tag{35}\\
& \mathrm{C}_{\mathrm{in}}=\mathrm{C}_{\mathrm{iss}}+\mathrm{C}_{\mathrm{gd}} \tag{36}
\end{align*}
$$

Figure 12
where A_{V} is the voltage gain from Q_{1} gate to Q_{1} drain which is essentially unity. $\mathrm{C}_{\text {iss }}$ for the U257 dual FET is 5 pF and C_{dg} is 1 pF , therefore

$$
\mathrm{C}_{\mathrm{in}}=5+1=6 \mathrm{pF} \text {, excluding strays of } 4 \mathrm{pF}
$$

Thus Miller effect is minimized and a good gain bandwidth product is achieved.

Figure 13 shows cascode frequency response. The voltage gain at low frequency is $15 \mathrm{~dB}(\times 5.6)$ and the bandwidth is 24.5 MHz with a generator impedance of 50 ohms . Gain bandwidth product is 137 MHz .

Figure 13

FET and Bipolar Cascade

The FET and bipolar transistor combination of Figure 14 makes a good video amplifier because the FET input provides the voltage gain thus obtaining a superior gain bandwidth product. The feedback capacitor a-c couples the emitter lo the drain. The a-c voltage at the gate is nearly equal to that at the source. This source voltage is $d-\mathrm{c}$ coupled to the bale.

Figure 14

This produces an $a \cdot c$ voltage at the emitter whose amplitude is almost equal to that at the buse. Thus at the FET, $v_{g} \cong v_{\mathrm{s}} \cong \mathrm{v}_{\mathrm{d}}$ and all three signals are in phase. In this way Miller effect capacitance is largely eliminated.

The frequency response of this circuit is controlled hy the output time constant if f_{f} of the transistor is much greater than the amplifjer bandwidth. In the circuit shown the arc load is 2.5 pF .

CONCLUSION

The input resistance of a FET is inversely proportional to the frequency squared, while the input capacitance remains constant to at least 1000 MHz .

Several video amplifier configurations are considered. The common-source circuit is considered first: in the example, the low frequency gain is 4.5 and the $30-\mathrm{dB}$ bandwidth 44 MHz (gain bandwidth 197 MHz). By shunt peaking in the drain circuit, gair bandwidth is increased to 260 MHz . The simple source-follower circuit gives a gain near unity with GBW almost 300 MHz and an output resistance of $1 / \mathrm{g}_{\mathrm{s}}$. The cascode circuit features a low input capacitance and GBW of 137 MHz . The circuit featuring the best gain bandwidth is the FET and bipolar combination. A gain of II dB and bandwidth of 90 MHz is achieved.

Figure 15

APPENDIX

Selection of Video Amplifier Designs with
Performance Summary
Note. Alf output voltages measured with Boonton 91 CVTVM .

Common Source Stage

Device	$\mathbf{R}_{\mathbf{g}}$	${ }^{R_{S}}$ Bypassad	$\mathbf{R}_{\mathbf{S}}$ Ω		Gain	dB	$\begin{aligned} & \mathrm{C}_{\text {in }} \\ & \mathrm{pF} \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{BW} \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { GBW } \\ & \text { MHz } \end{aligned}$
2N4393	50		47	560	4.5	13.0		44	197
	50	x	47	560	7.5	17.5		40	300
	1K		47	560	4.5	13.0		5.0	22
	1K	\times	47	560	7.5	17.5		3.5	26
$\begin{array}{\|l} \mathrm{J} 300 \\ 1 / 2 \\ \text { 2N59!2 } \end{array}$	50		91	1 K	3.8	11.6	11.0	27.5	103
	50	x	91	1K	6.3	16.0	14.5	30.0	189
	1K		91	1 K	3.8	11.6	11.0	9.5	36
	1K	x	91	1 K	6.3	16.0	34.5	6.5	41
2N4416	50		120	1.5K	3.9	11.8	11.5	25	98
	50	x	120	1.5K	6.2	15.8	13	19	118
	1K		120	1.5K	3.9	11.8	11.5	8	31
	1K	x	120	1.5K	6.2	15.8	13	7	44

Cascode

Common-Source Circuit

$\left[\begin{array}{rrrrrrr} & & & & & & \\ & \text { Bypassed } & & & \mathrm{pF} & \mathrm{MHz} & \mathrm{MHz} \\ \hline 50 & & 2.7 & 8.5 & & 27 & 73 \\ 50 & x & 5.6 & 15 & 11.5 & 27 & 151 \\ 1 \mathrm{~K} & & 27 & 8.5 & 9 & 9.5 & 73 \\ 1 \mathrm{~K} & \times & 5.6 & 15 & 11.5 & 9.0 & 51 \\ \hline\end{array}\right.$

$\mathbf{R}_{\mathbf{g}}$ Ω	$\mathbf{R}_{\mathbf{S}}$ Bypassed	Gain	$\mathbf{d B}$	BW $\mathbf{M H z}$	GBW $\mathbf{M H z}$
50		4.2	12.5	66	277
50	\times	7.5	17.5	54	405
1 K		4.2	12.5	6.0	25
1 K	x	7.5	17.5	3.5	26

($1 / 22 \mathrm{~N} 5911 / 12$)

$\boldsymbol{R}_{\mathbf{g}}$					
Ω	$\boldsymbol{R}_{\mathbf{S}}$ Bypassed	Gain	dB	BW MHz	GBW MHz
50		3.9	11.8	67	262
50	\times	6.3	16.0	67	421

2N4416

$\begin{aligned} & \mathbf{R}_{\mathbf{g}} \\ & \Omega \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mu \mathrm{H} \end{gathered}$	R_{S} Bypassed	Gain	dB	$\begin{gathered} \mathrm{BW} \\ \mathrm{MHz} \end{gathered}$	$\begin{aligned} & \text { GBW } \\ & \text { MHz } \end{aligned}$
50	4		3.9	11.8	45	175
50	4	x	6.2	15.8	40	248
50	5	x	6.2	15.8	45	279

Common-Drain Common-EmitterStage

$\begin{aligned} & \mathbf{R}_{\mathbf{g}} \\ & \Omega \end{aligned}$	$\begin{gathered} R_{E} \\ \text { Bypassed } \\ (0.3 \mu \mathrm{~F}) \end{gathered}$	Gain	d8	$\begin{gathered} c_{i n} \\ p F \end{gathered}$	$\begin{gathered} \mathrm{BW} \\ \mathrm{MHz} \end{gathered}$	$\begin{aligned} & \text { GBW } \\ & \text { MHz } \end{aligned}$
50		3	9.5	2.0	39	117
50	x	25	28	2.0	21	525
1K		3	9.5	2.0	13	39
1K	x	25	28	2.0	11	275

$\mathbf{R}_{\mathbf{g}}$	Gain	dB	$\mathrm{C}_{\text {in }}$ pF	BW MHz	GBW MHz
50	5.6	15	1.0	32	179
1 K	5.6	15	1.0	15	84

Source-Follower Circuit

Dual R_{g} FET Ω	Offset (Max) (Inpurt to Output) mV	Gain	$\begin{aligned} & \mathrm{BW} \\ & \mathrm{MHz} \end{aligned}$	GBW MHz
U257 50	100	0.98	70	69
2N59121K	100	0.98	15	14.7
U232 50	10	0.98	85	83
1K	10	0.98	13	12.7

Derivation of Input Admittance Terms
where

$$
\begin{align*}
& \mathrm{R}_{\mathrm{I}}=\mathrm{R}_{\mathrm{gs}} \quad \mathrm{C}_{1}=\mathrm{C}_{\mathrm{gs}} \\
& \mathrm{R}_{2}=\mathrm{R}_{\mathrm{gd}} \quad \mathrm{C}_{2}=\mathrm{C}_{\mathrm{gd}} \\
& s=j \omega \\
& Y_{\text {in }}=\frac{s C_{1}}{R_{1} C_{1} s+1}+\frac{{ }^{s C_{2}}}{R_{2} C_{2} s+1} \tag{3}\\
& \frac{-\omega^{2} C_{1} C_{2}\left(R_{1}+R_{2}\right)+s\left(C_{1}+C_{2}\right)}{\left(1-\omega^{2} R_{1} R_{2} C_{1} C_{2}\right)+s\left(C_{1} R_{1}+C_{2} R_{2}\right)} \tag{4}
\end{align*}
$$

Derivation of Shunt Peaking Formula
The equivalent circuit of the drain load is shown in the Figure below. The total impedance seen by the drain is given by:

$$
\begin{equation*}
\mathrm{Z}=\left[\frac{\mathrm{R}_{\mathrm{L}}^{2}+\omega^{2} \mathrm{~L}^{2}}{\left(1-\omega^{2} \mathrm{LC}\right)^{2}+\omega^{2} \mathrm{C}^{2} \mathrm{R}_{\mathrm{L}}^{2}}\right]^{\frac{1}{2}} \tag{5}
\end{equation*}
$$

The response below shows the "normal" 3-dB frequency without peaking $-f_{1}$. It is now required to raise the response at \mathbf{f}_{1} by 3 dB to achieve a maximally flat response. Therefore, under these conditions the total impedance seen by the drain at f_{1} must equal the impedance seen by the drain at f_{0}. Also at $f_{1}, X_{C}=R_{L}$. Substituting for X_{C} in Equation 5:

$\left.\mathrm{R}_{\mathrm{L}}{ }^{2}=\frac{\mathrm{R}_{\mathrm{L}}{ }^{2}+\omega^{2} \mathrm{~L}^{2}}{\left(1-\frac{\omega \mathrm{L}}{} \mathrm{R}_{\mathrm{L}}\right.}+1\right)$

$$
\begin{equation*}
\mathrm{R}_{\mathrm{L}}^{2-2 \omega \mathrm{~L} \mathrm{R}_{\mathrm{L}}+\omega^{2} \mathrm{~L}^{2}+\mathrm{R}_{\mathrm{L}}^{2}=\mathrm{R}_{\mathrm{L}}^{2}+\omega^{2} \mathrm{~L}^{2}, ~} \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{R}_{\mathrm{L}}^{2}=2 \omega \mathrm{LR} \tag{8}\\
& \mathrm{R}_{\mathrm{L}} \tag{9}\\
& =2 \omega \mathrm{~L}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{L}=\frac{\mathrm{R}_{\mathrm{L}}}{4 \pi \mathrm{f}_{1}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{f}_{1}=\frac{1}{2 \pi \mathrm{R}_{\mathrm{L}} \mathrm{C}}, \ldots \mathrm{~L}={ }_{2}^{\mathrm{R}_{\mathrm{L}}{ }^{2} \mathrm{C}} \tag{11}
\end{equation*}
$$

REFERENCES

1. Sherwin, J.S., "Liberate Your FET Amplifier," Electronic Design, May 1970.
2. Silicunix Application Tip. "FET Cascode Circuits Reduce Feedback Capacitance," August 1970.
 \title{

FETs in
 \title{ \section*{FETs in Balanced Mixers}

 Balanced Mixers}}

Ed Oxner

INTRODUCTION

When high-performance, high-frequency junction field-effect transistors (JFETs) are used in the design of active balanced mixers, the resulting FET mixer circuit demonstrates clearly superior characteristics when compared to its popular passive counterpart employing hot-carrier diodes. Comparison of several types of mixers is made in Table 1. The advantages and disadvantages of semiconductor devices currently used in various mixer circuits are shown in Table II.

Why an Active Mixer?

Active mixing suggests high-level mixing capability. High level mixing in turn infers that active mixers outperform passive mixer circuits in terms of wide dynamic range and large-signal handling capability. Additionally, the active mixer offers improved conversion efficiency over the passive mixer, permitting relaxation of the IF amplifier gain requirements arid even possible elimination of the customary RF amplifier front end.

APPLICATION NOTE

Initial evaluation of the active FET mixer will imply a disadvantage because of local oscillator drive requirements; bipolar devices in low-level mixers require very little drive power. However, in high-level mixing this disadvantage is overcome in that drive requirements at such mixing levels are generally the same, no matter whether bipolar of FET devices are used.

Why FETs for Balanced Mixers?

The performance priorities of modern communication systems have stringent requirements for wide dynamic range, suppression of intermodulation products, and the effects of cross-modulation. All of the foregoing parameters must be considered before noise figure and gain arc taken into account

Since FETs have inherent transfer characteristics approximating a square-law response, their third-order intermodulation distortion products are generally much smaller than

Table I

Characteristic	MIXER TYPE		
	Single-Ended	Single Balanced	Double Balanced
Bandwidth	Several decades possible	Decade	Decade
Relative IM Density	1.0	0.5	0.25
Interport Isolation	Little	$10-20 \mathrm{~dB}$	$>30 \mathrm{~dB}$
Relative L.O. Power	0 dB	+3 dB	+6 dB

Table II

DEVICE	ADVANTAGES	DISADVANTAGES
Bipolar Transistor	Low Noise Figure High Gain Low D.C. Power	High IM Easy Over load Stbject to Burnout
Diade	Low Noise Figure High Power Hand High Burn-out Level	High L.O. Drive Interface tol.F. Conversion Lori
JFET	Low Noise Figure Conversion Gain Excellent IM products Square Law Characteristic Excellent Overload High Burn-out Level	Optimum Conversion Gain not possible st Optimum Square Law Response Levet High L.O. Power
Duat-Gate		
MOS FET	Low IM Distortion AGC Square Law Characteristic	High Noise Figure Poor Burnout Level Unstable

those of bipolar transistors. Harmonic distortion and crossmodulation effects are third-order-dependent, and thus are mreatly, reduced when FETs are used in active balanced

A secondary advantage derives from available conversion gain, so that the FET mixer becomes simultaneously equivalent to both a demodulator and a preamplifier.

First Order Balanced Mixer Theory

Essential details of balanced mixer operation, including signal conversion and local oscillator noise rejection, are best illustrated by signal flow vector diagrams (Figure I).

Signal and Noise Vectors
Figure 1

Energy conversion into the intermediate frequency (IF) parsband is the major concern in mixer operation. In the following analysis, both the signal and noise vectors are shown progressing (rotating) at the IF rare (ω_{ift}); the resulting wave occurs through vector addition.

The analysis of local oscillator noise rejection (Figure I) assumes, for simplicity of explanation, that nose is coherent. Thus at some point in time (t_{1}) the noise component (e_{n}) is in phase'" with the local oscillator vector (e_{10}) and FET "A" (the rectifying element) is ON: the JFET mixer acts as a switch, with the local oscillator acting as the switch drive signal. One-hatf cycle later, at time t_{2}, the signal flow is reversed for both the local oscillator vector and the noise component, FET "A" is OFF and FET " Bis ON. Moving
ahead an additional one-half of the IF cycle, FET " A " is agan ON, but the noise component has advanced 180° $\left(\omega_{\text {ift }}\right)$ through the coupling structure, and is now "out of phase". The process continually repeats itself.

The end result of this averaging (detection) is the cancellation of the noise which originated in the local oscillator, providing that the miner balance is precise. (1)

The analysis of the conversion of the signal to the IF pass band is similar, but the signal is injected into the coupling structure at the equipotential tap. Thus at time t_{2}, the signal vector (e,) is "out of phase" with the local oscillator vector, ${ }^{\mathrm{e}}{ }_{\mathrm{lo}}$. The resulting envelope develops a cyclic progression al the IF rate, since the signal is "demodulated" by the mixing action of the FETs.

A schematic of a prototype balanced miner is shown in Figure 2. Design criteria. in order of priority, include the following:
(I) Intermodulation and Cross-Modulation
(?) Conversion Gain
(3) Noise Figure
(4) Selecting the Proper FET
(5) Local Oscillator Injection
(6) Designing the Input Transformer
(7) Designing the IF Network

Intermodulation and Cross-Modulation

A basic aim in mixer design is to avoid the effects of intermodulation product distortion and crossmodulation. Pan of the problem may be resolved by using a balanced mixer circuit.

The active transfer function of the FET is represented by a voltage-controlled current source. Fur both crossmodulation and intermodulation, the amount of distortion is proportional to the amplitude of the gate-source voltage. Since input power is proportional to input voltage, and inversely proportional to input impedance, the best FET IM and cross-modulation performance is obtained in the commongate configuration where the impedance is lowest. (2)

When JFETs are used as active mixer elements, it is important that the devices be operated in their square-law region. Operation in the FET square-law region will occur with the device in the depletion mode. Considerable distortion will result if the FET is operated in the enhancement mode (positive, for an N-channel FET); by analogy, the problems encountered are similar to those which arise when positive drive is placed on the grid of a vacuum tube.

Square-law region operation emphasizes the importance of establishing proper drive levels for both quiescent bias and the local oscillator. The maximum conversion transconductance, g , is achieved at about 80% of the FET gate cutoff voltage, V_{GS} (off), and amounts to about 25% of the forward transconductance, g_{fs}, of the FET when used as an amplifier.

Since conversion gain (or loss) must be considered. it is common to equate voltage gain A , as:

$$
\begin{equation*}
\mathrm{A}_{\mathrm{V}}=\mathrm{g}_{\mathrm{C}} \mathrm{R}_{\mathrm{L}} \tag{1}
\end{equation*}
$$

where g_{C} is the conversion transconductance and R_{L} is the FET drain load.

An attempt to achieve maximum conversion gain by indiscriminately increasing the drain load resistance willadversely affect any design priority concerning distortion - . particularly intermodulation product distortion,

Distortion takes different forms in mixers. Most obvious is that distortion which will occur if the FET is driven into the enhancement mode, as noted earlier. A more pernicious form is drain load distortion. And finally, there is the socalled "varactor effect."

The most frequent cause of poor moxer performance stems from signal overloading in the drain circuit. Excessive drain load impedance degrades the intermodulation characteristics and produces unwanted crossmodulation signals. ${ }^{(3)} \mathrm{A}$ characteristic of the FET balanced mixer is that the correct drain load impedance is inversely proportional to the value of the conversion transconductance. Figure 3 shows the improvement in IM characteristics obtained in the prototype miner with the drain load impedance reduced to 1700Ω from 5000Ω, Specifically, the dynamic load line must be plotted so that the signal peaks of the instantaneous peak-10peak output voltage are not permitted to enter into the nonsaturated ('triode") region of the FET. Suitable and unsuitable drain load lines are shown in Figure 4. Load impedance Selection is quantified in Equations 18 through 20.

Distortion from the "varactor effect" is of secondary importance, and arises from an excessive peak voltage sigral swing, where the changing drain-to-source voltage can cause a change in parasitic capacitance, $\mathrm{C}_{\mathrm{rSs}}$, and give rise to harmonic~. (A) FET tends to be voltage-dependent when the drain voltage falls appreciably below 6 volts. If the source voltage (from the power supply) is also low and the drain
load impedance is high. then distortion will develop. However, if proper steps are taken to prevent drain load distortion, the varactor effect will also be inhibited.

Plotting Drain Load Lines
Figure 4

Conversion Gain
In a FET, forward transconductance is defined as (5)

$$
\begin{equation*}
\mathrm{g}_{\mathrm{fs}}=\frac{\mathrm{dI}_{\mathrm{D}}}{\mathrm{dV}_{\mathrm{gs}}} \tag{2}
\end{equation*}
$$

and conversion transconductance is defined as ${ }^{(6)}$

$$
\begin{equation*}
\mathrm{g}_{\mathrm{C}}=\frac{\mathrm{dI}_{\mathrm{D}(\omega \mathrm{i})}}{\left.\mathrm{dV}_{\mathrm{gs}(\omega \mathrm{r}}\right)} \tag{3}
\end{equation*}
$$

where $\omega i=$ the intermediate frequency and $\omega r=$ the signal frequency.

The effects of time-varying local oscillator voltage, V_{2}, and the much smaller signal voltage, V_{1}, must be considered:

$$
\begin{equation*}
v_{g s}=v_{1} \cos \omega_{1} t t V_{2} \cos \omega_{2} t \tag{4}
\end{equation*}
$$

For square law operation ${ }^{(7)}$

$$
\begin{equation*}
v_{2}+v_{G S} \leqslant v_{G S(o f f)} \tag{5}
\end{equation*}
$$

Drain current is approximately defined by ${ }^{(8)}$

$$
\begin{align*}
& \quad \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}}\left[1-\frac{\mathrm{v}_{\mathrm{GS}}}{\mathrm{v}_{\mathrm{GS}(\mathrm{off})}}\right]^{2} \tag{6}\\
& \text { or }{ }^{2)} \\
& \mathrm{I}_{\mathrm{D}} \approx \frac{\mathrm{~g}_{\mathrm{fso}} \mathrm{~V}_{\mathrm{GS}(\mathrm{off})}}{2}\left[1-\frac{\mathrm{v}_{\mathrm{gs}}}{\mathrm{~V}_{\mathrm{GS}(\mathrm{off})}}\right]^{2} \tag{7}\\
& \text { or }^{\mathrm{I}_{\mathrm{D}} \approx \frac{\mathrm{~g}_{\mathrm{fsO}}}{2 \mathrm{~V}_{\mathrm{GS}(\mathrm{off})}}\left[\mathrm{V}_{\mathrm{GS}(\mathrm{off})}-\mathrm{v}_{\mathrm{gs}}\right]^{2}} \\
& \text { then }(10)
\end{align*}
$$

$$
\begin{equation*}
\mathrm{I}_{\mathrm{D}} \approx \frac{\mathrm{~g}_{\mathrm{fsO}}}{2 \mathrm{~V}_{\mathrm{GS}(\mathrm{off})}} \text { (complex Taylor expansion) } \tag{9}
\end{equation*}
$$

which can be reduced to

$$
\begin{equation*}
\mathrm{I}_{\mathrm{D}(\mathrm{IF})} \approx \frac{\mathrm{g}_{\mathrm{sso}}}{2 \mathrm{~V}_{\mathrm{GS}(\mathrm{off})}} \mathrm{V}_{1} \mathrm{~V}_{2} \cos \left(\omega_{1}-\omega_{2}\right) \mathrm{t} \tag{10}
\end{equation*}
$$

and the conversion transductance is

$$
\begin{equation*}
g_{c}=\frac{g_{f s o}}{2 V_{G S} \text { (off) }}\left|V_{2}\right| \tag{11}
\end{equation*}
$$

Equation 11 suggests that g_{6} increaser without limit as V_{2} increaser without limit. However, to avoid operation of the FET in the "triode" region, the peak-to-peak swing of V_{2} should not exceed $\mathbf{V}_{\mathrm{GS} \text { (off) }}$.
Thus

$$
\begin{align*}
& 2 \mathrm{~V}_{2} \text { peak } \leqslant \mathrm{V}_{\mathrm{GS}(\mathrm{off})} \tag{12}\\
& \text { or } \\
& \mathrm{V}_{2} \text { peak } \leqslant \frac{\mathrm{V}_{\mathrm{GS}(\mathrm{off})}}{2} \tag{13}
\end{align*}
$$

Figure 5 shows plots of normalized conversion transconductance, $\mathrm{g}_{\mathrm{d}} / \mathrm{g}_{\mathrm{f}}$ versus normalized quiescent bias, $\mathrm{V}_{\mathrm{GS}} /$ V_{GS} (off), for different oscillator injections.

> Normalized $\mathrm{g}_{\mathbf{c}} / \mathrm{gq}_{\mathrm{f}} \mathrm{vs}. \mathrm{~V}_{\mathbf{G S}} / \mathrm{V}_{\mathbf{G S}(0 \mathrm{off})}$ (from "FET RF Mixer Dusign Technique", S.P. Kwok, WESCON Convention Recond 119701 8/1, p.2.) Figure 5

Noise Figure

Like the common-gate FET amplifier, the common-gate FET balanced mixer is sensitive to generator resistance, R_{g}. ${ }^{\text {(11) }}$ A change of a decade in R_{g} can produce a noise figure variation of as much as 3 dB .

In the design of the prototype FET active balanced mixer, the generator resistance of the FETs is established by the hybrid coupling transformer. Two important criteria for the FETs in the circuit are high forward transconductance, and a value of power-match source admittance, $\mathrm{g}_{\mathrm{igs}}$, which closely matches the output admittance of the coupling trans. former. In the common-gate configuration, match points for optimum power gain and noise do not occur at the same value of generator resistance (Figure 6). Optimum noise match can only be achieved at the sacrifice of bandwidth.

How to Select the Proper FET
Conversion efficiency is determined by conversion trans conductance, g_{C}, which in turn is directly related to such FET parameters are zero-bias saturation current, $I_{D S S}$, and the gate cutoff voltage, $\mathrm{V}_{\mathrm{GS} \text { (off) }}$:

$$
\begin{align*}
g_{\mathrm{c}} & =\frac{\mathrm{I}_{\mathrm{DSS}}}{\mathrm{~V}_{\mathrm{GS}(\mathrm{off})} 2}\left|\mathrm{~V}_{2}\right| \tag{14}\\
& \approx \frac{\mathrm{g}_{\mathrm{fso}}}{2 \mathrm{~V}_{\mathrm{GS}(\mathrm{off})}} \tag{I5}
\end{align*}
$$

Equation 15 appears to indicate that FETs with high I DSS are to be preferred. However, \mathbf{I}_{DS} and V_{GS} (off) are related, and Figures 7A and 7B show that devices from a family selected for high $\mathbf{I}_{\text {DSS }}$ do not provide high conversion transconductance, but actually produce a lower value of g_{c}.

Relationship of IDSS and $\mathbf{V}_{\mathbf{G S}}$ (off) Figure 7

Bert mixer performance is achieved with "matched pairs" of JFETs. Basic considerations in selecting FETs for this application are gate cutoff voltage, $\mathrm{V}_{\mathrm{GS} \text { (off) }}$, for good conversion transconductance, and zero-bias saturation current, $\mathrm{I}_{\mathrm{DSS}}$, fot dynamic range. A match to 10% is generally adequate. Among currently available devices, the Siliconix U310 and the dual U431 offer excellent performance in both categories; common-gate forward transconductance is $20,000 \mu$ mhos max at $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$, and $\mathrm{f}=1 \mathrm{kHz}$.

There is, of course, the possibility that FET cast is a major consideration in evaluating the active balanced mixer approach - the familiar price/performance tradeoff. If this is the case, there are a number of other Siliconix FETs which will provide suitable alternatives to the U310. Remember,
however, that conversion transconductance, g_{c}, can never be more than 25% of forward transconductance, Thus as tradeoff considerations begin, the first sacrifice to be made will be the degree of achievable conversion gain. Intermodulation performance will follow with the third tradeoffbeing available noise figure. Table III lists a number of possible alternatives to the U310.

Tabse III

Typical Characteristic	DEVICE TYPE			
	U310*	$2 N 6912$	$2 N 4416^{\circ}$	$2 N 3623$
9_{m}	14 K	6 K	5 K	3.5 K
$\mathrm{I}_{\mathrm{DSS}}$	40 mA	15 mA	10 mA	10 mA

'Similar devices are also available in plastic packager:
U310 (J310)
2N5397 (K300-18)
2N44 16 (2N5486, K304-18)

Local Oscillator Injection

Low IM distortion products and noise figure, plus best conversion gain, will be achieved if the voltage swing of the local oscillator across the gate-to-source junction is held to the values presented in Figure 5. $\mathrm{V}_{\mathrm{I} O}$ is expressed in terms of peak-to-peak voltage, while $\mathrm{V}_{\mathrm{GS}(\text { off })}$ is a d.c. voltage.

Local oscillator injection can be made either through a bruteforce drive into the IFET source through the hybrid input transformer, or through a direct-coupled circuit to the IFET gates where less drive will be required for the desired voltage swing, Two circuits to obtain direct gate coupling are sug. gested in Figure 8.

Alternate Forms of L, O. Injaction
Figure 8

The source-injection method is used in the design of the present mixer to maintain the inherent stability of a com-mon-gate circuit. A minor disadvantage with the directdrive method is that the required gate-ro-source voltage swing requires considerable local oscillator input power. For source injection through the transformer. best mixer performance is obtained with a local oscillator drive level of +12 to +17 dBrn across a 50 -ohm load.

Conversely, direct coupling to the FET gates occurs at a higher impedance level and less local oscillator drive power is requited. The functional tradeoff resulting when the gates are tied together is that shunt susceptance requires some form of conjugate matching, and thus brings about an undesirable reduction of instantaneous miner bandwidth.

Designing the Input Transformer

Five criteria are Important to the design of the hybrid input coupling transformer for best mixer performance. The impedance transformer must
(1) Consist of four single-ended terminals, for the local oscillator. the input signal and FETs A and B
(2) Offer a match between either input to a symmetrical balanced load
3) Provide as much isolation as possible between the signal and local oscillator ports (Figure))
(4) Maintain a differential phase of 180° across the symmetrical balanced loads
(5) Introduce the least possible amount of loss

4-Port Hybrid with Phase and Isolation

Figure 9

A transformer using ferrite cores and meeting there five requirements is derived from elementary transmission line theory (Figure 10). Transmission line transformers have a low-frequency cutoff determined by the falloff of primary reactance as frequency is decreased. This reactance is determined by the series inductance of the transmission line conductors. On the other hand, high.frequency performance is enhanced by minimizing the physical length of the transmission line. Minimizing overall line length while maintaining suitable reactance can be accomplished by using a high-permeability core material such as a ferrite. (12) The transformer constructed for the balanced FET mixer closely resembles the balanced 4 port unsymmetrical 180° hybrid device described by Ruthroff. (13)

Hybrid Input Coupling Transformer
Figure 10

Although Ruthroff does not discuss the method of determining the winding length of bifilar wire, a solution is offered by Pitzalis. (14) The Pitzalis definitions for wire length are as follows (Figure 11):

$$
\begin{equation*}
\max \text { length }=\frac{7200 \mathrm{n}}{\mathrm{f}_{\text {upper }}} \text { (inches) } \tag{16}
\end{equation*}
$$

$$
\min \text { length }=\frac{20 \mathrm{R}_{\mathrm{L}}}{\left(1+\mu / \mu_{0}\right) \mathrm{f}_{\text {lower }}} \text { (inches) }
$$

where $\mathrm{R}_{\mathrm{L}}=$ the load impedance, $\mu_{/} \mu_{\mathrm{o}}=$ the relative permeability of the ferrite at the lower frequency, and $n=$ a fraction31 wavelength determined by the amount of allowable phase error.

Selection of the ferrite core material is determined mainly by performance requirements. A prime consideration for wideband performance is the temperature coefficient of the ferrite, which must have a low loss tangent over the required temperature range, i.e., high Q .

In addition, an important design factor involves the relative permeability of the core, since inductance of a conductor is proportional to the permeability of the surrounding meditur. ${ }^{(15)}$ A high permeability material placed close to the transmission line conductors acts upon the external fringe field present, appreciably magnifying the inductance and providing a lower cutoff frequency. Power transferred from input to output is coupled directly through the dielectric medium separating the transmission line condcutors; thus a relatively small cross-section of ferrite material can operate in an unsaturated state at impressively high power levels. For the FET balanced miner, ferrite core material
with a permeability of 40 provides satisfactory operation from 50 to 250 MHz . Figure 11 also demonsirates that a lower transmission line impedance, Z_{o}, is to be preferred over a higher $Z_{o i}$ Both 50 -ohm and 100 -ohm transmission lines are required for the mixer transformer; twisted pairs will provide satisfactory results. A characteristic impedance of 45Ω is obtained from 3 turns-per-inch of Belden No. 24 AWG enamel wire, while $3 / 2$ turns-per-inch of No. 24 (7X32) Belden plastic covered wire provide $Z_{0}=100$ ohms. Each core is wound with 2 inches of $\mathrm{t}_{2} \rho_{\text {proper }}$ twisted pair, with $\mathrm{min} / \mathrm{max}$ lengths calculated from $\mathrm{P}^{\text {inzalus }}$ data (Formulae 16, 17).

As with all broadband transformers, the coil has an inherent parasitic inductance which must be capacitor-compensated $\left(\mathrm{C}_{2}, \mathrm{C}_{4}\right.$, Figure 2). ${ }^{(16)}$ A trim capacitor is required at the two input terminals, and is adjusted only once to optimize the differential phase shift across the symmetrical balanced FETs. Phase match of the hybrid structure may be tracked to within ± 2 degrees (about 180°) to 250 MHz . Effective resistance transformation is useful from 50 to 550 MHz (Figure 12) - but phase track beyond 250 MHz may show too much deterioration.

b.

Toroid Coil Winding Data

Figure 11

Designing the IF Network

The IF network performs two important functions in the FET balanced mixer circuit. It provides for optimum match between the FETs and the IF amplifier, and it effectively bypasses the circuit RF components (signal and local

In network design, it is essential that the RF and local oscillator signals be sufficiently isolated from the intermediate frequency signal to maintain rejection levels of at least 20 dB . If this isolation is not maintained, conversion gain and noise figure are degraded.

The simplest technique for design of the IF network is to use the well-known pi (π) match structure from each FET drain to a common balanced output transformer network. (17). This pi match technique is especially suitable for a narrow-band intermediate frequency output, serving three useful functions. First, it serves to achieve the proper drain load match between the FETs and the IF structure. Second, it provides the very necessary isolation of the intermediate frequency signal. And third, it serves as a simple filter to provide a monotonic decrease in impedance as frequency departs from the IF center frequency, $\mathrm{f}_{\mathrm{o}}(18,19)$ This third function, shown in Figure 13, prevents the drain load impedance from skyrocketing out of control and giving rise to distortion products.

Selection of the dynamic drain impedance value in the IF network is a critical point in design of the structure. Intermodulation product distortion and crossmodulation will be

5002-200 Batun
Fiqure 12
both affected by the instantaneous peak-to-peak output voltage of the FETs, if the value of the dynamic drain impedance allows these sigtal peaks to enter eiller the pinchroff voltage or breakdown voltage regions of the transistors. ${ }^{(20)}$ If the impedance is too high, the dynamic range of the miner will be severely limited; if the impedance is too low, useful conversion gain will be sacrificed.

A first-order approximation to establish the proper load impedance may be obtained when

$$
\begin{equation*}
R_{L}=\frac{v_{D D}-2 v_{G S(\text { off })}}{i_{d}} \tag{18}
\end{equation*}
$$

where

$$
\mathrm{i}_{\mathrm{d}}=1_{\mathrm{DSS}}\left[1-\frac{\mathrm{v}_{\mathrm{gs}}}{\mathrm{~V}_{\mathrm{GS}(\mathrm{off})}}\right]^{2}
$$

and

$$
\begin{equation*}
v_{g s}=v_{G S}+v_{1} \sin \omega_{1} t \tag{20}
\end{equation*}
$$

For the U310 FET, the optimum drain load impedance i! established at slightly less than 2000 ohms, with sufficient lucal us illator drive arid gate bias determined from the conversion transconductance curve in Figure 5.

The output IF coupling structure is an 800 -ohm CT to 50 ohm trifilar-wound transformer (Reicom BT-9 or equivalent) The pi (n) match into this transformer provided a dynamic drain load impedance of 1700 ohms on each FET; excellent

Pi (π) Match Filter Function
Figure 13

IM performance was obtained. Value of operating. O was established at 10 as the best compromise to insure that the tolerance of the pi match components would permit the IF output to peak within the allowable bandwidth at the associated IF amplifier. A Q of more than 10 would result in a greatly restricted bandwidth, while a Q of less than 10 would result in excessively high capacitance, excessively low inductance, and unsatisfactory filter performance.

Mixer Performance

Tests of the operational prototype FET balanced mixer demonstrated that the active mixer has several characteristics superior to those of passive mixer counterparts. There comparisons are made in Table [V (measurements of all three mixers were made under laboratory conditions).

Insertion loss measurements on the IF network amounted to 3 dB in the center of the passband, while insertion loss on the hybrid assembly measured 1.2 dB . The network exhibited a Q of 10. Gain and noise figures were measured over the full 50250 MHz bandwidth, with a single-sideband noise figure ranging from 7.2 dB at 50 MHz to 8.6 dB at 250 MHz . Conversion gain was a flat +2.5 dB ,
'Two-tone third-order intermodulation is expressed in terms of the intercept point. (21) With two signals 300 kHz apart, the balanced mixer suppressed third-order products -89 dB with both signals at -10 dBm , representing an intercept. point of +32 dBm .

Table IV
50250 MHz Mixer Performance Comparison

Characteristic	JFET	Schottky	Bipolar
Intermodulation Intercept Point	132 dBm	+28 dBm	+12 dBmt
Dynamic Range	100 dB	100 dB	80 dBt
Desensitization Level (the level for an unwanted signal when the desired signal first experiences compression)	+8.5 dBm	+3 dBm	+1 dBmt
Conversion Gain	+2.5 dB	-6 dB	+18 dB
Single-sideband Noise Figure 50 MHz	7.2 dB	6.5 dB	6.0 dB

TEstımated *Conservatuve minimum

Figure 14 shows a comparison of third-order 1 M products emanating from both the JFET balanced muxer and a typical low-level double-balanced diode mixer, under similar operating conditions. Noise figure and intercept point are shown at various bias and local oscillator drive levels in Figure 15.

The performance of the active miner is clearly superior to that of the diode mixers, contributing overall system gain in areas critical to telecommunications practice, and reducing associated amplifier requirements.

Noisa Figure and Intercept Point Performance
Figure 15

CONCLUSION

The reason for using the three-core bifilar transfomer (Figure 11 A) in this tutorial article stemmed from the relative analytical simplicity of such a design. An alternative transiormer is the single-core trifilar-wound design. The definitions for wire lerigths (Equations 16 and 17) are equally applicable to tritilar as they are for bifilar.

REFERENCES

(1) Found, R.V., MICROWAVE MIXERS, MIT Rad. Lab. Series, Vol. 16, Figure 6.14, p. 274 (1948).
(2) "lligh-Frequency JFET Chatacterixation and Applications," I.B. Compton, DESIGN FLECTRONICS, March. 1970.
(3) "Tire Solid State Receiver," W. Sabin, QST, July 1970, pp. 35-43.
(4) Penfield, P.. and Rafuse, R., VARACTOR APPLICATIONS, MIT Press, Cambridge, Mass., (1962), pp. 73 ff .
(5) "Non-Linear Distortion and Mixing Processes in FETS," J.S. Vogel, Proc. of IEEe, Vol. 55, Nu. 12 1967, pp. 2109-2116.
(6) "UHF FET Mixer of High Dynamic Range," ECOM-0503-P005-G821 (1969). (Available from U.S. Army
(7) Op cit., ECOM-0503-P005-G821.
(8) J. Watson, INTRODUCTION TO FIELD-EFFECT TRANSISTORS, Siliconix, Inc., Santa Clara, Ca., 95054 (1970). p. 18.
(9) Op. cit., ECOM-0503-P005-G821.
(10) Op. cit., "Non-Linear Distortion and Mixing Processes in FETs," p. 2112.
(11) Op. cit., "High-Frequency 3 FET Characterization."
(12) O. Pitzalis and T. Couse, "Broadband Transfomer Design for RF Transistor Power Amplifiers," ECOM2989. July 1968. Aisa in Proc. Electronic Component Conference (1968).
(13) "Same Broadband Transformers," C.L. Ruthroff, Proc. IRE, Vol. 47, Aug. 1969, pp. 1337-1342 (Figure 7(b).
(14) Op. cit., ECOM-2989, July 1968.
(IS) Op. cit., ECOM 2989, p. 6.
(16) Op. cit., ECOM 2989, p. 7.
(17) ARRL HANDBOOK, American Radio Relay League. Newington, Colin. (1970) p. 49.
(18) "Reactive Loads The Big Miner Menace," P. Will. MICROWAVES, April 1971, pp. 38-42.
(19) Op. cit., "The Solid State Receiver."
(20) "Distortion in FET Amplifiers," J. Sherwin, ELECTRONICS, Dec. 12, 1966.
(21) "Don't Guess The Spurious Level," F.C. McVay ELECTRONIC DESIGN, Feb. 1,1967, pp. 70.73.

APPLICATION NOTE

FETs As Voltage-Controlled Resistors

INTRODUCTION

The Nature of VCRs

A voltage-controlled resistor (VCR) may be defined as a three-terminal variable resistor where the resistance value between two of the terminals is controlled by a voltage potential applied to the third.

A junction field-effect transistor (JFET) may be defined as a field-controlled majority carrier device where the conductance in the channel between the source and the drain is modulated by a transverse electric field. The field is controlled by a combination of gate-source bias voltage, V_{GS}. and the net drain-source voltage, V_{DS}.

Under certain operating conditions, the resistance of the drain-source channel is a function of the gate-source voltage alone and the JFET will behave as an almost pure ohmic resistor. (1) Maximum drain-source current, I DSS, and minimum resistance, ${ }^{\mathrm{r}} \mathrm{DS}(\mathrm{on})$, will exist when the gate-source voltage is equal to zero volts ($\left.\mathrm{V}_{\mathrm{GS}}=0\right)$. If the gate voltage is increased (negatively for NChannel JFETs and positively for P-Channel) the resistance will also increase. When the drain current is reduced to a point where the FET is no longer conductive, the maximum resistance is reached. The voltage at this point is referred to as the pitichoff or cutoff voltage and is symbolized by $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{GS} \text { (off) }}$. Thus the device functions as a voltage-controlled resistor.

Figure 1 details typicai operating characteristics of an \mathbf{N} Channel JFET. Must amplification or switching operations of FETs occur in the constant-current (saturated) region, shown as Region II. A close inspection of Region I (the unsaturated or pre-pinchoff area) reveals thar the effective slope indicative of conductance across the channel from drain to source is different for each value of gate-source bias voltage. (2) The slope is relatively constant over a range of applied drain voltages. so long as the gate voltage is also constant and the drain voltage is low.

Typical N-Channel JFET Operating Characteristics Figure 1

Resistance Properties of FETs

The unique resistance-controlling properties of FETs can be deduced from Figure 2, which is an expanded-scale plot of the encircled area in the lower left-hand corner of Figure 1. The output characteristics all pass through the origin, near which thev become almost straieht lines so that the incremental value of channel resistance, r_{d}, is essentially the same as that of d.c. resistance, r_{DS}, and is a function of V_{GS}. ${ }^{(3)}$

Figure 2 shows extension of the operating characteristics into the thirdquadrant for a typical N-Channel JFET. While such devices are normally operated with a positive drainsource voltage, small negative values of V_{DS} are possible. This is because the gate-channel PN junction must be slightly forward-biased before any significant amount of gate current flows. The slope of the V_{GS} bias line is equal to $\Delta \mathrm{I}_{\mathrm{D}} / \Delta \mathrm{V}_{\mathrm{DS}}=$ $1 / \mathrm{r} \mathrm{DS}$. This value is controlled by the amount of voltage applied to the gate. Minimum ${ }^{\mathrm{r}} \mathrm{DS}$, usually expressed as ${ }^{r} D S\left(\right.$ on) , occurs at $V_{G S}=0$ and is dictated by the geometry of the FET. A device with a channel of small cross-sectionai area will exhibit a high $\mathrm{r}_{\mathrm{DS}}(\mathrm{on})$ and a law $\mathrm{I}_{\mathrm{DSS}}$. Thus a FET with Kigh $\mathbf{I}_{\text {DSS }}$ should be chosen where design requirenents indicate the need for a low ${ }^{\mathrm{D} S(o n)}$.

N-Channel JFET Output Characteristic Enlarged Around $V_{D S}=0$
Figure 2
Figure 3 extends the $\mathrm{r}_{\mathbf{d s}}$ characteristics of a FET to a comparison with the performance of 4 fined resistors. Note the pronounced similarity between the two types of devices.

Comparison of FET and Resistor Characteristics
Figure 3

Normalized r_{ds} Data Figure 5

$r_{\text {dsion }}$ (Drain-Source Resistance at $V_{D S}=V_{G S}=0$) Varies as an Inverse Function of $V_{G S}(o f f)$

Figure 7

Applications for VCRs

The FET is ideal for use as a voltage-controlled resistor in applications requiring high reliability, minimum component size, and circuit simplicity. The FET VCR will conveniently replace numerous elements of conventional resistance control systems, such as servomotors, potentiometers, idler pulleys, and associated linkage. FET power consumption is minimal, packages are very small, and cost comparisons with conventional control schemes are most favorable.

A simple application of a FET VCR is shown in Figure 8 the circuit for a voltage divider attenuator. ${ }^{(5)}$

Circuit Arrangement for Both an N and P Channel FET Figure \mathbf{G}^{6}

Simple Attenuator circuit
Figure 8

The output voltage is

$$
\begin{equation*}
\text { "OUT }=\frac{r^{\text {in }}{ }^{\mathrm{r}} \mathrm{DS}}{\mathrm{R}+{ }^{\mathrm{r}} \mathrm{DS}} \tag{1}
\end{equation*}
$$

It is assumed that the output voltage is not so large as to push the VCR out of the linear resistance region, and that the $r_{D S}$ is not shunted by the load.

The lowest value which $\mathbf{v}_{\text {OUT }}$ can assume is

$$
\begin{equation*}
\mathrm{v}_{\mathrm{OUT}(\mathrm{~min})}=\frac{\mathrm{V}_{\mathrm{in}} \mathrm{r} \mathrm{DS}(\mathrm{on})}{\mathrm{R}+\mathrm{r}_{\mathrm{DS}}(\mathrm{on})} \tag{2}
\end{equation*}
$$

The highest value is

$$
\begin{equation*}
\mathrm{v}_{\mathrm{OUT}(\max)}=\mathrm{v}_{\mathrm{in}} \tag{3}
\end{equation*}
$$

since r_{DS} can be extremeley large.
A number of other FET VCR applications are shown in Figures 9.16.

Voitage-Tuned Filter Octave Range with Lowest Frequency at JFET $V_{\mathbf{G S}}(\mathrm{off})$ and Tuned by $\mathrm{R}_{\mathbf{2}}$. Upper Frequency is Controlled by R_{1} Figure 9

Electronic Gain Control
Figure 10

Cascaded VCR Attenuato:
Figure 11

Wide Dynamic Range AGC Circuit. No Gain through FET with Distortion Proportional to Input Signal Leve!

VCR Phase Advance Circuit
Figure 13

VCR Phase Retard Circuit
Figure 14

P-Channel VCR Photomultiplier Load. Required Low Photomultiplier Anode Current (Usually $<1 \mu \mathrm{~A}$) Implies that VCR will Always Perform in Linear Region Near origin

Figure 15

Voltage Controlled Variable Gain Amplifier. The Tee Attenuator Provides for Optimum Dynamic Linear Range Attenuation Figure 16

Signal Distortion: Causes
Figure 17A repeats the FET output characteristic curves of Figure 2, to show that the bias liner bend down as $V_{D S}$ increases in a positive direction toward the pinch-off voltage of the FET. The bending of the bias lines results in a change in r_{DS}, and hence the distortionencountered in VCR circuits; note that the distortion occurs in both the first and third quadrants. Distortion results because the channel depletion layer increases as V_{DS} reduces the drain current, so that a pinch-off conditionis reached when $V_{D S}=V_{G S}-V_{G S}$ (off). Figure 17 B shows how the current has an opposite effect

N-Channel JFET Output Characteristic Enlarged Around VDS $=0$ Figure 17A

Figure 17B
in the third quadrant, rising negatively with an increasingly negative V_{DS}. This is due to the forward conduction of the gate-to-channel iunction when the drain sienal exceeds the negative gate bias voltage.

Reducing Signal Distortion

The majority of VCR applications require that signal distortion be kept to a minimum. Also, numerous applications require large signal handing capability. A simple feedback technique may be used to reduce distortion while permitting large signal handling capability; a small amount of drain signal is coupled to the gate through a resistor divider network, as shown in Figure 18.

Figure 18

The application of a part of the positive drain signal to the gate causes the channel depletion layer to decrease, with a corresponding increase in drain current. Increasing the drain current for a given drain voltage tends to linearize the V_{GS} bias curves. On the negative half-cycle, a small negative voltage is coupled to the gate to reduce the amount of draingate forward bias. This in turn reduces the drain current and linearizes the bias lines. Now the channel resistance is dependent on the DC gate control voltage and not on the drain. signal, unless the $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{GS}(\mathrm{off})}$ locus is approached. Resistors R_{2} and R_{3} in Figure 18 couple the drain signal to the gate; the resistor values are equal, so that symmetrical. voltage-current characteristics are produced in both quad. rants. The resistors must be sufficiently large to provide minimum loading to the circuit:

$$
\begin{equation*}
\mathrm{R}_{2}=\mathrm{R}_{3} \geqslant 10\left[\mathrm{R}_{1}\left\|\mathrm{r}_{\mathrm{ds}}(\max)\right\| \mathrm{R}_{\mathrm{L}}\right] \tag{4}
\end{equation*}
$$

Typically, $470 \mathrm{~K} \Omega$ resistors will work well for most applications. R_{1} is selected so that the ratio of $\mathrm{r}_{\mathrm{DS} \text { (on) }}^{\| R_{L} \text { to }}$ $\left[\left(r_{\mathrm{DS}(\mathrm{on})} \| \mathrm{R}_{\mathrm{L}}\right) \in \mathrm{R}_{1}\right]$ gives the desired output voltage, or:

$$
\begin{equation*}
\left.e_{o}=e_{i} \frac{{ }^{r} D S(o n) \| R_{L}}{\left(\mathrm{rDS}_{\mathrm{D}}(\mathrm{on})\right.} \| \mathrm{R}_{\mathrm{L}}\right)+\mathrm{R}_{1} \tag{5}
\end{equation*}
$$

The feedback technique used in Figure 18 requires that the gate control voltage, V_{GG}, be twice as large as V_{GS} in Figure 17B for the same r_{DS} value. Use of a floating supply between the resistor junction and the FET gate will overcome this problem. The circuit is shown in Figure 19, and allows the gate control voltage to be the same value as that voltage used without a feedback circuit, while preserving the advantages to be gained through the feedback technique.

Appendix Ato thin Application Note is an analytical approximation of VCR FET distortion characteristics. both calculated and measured.

Figure 19

Experimental Results

Figures 20 through 23 show low voltage output characteristic curves for a typical Siliconix N-Channel voltage-controlled resistor, VCR7N. Bias conditions are shown both with and without feedback. Figure 20 shows a two-volt peak-to-peak signal on the $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ bias curve, with the VCR operating in the first and third quadrants. The VCR is operated without feedback.

The forward-biased gate-drain PN junction may be seen at approximately -0.6 V , and bending of the bias curve is apparent in the third quadrant. The photo also demonstrates the comparison between a fixed resistor (the linear line superimposed on the bias curve) and the distortion apparent in the VCR without feedback compensation; the VCR signal is unusable with the indicated amount of distortion.

In Figure 21, the same VCR7N FET is shown operating with the addition of the feedback resistors. Distortion has been reduced to lens than 0.570 , and the characteristics of the VCR are now closely comparable to those of a fixed resistor.

In Figures 22 and 23, the same VCR FET characteristics are shown, with V_{GS} adjusted for higher r_{DS}. No feedback network is employed in Figure 22, and measured distortion is greater than 8%. In Figure 23, the feedback resistors have been added and distortion has been reduced to less than 0.5%.

Some degree of non-linearity will be experienced in both the first and third quadrants as V_{GS} approaches the FET cut-off voltage. For this reason, it is important that the feedback resistors be of equal value so that the non-linearitier likewise will be equal in both quadrants. Figure 24 shows a curve of distortion vs $\mathrm{R}_{2} / \mathrm{R}_{3}$, in both quadrants.

Distortion vs $\mathbf{R}_{\mathbf{2}} / \mathbf{R}_{\mathbf{3}}$
Figure 24

Distortion resulting from changes in temperature are also minimized by the feedback resistor technique. ${ }^{r}{ }_{\text {DS }}$ will change with temperature in an inverse manner to the behavior of FET drain current. Table I presents the result of VCR laboratory performance tests of distortion vs temperature. The VCR7N again was employed. Signal level was 2 V peak-to-peak.

Table I

Temperature	Without Faedback		With Feed back	
	roserosion	rDS $=10 \mathrm{rbSion}$)	roserosfon)	
				$<05 \%$
+ 25	>10\%	>5\%	<0.5\%	<0.5\%
- 55	3.9\%	3,2\%	<0.5\%	<0.5\%
	1			

It has also been shown that FETs withhigh pinch-off voltage require larger drain-to-source voltages to produce drain current saturation. Therefore, FETs with high $\mathrm{V}_{\mathrm{GS}(\text { off })}$ will have a larger dynamic range in terms of applied signal amplitude, while maintaining a linear resistance. It is advantageous to select FETs with high $\mathrm{V}_{\mathrm{GS} \text { (off }}$ (compatible with the desired ${ }^{\mathrm{r}}$ DS value) if large signal levels are to be encountered.

APPENDIX A - From proceedings of the IEEE, October, 1968, pp. 1718-1719.

Abstract - An analytical approximation of FET characteristics for positive and negative voltages is presented. The distortion in an application as a controlled attenuator is calculated, and a method of reducing distortion by a factor of more than 50 is described.

Controlled resistors are used in oscillators, controlled amplifiers. and attenuators. ${ }^{(6,7)}$ The possible control range is much larger fur field-effect transistors (FET) than for other elements with comparable time constants(e.g., diodes). The signal-to-noise ratio is considerably improved.

Comparison Between Mathematical Approximation of FET Chargeacteristics (Solid Lines) and Measured Curves (Broken Lines) for a Typical N-Channel JFET

Figure 25

Figure 25 shows idealized and real FET characteristics. In region A (above pinch-off) I_{D} is independent of $\mathrm{V}_{\mathrm{DS}}:{ }^{(8)}$

2

$$
\begin{equation*}
{ }^{I_{D}}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right) \tag{1}
\end{equation*}
$$

Region B , where $\mathrm{V}_{\mathrm{DS}}<\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{P}}\right)$, is the so-called triode region. (In the following discussion all the signs (,+-) will be valid for N-Channel FETs.) The characteristics can be
approximated by a quadratic function, of which the maximationis a second point (the origin) arc known. The approxi-

$$
\begin{align*}
I_{D} & =I_{D S S}\left[\left(1-\frac{v_{G S}}{v_{P}}\right)^{2}-\left(1-\frac{v_{G S}-v_{D S}}{v_{P}}\right)^{2}\right] \\
& =\frac{2 I_{D S S}}{\left(\sim P V_{D}\right.} \underset{\sim}{v_{D S}}\left(v_{G S}-v_{P}-\frac{v_{D S}}{2}\right) \tag{2}
\end{align*}
$$

This is the same function that can be found by a simple analysis based on semiconduciur theory. The less negative of the two voltages across the junction $\left(\mathrm{V}_{\mathrm{GS}}, \mathrm{V}_{\mathrm{GD}}\right)$ controls the channel conductance. Under the condition that the FET is symmetrical (drain and source interchangeable), the following consideration is true. If V_{GD} were the controlling voltage and $\mathrm{V}_{\mathrm{DS}}<0, \mathrm{I}_{\mathrm{D}}<0$, then the characteristics would be the same as in the first quadrant:

$$
\begin{equation*}
-\mathrm{I}_{\mathrm{D}}=-\frac{2 \mathrm{I}_{\mathrm{DSS}}}{\mathrm{~V}^{2} \mathrm{p}} \quad \mathrm{~V}_{\mathrm{DS}} \quad\left(\mathrm{v}_{\mathrm{GD}}-\mathrm{V}_{\mathrm{P}}+\frac{\mathrm{V}_{\mathrm{DS}}}{2}\right) \tag{3}
\end{equation*}
$$

Since the controlling voltage for both regions (B and E) is V_{GS},

$$
\begin{equation*}
\mathrm{v}_{\mathrm{GD}}=\mathrm{v}_{\mathrm{GS}}-\mathrm{v}_{\mathrm{DS}} \tag{4}
\end{equation*}
$$

Substituting (4) into (3), we get (2); the same approximation can be used in B and E. The limits of region E where (2) is valid are $\mathrm{V}_{\mathrm{GD}}=0$ and $\mathrm{V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{P}}$. The characteristics in region D can be found from (1) with the same consideration:

$$
\begin{equation*}
I_{D}=-I_{D S S}\left(i \frac{v_{G S}-v_{D S}}{v_{P}}\right)^{2} \tag{5}
\end{equation*}
$$

The mathematical approximation is compared with the measured characteristic in Figure 25. In the regions C and F the junction is forward biased. The characteristics are dependent on the internal resistance of the gate voltage source since gate current flows.
The FET as a controlled resistor works in region B and E. The higher the resistance, the more nondinear are the characteristics. For most applications this is undesirable. Based on the simple approximation (2), the relation between distortion, control range, and maximum to minimum attenuation will be described for a simple voltage divider [Figure 26(a)]. Most applications can be based on thissimple example. The conductance in any point of region B or E is

$$
\begin{align*}
\mathrm{G}_{\mathrm{DS}}= & \frac{\mathrm{I}_{\mathrm{D}}}{\mathrm{~V}_{\mathrm{DS}}}=-\frac{2 \mathrm{I}_{\mathrm{DSS}}}{\mathrm{~V}_{\mathrm{P}}}\left(1-\frac{\mathrm{V}_{\mathrm{GS}}}{\mathrm{~V}_{\mathrm{P}}}\right) \\
& -\frac{\mathrm{I}_{\mathrm{DSS}}}{\left(\mathrm{~V}_{\mathrm{P}}\right)^{2}} \mathrm{~V}_{\mathrm{DS}}=\mathrm{g}_{\mathrm{DS}}+\frac{\mathrm{g}_{\mathrm{DSS}} \mathrm{~V}_{\mathrm{DS}}}{2 \mathrm{~V}_{\mathrm{P}}} \tag{6}
\end{align*}
$$

where $g_{D S}$ is the differential conductance at the origin; when $\mathbf{V}_{\mathbf{G S}}=0$, then $g_{D S}=g_{\text {DSS }}$. The atteruation for the circuit of Figure 26(a) is

$$
\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{1}{1+\mathrm{Rg}_{\mathrm{DS}}}
$$

$$
=\left[\begin{array}{l}
1+\mathrm{Rg}_{\mathrm{DS}} \tag{7}\\
+\frac{\mathrm{Rg}_{\mathrm{DSS}} \mathrm{~V}_{1}}{2 \mathrm{~V}_{\mathrm{P}}\left(1+\mathrm{Rg}_{\mathrm{DS}} \mathrm{r} \frac{2 \mathrm{Rg}_{\mathrm{DS}} \mathrm{~V}_{1}}{2 \mathrm{~V}_{\mathrm{P}}\left(1+\mathrm{Rg}_{\mathrm{DS}}\right)}\right)}
\end{array}\right]^{-1}
$$

(a) Controiled JFET Attenuator. (b) Controlled Attenuator with "Feedback" Making Characteristics Linear and Symmetrical Figure 26

To reduce (7) to a more tractable form, the following inequality is introduced:

$$
\frac{\mathrm{V}_{1} \mathrm{Rg}_{\mathrm{DSS}}}{2 \mathrm{~V}_{\mathrm{P}}\left[1+\mathrm{Rg}_{\mathrm{DS}}\right]^{2}} \ll 1
$$

so that (7) can now be approximated by the expansion

$$
\begin{equation*}
\mathrm{V}_{2}=\frac{\mathrm{V}_{1}}{1+\mathrm{g}_{\mathrm{DS}} \mathrm{R}}\left(1-\frac{\mathrm{Rg}_{\mathrm{DS}} \mathrm{~V}_{1}}{2 \mathrm{~V}_{\mathrm{P}}\left[1+\mathrm{Rg}_{\mathrm{DS}}\right]^{2}}+\cdots\right) \tag{8}
\end{equation*}
$$

Only the second harmonic will be considered for the distortion since the third is much smaller. For small distortion ($\mathrm{d} \ll \mathrm{I}$ and $\mathrm{Rg}_{\text {DSS }} \gg 1$),

$$
\begin{equation*}
d=\frac{V_{1} \operatorname{Rg}_{\text {DSS }}}{\left.4\left|\mathrm{~V}_{\mathrm{P}}\right|{ }^{1}+\mathrm{Rg}_{\mathrm{DS}}\right]^{2}} \tag{9}
\end{equation*}
$$

If \mathbf{V}_{2} is held constant,

$$
\begin{equation*}
\mathrm{d}=\frac{\mathrm{V}_{2} \mathrm{R}_{\mathrm{BDS}}}{4 \mid \mathrm{V}_{\mathrm{P} \mid}[1+\mathrm{RgDS}]} \approx \frac{\mathrm{V}_{2}}{4\left|\mathrm{~V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{GS}}\right|} \tag{10}
\end{equation*}
$$

Distertion as a Function of $V_{G S} / V_{G S(o f f)}$ for Two Different $V_{2} / V_{G S}(o f f)$. (a) Theoretical for Figure 26(a). (b) Measured with Circuit of Figure 26(a). (c) Measured with Circuit of Figure 26(b) Figure 27

Figure 27 shows a comparison of measured and calculated distortion. If $\mathbf{V}_{\mathbf{G S}}$ approaches $\mathbf{V}_{\mathbf{p}}$, the above restrictions are violated; the expression for the distortion can no longer be applied. If $\mathrm{V}_{\mathrm{DS}}<0, \mathrm{~V}_{\mathrm{GS}}=0$, then the FET works in region F ; the distortion will be higher than predicted. From (10) we get for a prescribed maximum distortion a maximum amplitude as a function of V_{GS} :

$$
\begin{equation*}
\mathrm{V}_{2 \max }=4 \mathrm{~d}_{\text {max }}\left|\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{GS}}\right| \tag{11}
\end{equation*}
$$

For a given $\mathrm{d}_{\text {max }}$ and $\mathrm{V}_{2 \text { max }}$ the ratio of minimum to maximum attenuation is

$$
\begin{equation*}
\frac{A_{\min }}{A_{\max }}=m=\frac{1+R g_{D S S}}{1+R g_{D S S} \frac{V_{2 \max }}{4 d_{\max }\left|V_{P}\right|}} \approx 4 d_{\max }\left|V_{P}\right| \tag{12}
\end{equation*}
$$

valid only for $m>1$. Note that the maximum distortion is reached only for minimum attenuation. Examples:

$$
\begin{array}{llll}
\mathrm{d}_{\max }=10 \text { percent } & \mathrm{V}_{2 \max }=0.001 \mathrm{~V}_{\mathrm{P}} & \mathrm{~m}=400 \\
\mathrm{~d}_{\max }=1 \text { percent } & \mathrm{V}_{2 \max }=0.01 & \mathrm{~V}_{\mathrm{P}} & \mathrm{~m}=4
\end{array}
$$

Although these relations are only first-order approximations, they give a good estimate of FET attenuator characteristics. The maximum amplitude is proportional to V_{P}. FETs with high \mathbf{V}_{p} are desirable for attenuator applications. Unfortunately, the majority of commercially available FETs are made with low $\mathbf{V}_{\mathbf{P}}$ for use in amplifiers.

There are several means of reducing distortion. By connecting two identical FETs in antiparallel or antiseries, nonlinearities can be cancelled out to a certain extent. A better linearization is possible by using one FET with "feedback". It has been shown above that the characteristics woald be symmetrical if V_{GD} were the control voltage in the third quadrant. By adding $0.5 \mathrm{~V}_{\mathrm{DS}}$ to the control voltage, the two voltage V_{GS} and V_{GD} interchange when V_{DS} changes sign:

$$
\begin{align*}
& \mathrm{v}_{\mathrm{GS}}=\mathrm{v}_{\mathrm{II}}+0.5 \mathrm{v}_{\mathrm{DS}} \tag{13}\\
& \mathrm{v}_{\mathrm{GD}}=\mathrm{v}_{\mathrm{H}}-0.5 \mathrm{v}_{\mathrm{DS}}
\end{align*}
$$

then (13) used in (2) giver

$$
\begin{equation*}
\mathrm{I}_{\mathrm{D}}=\frac{2 \mathrm{l}_{\mathrm{DSS}}}{\mathrm{v}_{\mathrm{P}}^{2}} \mathrm{~V}_{\mathrm{DS}}\left(\mathrm{~V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{P}}\right) \tag{14}
\end{equation*}
$$

The resulting chanacteristic is linear and symmetrical in B and E . The improvement in distortion performance can be seen in Figure 27. A distortion of 12 percent for $\mathrm{V}_{2}=0.1$ V_{P} at $\mathrm{V}_{\mathrm{GS}}=0.8 \mathrm{~V}_{\mathrm{P}}$ is reduced through linearization to 0.1 percent. Figure $26(\mathrm{~b})$ shows a possible circuit. The frequency range of the controlled signal must be much higher than that of the controlling signal V_{H} to keep the direct interference of V_{H} on V_{2} small. R_{3} is set for minimum distortion. If V_{2} and V_{H} are 1 n the same frequency range, a high impedance amplifier must be used. V_{2} is at the input; the output is connected to the FET gate. The amplification is approximately 0.5 (adjustabie). The control voltage is introduced through a second input so that no direct interference with V_{2} occurs.

REFERENCES

(1) J. Watson, INTRODUCTION TO FIELD-EFFECT TRANSISTORS, Siliconix, Inc. Santa Clara, Calif. 95054 (1970), p. 58.
(2) "FETs As Voltage-Variable Resistors," Carl D. Todd, ELECTRONIC DESIGN, Sept. 13, 1965 , pp. 66-69.
(3) Op. cit., AN INTRODUCTION TO FIELD-EFFECT TRANSISTORS, p. 22.
(4) "FETs As Voltage-Controlled Resistors," Siliconix. inc., Santa Clara, Calif., 1966.
(5) Op. cit., AN INTRODUCTION TO FIELD-EFFECT TRANSISTORS, p. 61.
(6) W. Gosling, "Voltage Controlled Attenuators Using Field-Effect Transistors," IEEE Trans Audio, Vol. AU-13, pp. 112-120, Sept.-Oct., 1965.
(7) J.S. Sherwin, "Voltage Controlled Resistors (FET)," Solid State Design, pp. 12.14, Aug. 1965.
(8) L.J. Sevin, "Field-Effect Transistors," New York, McGraw-Hill, 1965.
.

The FET Constant Current Source

INTRODUCTION

The combination of low associated operating voltage and high output impedance make the FET attractive as a canstant current source. An adjustable current source may be built with a FET, a variable resistor and a small battery, Figure I. Far good thermal stability, the FET should be biased near the zero T.C. point. ${ }^{1}$

Field-Enact Transistor Current Source
Figure 1
Whenever the FET is operated in the saturated region, its output conductance is very low. This occurs whenever the drainsource voltage $V_{D S}$ is significantly greater than the cut-offvoltage $\mathrm{V}_{\mathrm{GS} \text { (off) }}$. The FET may be biased to operate as a constant current source at any current below its saturation current $\mathbf{I}_{\text {DSS }}$.

For a given device where $\mathbf{I}_{\text {DSS }}$ and $\mathbf{V}_{\mathrm{GS} \text { (off) }}$ are known, the approximate $V_{G S}$ required for a given \mathbf{I}_{D} is

$$
\begin{equation*}
\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{GS}(\mathrm{off})}\left[1-\left(\frac{\mathrm{I}_{\mathrm{D}}}{\mathrm{I}_{\mathrm{DSS}}^{\mathrm{DS}}}\right)^{1 / \mathrm{k}}\right] \tag{1}
\end{equation*}
$$

where k can vary from 1.7 to 2.0 , depending upon device geometry. The series resistor R_{S} required between source and gate is

$$
\begin{equation*}
\mathrm{R}_{\mathrm{S}}=\frac{\mathrm{V}_{\mathrm{GS}}}{\mathrm{I}_{\mathrm{D}}} \tag{2}
\end{equation*}
$$

A change in supply voltage, or change in load impedance, will change $\mathbf{I}_{\mathbf{D}}$ by only a small factor because of the low output conductance $\mathrm{g}_{\mathrm{oss}}$.
$\Delta \mathrm{I}_{\mathrm{D}}=\Delta \mathrm{V}_{\mathrm{DS}} \mathrm{g}_{\text {oss }}$

The value of $\mathrm{g}_{\mathrm{oss}}$ is an important consideration in the accuracy of a constant current source. As $\mathrm{g}_{\mathrm{oss}}$ may range from less than 1μ mho to more than 50μ mho according to the FET type, the dynamic impedance can be greater than I megohm to less than 20 K . This corresponds to a current stability range of $1 \mu \mathrm{~A}$ to $50 \mu \mathrm{~A}$ per volt. The value of goss depends also on the operating point, being highest at $I_{\text {DSS }}$ and at low V_{DS}. Output conductance $\mathrm{g}_{\mathrm{oss}}$ decreases approximately linearly with I_{n}, becoming less as the FET is biased toward cut-off. The relationship is

$$
\begin{equation*}
\frac{\mathrm{I}_{\mathrm{D}}}{\mathrm{I}_{\mathrm{DSS}}}=\frac{\mathrm{g}_{\mathrm{oss}}}{\mathrm{~g}_{\mathrm{oss}}^{\prime}} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{g}_{\mathrm{oss}}=\mathrm{g}_{\mathrm{OSS}}^{\prime} \tag{5}
\end{equation*}
$$

when

$$
\begin{equation*}
\mathrm{v}_{\mathrm{GS}}=0 \tag{6}
\end{equation*}
$$

So as $\mathrm{V}_{\mathrm{GS}} \rightarrow \mathrm{V}_{\mathrm{GS}(\text { off })}, \mathrm{g}_{\mathrm{oss}} \rightarrow$ zero. For best regulation, I_{D} must be considerably less than $\mathrm{I}_{\mathrm{DSS}}$ -

It is possible to achieve much lower $g_{o s s}$ per unit I_{D} by cascading two FETs as shown in Figure 2.

Cascade FET Current Source
Figure 2

Now, I_{D} is regulated by Q_{1} and $V_{D S 1}=-V_{G S 2}$. The $d-c$ value of I_{D} is controlled by R_{S} and Q_{1}. However, Q_{1} and Q_{2} both affect current stability. The circuit output conductance is derived as follows:

Figure 2 in redrawn in Figure 3 for the condition $\mathrm{V}_{\mathrm{GS} 1}=0$.

Figure 0

$$
\begin{equation*}
i_{o}=i_{2}+v_{g s 2} g_{f s}=v_{d s 2} g_{o s s}-i_{o} \frac{g_{f s}}{g_{o s s}} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{i}_{\mathrm{o}}=\frac{\mathrm{v}_{\mathrm{ds} 2} \mathrm{~g}_{\mathrm{oss} 2} 2 \mathrm{~g}_{\mathrm{oss} 1}}{\mathrm{~g}_{\mathrm{oss} 1}+\mathrm{g}_{\mathrm{fs} 2}} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{v}_{\mathrm{O}}=\mathrm{v}_{\mathrm{ds} 1}+\mathrm{v}_{\mathrm{ds} 2}=\mathrm{v}_{\mathrm{ds} 2}+\frac{\mathrm{i}_{\mathrm{o}}}{\mathrm{~g}_{\mathrm{oss} 1}} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
v_{\mathrm{o}}=v_{\mathrm{ds} 2} \frac{g_{\mathrm{oss} 1}+g_{\mathrm{oss} 2}+g_{\mathrm{fs} 2}}{g_{\mathrm{oss} 1}+g_{\mathrm{fs} 2}} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
g_{o}=\frac{i_{o}}{v_{0}}=\frac{g_{o s s} g_{o s s} 2}{g_{o s s}+g_{o s s}+g_{f s} 2} \tag{11}
\end{equation*}
$$

If $g_{\mathrm{oss} 1}=g_{\mathrm{oss} 2}$

$$
\begin{equation*}
g_{0}=\frac{g_{\mathrm{oss}}}{2+\mathrm{g}_{\mathrm{fS}} / g_{\mathrm{oss}}} \tag{12}
\end{equation*}
$$

When
$\mathrm{R}_{\mathbf{S}} \neq 0$ as in Figure 2

$$
\begin{align*}
\mathrm{g}_{\mathrm{o}} & =\frac{\mathrm{g}_{\mathrm{oss}}^{2}}{2 \mathrm{~g}_{\mathrm{oss}}+\mathrm{g}_{\mathrm{fs}}+\mathrm{R}_{\mathrm{S}}\left(\mathrm{~g}_{\mathrm{fs}}^{2}+\mathrm{g}_{\mathrm{oss}} g_{\mathrm{fs}}+\mathrm{g}_{\mathrm{oss}}{ }^{2}\right)} \tag{15}\\
& \approx-\frac{\mathrm{g}_{\mathrm{oss}}{ }^{2}}{\mathrm{~g}_{\mathrm{fs}}}\left(1+\mathrm{R}_{\mathrm{S}} \mathrm{~g}_{\mathrm{fs}}\right)
\end{align*}
$$

In either case $\left(\mathrm{R}_{\mathrm{S}}=0\right.$ or $\left.\mathrm{R}_{\mathrm{S}} \neq 0\right)$, the circuit output conductance is considerably less than the goss of a single FET. .

In designing any cascaded FET current source, both FETs must be operated with adequate drain-gate voltage V_{DG}. That is,
$\mathrm{V}_{\mathrm{DG}}>\mathrm{V}_{\mathrm{GS} \text { (off) }}$, preferably $\mathrm{V}_{\mathrm{DG}}>2 \mathrm{~V}_{\mathrm{GS} \text { (off) }}$

If $\mathrm{V}_{\mathrm{DG}}<2 \mathrm{~V}_{\mathrm{GS}(\mathrm{off})}$, the $\mathrm{g}_{\mathrm{oss}}$ will be significantly increased, and circuit g_{o} willdeteriorate. For example: A 2N4340 has typical $\mathrm{g}_{\mathrm{oss}}=4 \mu \mathrm{mho}$ at $\mathrm{V}_{\mathrm{DS}}=-20 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{GS}}=0$. At $\mathrm{V}_{\mathrm{DS}} \approx-\mathrm{V}_{\mathrm{GS}(\mathrm{off})}=2 \mathrm{~V}, \mathrm{~g}_{\mathrm{oss}} \approx 100 \mathrm{pmho}$.

The best FETs for current sources are those having long gates and consequently very low goss . The Siliconix 2 N 4869 exhibits typical $g_{\mathrm{Oss}}=1$ pmho at $V_{\mathrm{DS}}=20 \mathrm{~V}$. A single
 greater than 2 megohms.

The cascade circuit of Figure 5 provides a current adjustable: from $2 \mu \mathrm{~A}$ to 1 mA with internal resistance greater than 10 megohms.

For each circuit discussed, $\mathrm{g}_{\mathrm{oss}}$ is represented by the following equations:

$\mathrm{g}_{\mathrm{o}}=\mathrm{g}_{\mathrm{oss}}$

$$
\mathrm{g}_{\mathrm{o}} \approx \frac{\mathrm{~g}_{\mathrm{oss}}^{2}}{\mathrm{~g}_{\mathrm{fs}}}
$$

$$
\mathrm{g}_{\mathrm{o}} \approx \frac{\mathrm{~g}_{\mathrm{oss}}^{2}}{\mathrm{~g}_{\mathrm{fs}}\left(1+\mathrm{R}_{\mathrm{S}} \mathrm{~g}_{\mathrm{fs}}\right)}
$$

REFERENCES

(I) "Biasing FETs for Zero DC Drift," Evans, L., Electrotechnology, August 1964.

DESIGN IDEA

Wideband UHF Amplifier with High-Performance FETs

Ed Oxner

introduction

A new freedom in UHF amplifier design is possible with high-performance "Super FETs" such as the Siliconix U310 Junction FET. Typical advantages include a closely-matched 75 ohm input for extremely low return loss in cable systems, and high spurious response rejection with the 3rd order IM intercept measured at +29 dB . ${ }^{\text {(1) }}$

Additionally, the high common-gate forward transconductance of the $\mathrm{U} 310(20,000 \mu \mathrm{mho}$ maximum $)$ makes it possible to design an amplifier with wide bandwidth and good gain, since the figure of merit $\left(\mathrm{g}_{\mathrm{m}} / \mathrm{C}\right)$ of the FET is 2.35 x . 10^{9} typical - higher than any other known UHF Junction FET.

The amplifier circuit in Figure 1 is designed for 225 MHz center frequency, 1 dB bandwidth of $50 \mathbf{M H z}$, low input VSWK in a 75 -ohm system, and 24 dB gain. Three stages of U310 FETE are used, in a straight forward design.

Typical parameters are taken from the U310 data sheer:

Forward Transconductance		14 mmhos
Input Admittance at 225 MHz	$\mathrm{g}_{\mathrm{igs}}$	13 mmhos
	$\mathrm{b}_{\text {igs }}$	4 inmhos
Output Admittance at 225 MHz	$\mathrm{g}_{\mathrm{ogs}}$	0.27 mmhos
	$\mathrm{b}_{\text {ogs }}$	$\mathbf{2 . 6}$ mmhos

Figure 1

Input match is simplified because the FET input (real) impedance is nearly 77 ohms. A coupling capacitor is used in the amplifier, rather than a tuned circuit, and thus the values may be determined:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{S}} \sqrt{\frac{\mathrm{R}_{\mathrm{ig}}}{\mathrm{R}_{\mathrm{s}}}-1} \mathrm{X}_{\mathrm{s}}=75 \sqrt{\frac{77}{75}-1}=11.85 \Omega \\
& \mathrm{C}_{\mathrm{S}}=\frac{1}{\omega \mathrm{X}_{\mathrm{s}}} \approx 68 \mathrm{pF} \\
& \mathrm{X}_{\mathrm{P}}=\frac{\mathrm{R}_{\mathrm{s}} \mathrm{R}_{\mathrm{p}}}{\mathrm{X}_{\mathrm{s}}}=\frac{75 \times 77}{11.85}=488 \Omega
\end{aligned}
$$

$$
\mathrm{C}_{\mathrm{P}}=1.47 \mathrm{pF}
$$

$$
\mathrm{C}_{\mathrm{T}}=4.4 \mathrm{pF}\left(\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{\mathrm{P}}+\mathrm{C}_{\mathrm{igs}}\right)
$$

$$
\mathrm{L}_{\mathrm{s}}=\frac{1}{\omega^{2} \mathrm{C}_{\mathrm{T}}}=120 \mathrm{nHy}
$$

Figure 2 shows that the measured input VSWR in the 75 ohin system indicated an available bandwidth considerably greater than that required for the amplifier design criteria.

Three cascaded synchronous single-tuned stages are used to achieve the desired gain, and thus stage bandwidth and Q are determined: ${ }^{(2)}$

$$
\frac{B / W}{f}=\frac{1}{Q} \sqrt{\left(\frac{E_{0}}{E}\right)^{2}-1}
$$

where:

$$
\frac{\text { Bandwidth of } 3 \text { Stages }^{(3)}}{\text { Bandwidth of 1 Stage }}=\sqrt{2^{1 / 3}-1}
$$

and

$$
\left(\frac{\mathrm{E}_{\mathrm{o}}}{\mathrm{E}}\right)=1.122(1 \mathrm{~dB})
$$

giving

$$
\mathrm{B} / \mathrm{W}(1 \mathrm{~dB})=98 \mathrm{MHz}
$$

$Q=1.15$

Blanchard Chsn (Inverted Cirele Impedance Chart) Figure 2

With a FET output impedance of 3700 ohms shunted by approximately 2.5 pF (with 0.5 pF allowed for stray capacitance), the total parallel resistance necessary to obtain the desired bandwidth is:

$$
\begin{aligned}
& \mathrm{Q}=\omega \mathrm{CR}_{\mathrm{t}} \\
& \mathrm{R}_{\mathrm{t}}=\frac{1.15}{1.415 \times 10^{9} \times 2.5 \times 10^{-12}}=330 \Omega
\end{aligned}
$$

The tank circuit impedance appearing in shunt with the FET, is therefore calculated to be about 365 ohms. From this, the inductance is:

$$
\mathrm{L}=\frac{\mathrm{R}}{\omega \mathrm{Q}}=\frac{365}{\omega 1.15}=222 \mathrm{nHy}
$$

with a turns ratio of 2.3: 1 to match to 75 ohms. Since each stage is designed for 75 ohm input and output, three cascaded stages complete the amplifier design.

The computed voltage gain per stage is approximately $\mathrm{g}_{\mathrm{fs}} \mathrm{R}_{\mathrm{t} / \mathrm{n}}$ or $2.22(7 \mathrm{~dB})$. Measured gain for all three stages is 24 dB . The U310 FET in the final stage operates at $\mathrm{I}_{\mathrm{DSS}}$, and thus accounts for the higher measured gain. The gain/ bandwidth response of the amplifier is shown in Figure 3.

The 3rd order spuriousintercept point is plotted graphically in Figure 4. ${ }^{(4)}$ The importance of a high intercept point becomes apparent in a crowded high-level area of the spectrum where signal purity is of utmost priority.

REFERENCES

(1) "Don't Guess the Spurious Level," ELECTRONIC DESIGN, February 1, 1967, pp. 70-73.
(2) REFERENCE DATA FOR RADIO ENGINEERS, 4th ed., p. 242, ITT Corp., New York, N.Y.
(3) Valley and Wallman, VACUUM TUBE AMPLIFIERS, MIT Rnd. Lab. Series, Vol. 18, pp. 172-173.
(4) Op. cit., "Don't Guess the Spurious Level."

Figure 3

Figure 4

DESIGN IDEA
 High-Performance FETs
 In Low-Noise VHF Oscillators

Ed Oxner

Most communications receivers are limited in their dynamic range because of saturation in the early stages of RF amplifiers or mixers. However, some receiver designs are available which overcome this limitation by using parametric amplifiers and converters to achieve spectacular increases in dynamic range. There still remain certain limitations in dynamic range which cannot be remedied by parametric devices. In these cases, the problem lies in the heterodyning of noise sidebands which appear on the receiver local oscillator, entering the passband through strong interfering signals.

Common Types of Noise

Although noise is often difficult to characterize because of its random or nondeterministic nature, it is possible to differentiate various forms of noise through an understanding of the Gaussian distribution of noise about an RF carrier. Briefly stated, the three major forms of noise are (1) low-frequency noise (1/f); (2) thermal noise (4kTRB); and "shot" noise (in). Further, these types of noise can be identified from their relationship to the main RF carrier. For example, low-frequency noise predominates very close to the carrier, and falls to insignificant levels when it is displaced more than 250 Hz from the carrier. Low-frequency noise is associated with surface contamination and other irregularities, such as gate current leakage.

Thermal noise plays the predominant role in the region from the $1 / \mathrm{f}$ decay point to approximately 20 kHz from the carrier, and is commonly associated with equivalent resistance where the rms value of noise voltage of the Thevenin generator becomes the classic $(4 \mathrm{kTBR})^{1 / 2}$. Noise appearing beyond the 20 kHz is known as Shot noise, and is directly attributable to noise current. Because of the typically uniform distribution of shot noise it is also referred to as "white noise."

Origins of Oscillator AM Noise

Although an oscillator tends to produce a wave that is nearly sinusoidal, there are other fluctuations present. When the energy in the frequency domain close to the carrier is observed on a spectrum analyzer, noise appears as a modulation phenomenon. This observation would be greatly enhanced if the noise contribution was coherent and consisted of discrete sideband frequencies. Without a doubt, the major component of AM noise is the contribution of low-frequency noise ($1 / \mathrm{f}$). Both thermal and shot noise are relatively insignificant segments of $A M$ noise when compared to $1 / \mathrm{f}$. A graph of $A M$ noise vs frequency removed is shown in Figure 1.

AM Noise vs Frequency Removed from the Carrier Figure 1

Design of a VHF Oscillator

The important design considerations for best oscillator performance include using a FET with high forward transconductance, maintaining the gate at ground potential, and keeping a high unloaded tank Q . The high transconductarce is necessary to reduce the effective noise resistance. The grounded gate reduces the noise voltage contributions to those of the gate leakage current and the series gate resistance. The high tank circuit Q selves as an effective filter fur the sideband noise energy.

The oscillator design is somewhat extraordinary for a circuit employing a FET. The FET chosen was the Siliconix U310, which has a forward transconductance value higher than 18 mmho at zero bias $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$. The oscillator basically consists of two coaxial resonators, one for the FET source and the other for the drain. Oscillation isestablished by capacity coupling between the two resonators; output coupling is derived from the magnetic coupling which exists at the open ends of the resonators. Optimum resonator Q in achieved by designing the coaxial resonators for a characteristic impedance of 75 ohms. The oscillator circuit is show in Figure 2, and construction details are shown in Figure 3

Oscillator Construction Details
Figure 3

The technique to establish the proper resonator length for the desired frequency is somewhat tricky, and requires a first-order approximation of the anticipated capacitive fringing which derives from both the FET and the feedback network. A short circuited coaxial transmission line is theoretically resonant at a quarter-wave length of the resonating frequency, except for the effects of fringe field capacitsnce. At resonance

$$
\begin{equation*}
X_{L}=X_{C} \tag{1}
\end{equation*}
$$

If the fringe capacitance is known, X_{C} can be calculated as

$$
\begin{equation*}
\mathrm{X}_{\mathrm{C}}=\frac{1}{\omega \mathrm{C}} \tag{2}
\end{equation*}
$$

From this, the resonator length can be determined as

$$
\begin{equation*}
X_{C}=\tan 01 \tag{3}
\end{equation*}
$$

In making these calculations, a Smith chart is invaluable, as is shown in the following illustration:

$$
\begin{aligned}
& \text { Frequency of oscillation }=760 \mathrm{MHz} \\
& \text { FET bigs }^{\text {(from data sheet) }}=16 \mathrm{mmho} \\
& \text { Capacitance from } b_{\text {igs }} \\
& \begin{array}{l}
\text { Allow for stray capacitance and } \\
\text { the feedback network }
\end{array} \\
& \\
& \\
& \mathrm{C}_{\mathrm{gS}}=3.4 \mathrm{pF} \\
& \mathrm{C}_{S}=1.5 \mathrm{pF} \\
& 4.9 \mathrm{pF}
\end{aligned}
$$

Thus $\mathbf{X}_{\mathrm{C}}=\mathbf{j} 0.57$ (normalized to 75Ω)
Locate 0.57 on the Smith chart. The wavelength toward the load $=0.081 \lambda$. Since a wavelength at $760 \mathbf{M H z}$ is 39.5 cm ., then the resonator cavity length is simply

In the completed FET coaxial oscillator circuit, the output coupling loop consists of a single turn made fast to the cavity by the BNC flange and the FET itself. Although the feedback network appears somewhat crude, it can be replaced by a small trimmer capacitor for similar operation.

Conclusions

Measured performance of the oscillator is shown in Table IA: AM noise measurements in a 10 Hz bandwidth are shown in Ta ble IB.

TABLE IA					
Oscillator Measured Performance $25^{\circ} \mathrm{C}$					
$\mathrm{VDD}(\mathrm{V})$	+10	+15	+20	+25	
$\mathrm{ID}(\mathrm{mA})$	15	16.2	18.2	21	
$\mathrm{P}_{\text {out }}(\mathrm{dBm})$	+6.6	+15.2	+18.3	+20	
Frequency (MHz)	725	742.7	754.7	762.9	

TABLE IB	
AM Noise Measurement	
Frequency Displaced From Carrier	$\mathbf{d B c}$
50 Hz	-130
500 Hz	-139
1 kHz	-143.5
5 kHz	-146

The Reike diagram shown in Figure 4 makes possible the accurate prediction of expected power output and operating frequency with the oscillator feeding directly into a mismatched load. Expansion of the Reike diagram to show frequency us transmission line length (in degrees) will allow prediction of the long-line effect on oscillator stability.

Reike Diagram
Figure 4

TECHNICAL ARTICLE

FET Biasing

INTRODUCTION

Engineers ofter design FET amplifiers that are unnecessarily sensitive to device characteristics because they may not be familiar with proper biasing methods.

One way to obtain consistent circuit performance in spite of wide device variations is to use a combination of constantvoltage and self biasing. The combined circuit configuration turns out to be the same as that generally used with bipolar transistors, but its operation and design are quite different.

Three Basic Circuits

Let's examine three basic common-source circuits that can be used to establish a FET"s operating point (Q-point) and then see how two of them can be combined to provide greatly improved performance. The three basic biasing schemes are:

- Constant-voltage bias, which is most useful for rf and video amplifiers employing small dc drain resistors.
- Constant-current bias, which is best suited to lowdrift dc amplifier applications such as source followers and source-coupled differential pairs.
- Self bias (also called source bias or automatic bias), which is a somewhat universal scheme, particularly valuable for ac amplifiers.

The Qpoint established by the intersection of the load line and the $V_{G S}=-0.4 \mathrm{~V}$ output characteristic of Figure I provides a convenient starting point for the circuit comparison: The load line shows that a drain supply voltage, V_{DD}, of 30 V and a drain resistance, R_{D}. of $39 \mathrm{~K} \Omega$ are being used.

The quiescent drain-to-source voltage, $\mathrm{V}_{\mathrm{DSQ}}$, is 15 V , allowing large signal excursions at the drain. Maximum input signal variations of $\pm 0.2 \mathrm{~V}$ will produce output voltage swings of $\pm 7.0 \mathrm{~V}-$ a voltage gain of 35 .

Figure 1. A large dynamic range is provided by the operating point at $\mathrm{V}_{\mathrm{DSQ}}=15 \mathrm{~V} . \mathrm{I}_{\mathrm{DQ}}=0.39 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{GSQ}}=-0.4 \mathrm{~V}$. The output cheracteristics are for a typical 2 N 4339.

The constant-voltage bias circuit (Figure 2) is analyzed by superimposing a line for $\mathrm{V}_{\mathrm{GG}}=$ constant on the transfer characteristic of the FET.

Figure 2. constant-voltage bias is maintained by the $V_{G G}$ supply as shown on this typical 2N4339 transfer curve. Input signal eg moves the load line horizontally.

The transfer characteristic is a plot of $\mathrm{I}_{\mathrm{D}}{ }^{\mathrm{VS}} \mathrm{V}_{\mathrm{GS}}$ for constant $V_{\text {DS }}$. Since the curve doesn't change much with changes in V_{DS}, it is quite useful in establishing operating bias points. In fact, it is probably more useful than the output characteristics because its curvature clearly warns of the distortion to be expected with large input signals. Furthermore, when a bias load line is superimposed, allowable signal excursions become evident and input voltage, gate-source signal voltage, and output signal current calculations may be made graphically.

The heavy vertical line at $\mathrm{V}_{\mathrm{GS}}=-0.4 \mathrm{~V}$ establishes the Q point of Figure 1. No voltage is dropped across resistor R_{G} because the gate current is essentially zero. R_{G} serves mainly to isolate the input signal from the \mathbf{V}_{GG} supply.

Excursions of the input signal, $e_{\mathfrak{e}}$, combine in series with V_{GS} so that they add algebraically to the fixed value of -0.4 V . The effect of signal variation is to instantaneously shift the bias line horizontally without changing its slope. The shifting bias line then develops the output signal current as shown in Figure 2.

The constant-current bias approach (Figure 3) for establishing the Q-point of Figure 1 requires a 0.39 -mA current source. For an ideal constant-current generator, input signal excursions merely shift the bias line horizontally and produce no resultant gate-source voltage excursion. This bias technique is therefore limited to source followers, sourcecoupled differential amplifiers, and to ace amplifiers where the source terminal is bypassed to ground at the signal frequency.

Figure 3. Constant-current bias fixer the output voltage for any R_{D}. Hence, input signals cannot affect the output unless the current source is bypassed.

If an ac ground is provided by a bypass capacitor across the current source, a vertical ac bias line will be established. Input signal variations will then translate the ac bias line horizontally, and signal development will proceed as with constant-voltage biasing (Figure 3).

Should the bypass capacitor not provide a sufficiently low reactance at the signal frequency, the ac bias line will not be vertical. It will still intersect the transfer curve at the Q point but with a slope equal to $-\left(1 / X_{C}\right)=-\omega \mathcal{C}$ (Figure 4).

Figure 4, Partial bypassing of the current source (Figure 3) lowers the circuit gain by tilting the ac load line from the vertical. The capacitor drop subtracts from eg.

This will lower the gain of the amplifier because of signal degeneration at the source. The input signal, e_{g}, is reduced by the drop across the capacitor:

$$
\begin{equation*}
v_{g s}=e_{g}-v_{S}=e_{g}-i_{S} x_{C} \tag{1}
\end{equation*}
$$

It is clear from Figure 4 that the input signal only shifts the operating point by an amount equal to $\mathrm{Vgs}_{\mathrm{g}}$, the effective input signal. As the signal frequency is decreased, the slope of the ac bias line decreases, causing the effective input signal to approach zero.

Self Bias Needs No Extra Supply

The self-bias circuit (Figure 5) establishes the Q-point by applying the voltage dropped across the source resistor, R_{S}, to the gate. Since no voltage is dropped across R_{S} when $I_{D}=0$, the self-bias load line passes through the origin. Its slope is given by $-1 / \mathrm{R}_{\mathrm{S}}$. Therefore, the desired Q -point is established by setting $-1 / \mathrm{R}_{\mathrm{S}}=\mathrm{I}_{\mathrm{DQ}} / V_{\mathrm{GSQ}}$.

Figure 5. The self-bias load line passes through the origin with a slope $-1 / R \mathrm{~S}$. Bypassing RS will steepen the slope and increase the gain of the circuit.

Signal development is the same as in the case of the partially bypassed constant-current scheme except that the load line is a dc bias line. Signal degeneration is described by Equation $\mathbf{1}$ with X_{C} replaced by \mathbf{R}_{S}. The ac gain of the circuit can be increased by shunting R_{S} with a bypass capacitor, as in the constant-current case. The ac load line then passes through the Q-point with a slope $-\left(1 / Z_{S}\right)=-\left(\omega C_{t} 1 / R_{S}\right)$.

The circuit is biased automatically at the desired Q-point, requires no extra power supply and provides a degree of current stabilization not possible with constant-voltage biasing.

A fourth biasing method, combining the advantages of con-stant-curtent biasing and self biasing, is obtained by combining the constant-voltage circuit with the self-bias circuit (Figure 6). A principal advantage of this configuration is that an approximation may be made to constant-current bias without any additional power supply. The bias load line may be drawn through the selected Q-point and given any desired slope by properly choosing V_{GG}. . The bias line intercepts the V_{GS} axis at V_{GG}.) The larger V_{GG} is made, the larger R_{S} will be and the better will be the approximation to constant-current biasing.

Figure 6. All three combination-bias circuits are equivalent. They add constant-voltage biasina to the self-bias circuit to establish a reasonably flat load line without sacrificing dynamic range.

All three circuits in Figure 6 are equivalent. Circuit 6(a) requires an extra power supply. The need for an additional supply is avoided in $G(b)$ by deriving $V_{G G}$ from the drain supply. $\mathbf{R}_{\mathbf{1}}$ and \mathbf{R}_{2} are simply a voltage divider. To maintain the high input impedance of the FET, \mathbf{R}_{1} and R_{2} must bath be very large.

Very large resistors cannot always be found in the exact ratio needed to derive the desired $\mathbf{V}_{\mathbf{G G}}$ in every circuit application. Circuit $6(\mathrm{c})$ overcomes this problem by placing a large R_{G} between the center point of the divider and the gate. This allows \mathbf{R}_{1} and \mathbf{R}_{2} to be small, without lowering the input impedance.

One point of caution worth remembering is that as V_{GG} is increased, V_{S} increases, and V_{DS} decreases. Therefore with low V_{DD}, there may be a significant decrease in the allowable output voltage swing.

Biasing for Device Variations

The value of the combination-bias technique becomes apparent when one considers the normal production spread of device characteristics. The problem is illustrated in Figure 7

Figure 7. The wide variations in device performance shown by this pair of output characteristics make clear the disadvantages of cont stant-voltage biasing.
where two limiting sets of output characteristics, representing the actual mir-max spread of the Siliconix 2N4339, are presented. Limiting characteristics like these are not normally available. Even if they were, however, they'd be of little help in establishing operating points suitable for all devices with output characteristics lying between the two extremes. The problem is much more easily approached by using the set of limiting transfer characteristics of Figure 8.

(See next page.)

Attempting toestablish suitable constant-voltage bias conditions for a production spread of devices is practical only for circuits with very small values of dc drain resistance - for example, circuits with inductive loads. As the constantvoltage bias plot of Figure 8 reveals, constant gate bias causes a significant difference in operating $I_{D Q}$ for the extreme limit devices. At $V_{G S}=-0.4 \mathrm{~V}$, the range of I_{DQ} is 0.13 to 0.69 mA , and $\mathrm{V}_{\mathrm{DSQ}}$ for a given R_{D} will vary greatly for most resistance-loadedcircuits. For the example of Figure 1, with $\mathrm{R}_{\mathrm{D}}=39 \mathrm{~K} \Omega$ and $\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DSO}}$ varies from near saturation (5 V) to 25 V .

An apparently excellent method of biasing is the constantcurrent method of Figure 3. Biasing in this manner fixes the operating drain current for all devices and sets $\mathrm{V}_{\mathrm{DSQ}}$ to $\mathrm{V}_{\mathrm{DD}}-\mathrm{I}_{\mathrm{DQ}} \mathrm{R}_{\mathrm{L}}$ for any device in the production spread. V_{GS} automatically finds a value to set the appropriate ${ }^{\mathrm{I}} \mathrm{DQ}=$ constant for all devices. For the constant-current bias plot of Figure 8, with $\mathbf{I}_{\mathrm{DQ}}=0.39 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}$ would range from -0.11 to -0.67 V .

Figure 8 The advantages of combination biasing, when one is working with a spread of device characteristics, are made obvious by plotting the load liner for the various types of biasing on a pair of limiting transfer curves.

Output characteristics are not needed as long as ${ }^{\mathrm{E} D}$ is chosen to be below the minimum $\mathrm{D}_{\mathrm{DSS}}$. With $\mathrm{R}_{\mathrm{D}}=39 \mathrm{~K} \Omega$ and $\mathbf{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathbf{V}_{\mathrm{DSO}}$ is 14.8 V for all devices.

The disadvantages of the constant-current method are that it allows nu signal to be developed unless the current source is bypassed and, as we shall see, it lacks the flexibility to provide constant gain despite variations in the forward transconductance, $g_{f s}$, of the devices.

The self-bias scheme is a reasonable choice for single-ended dc amplifiers and for ac amplifiers. In urbypassed or dc circuit;, some compromise must be made between the gain loss due to current feedback degeneration and the advantage of current stabilization achieved with high R_{S}.
An appropriate choice of I_{DQ} limits can be made by using the pair of limiting transfer curves. For example, for $\mathrm{R}_{\mathrm{S}}=$ $1 \mathrm{~K} \Omega$, the load line shown on the self-bias curve of Figure 8 is established. The maximum I_{D} is 0.52 mA , and the minimum I_{D} is 0.24 mA . The operating range of $V_{D S Q}$ may be calculated for any value of V_{DD} and R_{D}. Clearly, for $\mathrm{R}_{\mathrm{D}}=39 \mathrm{~K} \Omega$, the maximum-limit device (device B) would operate with $\mathrm{V}_{\mathrm{DSQ}}=9.8 \mathrm{~V}$ and the minimum-limit device (device A) would operate with $\mathrm{V}_{\mathrm{DSQ}}=20.6 \mathrm{~V}$. This results in fairly satisfactory operation for all devices. However, such a variation in \mathbf{I}_{DQ} imposes severe limitations on the circuit design.

A better approach is illustrated by the combination-bias curve of Figure 8 with $\mathbf{V}_{\mathrm{GG}}=1.2 \mathrm{~V}$. The range of I_{DQ} for
this bias condition is 0.25 mA to 0.32 mA . A similar minimum difference in ${ }^{1}{ }_{\mathrm{DQ}}$ could be achieved with $\mathrm{R}_{\mathrm{S}}=6 \mathrm{~K} \Omega$ and $\mathrm{V}_{\mathrm{GG}}=0$, (a self-bias condition) but the operating points would be pushed toward the toe of the transfer characteristics and allowable signal input would be reduced.

The upper load line allows $\mathrm{Vgs}_{\mathrm{g}}= \pm 1.8 \mathrm{~V}$ (limited hy ${ }_{\mathrm{DSSA}}$), while the lower line allows a $v_{g s}$ of only $\pm 0.7 \mathrm{~V}$ (linited by $\mathrm{V}_{\mathrm{GS} \text { (off) }}$). (The subscript letters A and B refer to the minimum and maximum devices, respectively.) The combination circuit allows almost ideal operation over the full production spread of devices. Even with $R_{D}=62 \mathrm{~K} \Omega$, the $\mathrm{V}_{\mathrm{DSQ}}$ would range only between 10 and 15 V .

For this circuit, $\mathbf{R}_{\mathbf{D}}$ should be chosen to allow the largest output signal swing for ${ }^{\mathrm{D}} \mathrm{DQ}$ midway between the two extremes of 0.25 and 0.32 mA ; namely 0.285 mA . Setting the voltage drop across R_{D} at one-half of (V_{DD} $\left.2 \mathrm{~V}_{\mathrm{GS}(\text { off }) \text { typ }}\right)$ or 14 V , yields $\mathrm{R}_{\mathrm{D}}=(14 \mathrm{~V} / 0.285 \mathrm{~mA})=$ $49 \mathrm{~K} \Omega$.

It is helpful, in any design, to know the effect of temperature variations on the transfer curves and transconductance characteristics. Ideally, minimum and maximum transfer characteristics would be plotted at three temperatures: above, below, and at room temperature. Then the design would take all types of variation into account.

Minimize the Gain Variations

Leaving \mathbf{R}_{S} unbypassed tulps reduce gain variations from device to device by providing degenerative current feedback. However, this method far minimizing gain variations is only effective when a substantial amount of gain is sacrificed.

A better approach is to use the combination-bias technique with the bias point selected from the transfer and transconductance curves (Figure 9).

Figure 9. Gain variations are minimized when the load line is designed to intersect the pair of limizing transfer curves (top) af points of equal g_{fs} (bottom).

As Figure 9 shows, it is possible to find an R_{S} and a V_{GG} that will set $I_{D Q A}$ and $I_{D Q B}$ to values so that $g_{f s Q}$ will be the same for both devices. The g_{fs} of all intermediate devices will be approximately equal to the limiting values. Thus, a constant, or nearly constant, stage gain is obtained even with a by pas: capacitor.

The design procedure is as follows:
Step I. Select a desired I DQA below IDSSA. A good value, allowing for temperature variations. is 60% of I DSSA. This will allow for decreasing ${ }^{\text {I }}$ DSS due to temperature variation and for reasonable signal excursions in load current.
Step 2. Enter the transfer curves st $\mathrm{I}_{\mathrm{DOA}} \cong$ $0.6 I_{\text {DSSA }}(03 \mathrm{~mA})$ to find $\mathrm{V}_{\mathrm{GSQA}}$. This $\mathrm{V}_{\mathrm{GSQA}} \cong 0.2 \mathrm{~V}$ for the 2 N 4339 .
Step 3. Drop vertically at $\mathrm{V}_{\mathrm{GSQA}}$ to the minimum limit transconductance curve to find $\mathrm{g}_{\mathrm{fs} \mathrm{QA}}$. The value as read from the plot is approximately $1000 \mu \mathrm{mho}$.
Step 4. Travel across the g_{fs} plot to the maximum curve to find $\mathrm{V}_{\mathrm{GSQB}}$ at the same value of g_{fs}. This is $\mathrm{V}_{\mathrm{GS}} \mathrm{VB}^{=}-0.7 \mathrm{~V}$.

Step 5. Travel vertically up to the maximum limit transfer curve to find ${ }^{\mathrm{DQB}}$ at $\mathrm{V}_{\mathrm{GSQB}}$. This is $\mathrm{I}_{\mathrm{DQB}} \cong 0.36 \mathrm{~mA}$.
Step 6. Construct an R_{S} bias line through points Q_{A} and Q_{B} on the transfer curves. The slope of the line is $1 / R_{S}$, and the intercept with the V_{GS} axis is the required V_{GG}.

As Figure 9 demonstrates, it may be somewhat inconvenient to perform Step 6 graphically. An algebraic solution can then be cmployed instead. The source resistance is given by

$$
\begin{equation*}
\mathrm{R}_{\mathrm{S}}=\left(\mathrm{V}_{\mathrm{GSQA}}-\mathrm{V}_{\mathrm{GSQB}}\right) /\left(\mathrm{I}_{\mathrm{DQB}}-\mathrm{I}_{\mathrm{DQA}}\right) \tag{2}
\end{equation*}
$$

and the bias voltage is

$$
\begin{equation*}
\mathrm{V}_{\mathrm{GG}}=\mathrm{R}_{\mathrm{S}} \mathrm{l}_{\mathrm{DQB}}+\mathrm{V}_{\mathrm{GSQB}} \tag{3}
\end{equation*}
$$

Care should be taken to maintain the proper algebraic signs in Equations 2 and 3. (For n-channel FETs, V_{GS} is negative and D_{D} is positive. For p-channel units, the signs arc reversed.)

If the transconductance curves of Figure 9 are not available, g_{fs} can be determined by simply measuring the slope of the transfer curve at the desired operating point. Just place a straight-edge tangent to the curve at the Q-point and note the points at which it intercepts the I_{D} and $V_{G S}$ axes. The slope and g_{fs} are given by:

$$
\begin{equation*}
\text { slope }=\mathrm{g}_{\mathrm{fs}}=\mathrm{I}_{\mathrm{D}(\text { intercept } \mathrm{t}} /-\mathrm{V}_{\mathrm{GS}(\text { intercep } \mathrm{t})} \tag{4}
\end{equation*}
$$

In designing a constant-gain circuit, simply set the straightedge tangent to the transfer curve of device A at point Q_{A} and slide it, without changing its slope, until it is tangent to the curve of device B. The tangency point is Q_{B}.

Designing Without Output Curves

Although the transfer characteristic has been seen to be extremely valuable in designing a bias circuit, it cannot be used to graphically establish $\mathrm{V}_{\mathrm{DSQ}}$. However. if a set of output curves is not available, $\mathrm{V}_{\mathrm{DSQ}}$ can be determined or selected from the transfer curve by using the following procedure:

Step I. Establish R_{S} and limiting values of I_{DQ}. $\mathrm{V}_{\mathrm{GSO}}$ and $\mathrm{g}_{\mathrm{fSO}}$ from the transfer curve.
Step 2. Establish V_{DD} as available, but in nu case greater than $\mathrm{BV}_{\text {GSS }}$ nor less than several times V_{GS} (off). There are special cases where V_{DD} will be below this limit. but in no case should instantaneous v_{dg} be allowed to fall below $2^{*} \times \mathrm{V}_{\mathrm{GS}(\text { off })}$ if minimum distortion is to be achieved.
Step 3. Set $\mathrm{V}_{\mathrm{DSQ}}$ approximately midway between V_{DD} and $2 \times \mathrm{V}_{\mathrm{GS}(\mathrm{off})}$; lower if large output signals will not be handled.
Step 4. Select R_{D} to give the appropriate $\mathrm{V}_{\mathrm{DSO}}$. The formula is:
$\mathrm{R}_{\mathrm{D}}=\left[\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{DSQ}}\right) / 0.5 \mathrm{I}_{\mathrm{DQA}}+\mathrm{I}_{\mathrm{DQB}}\right]-\mathrm{R}_{\mathrm{S}}$

In the example of Figure 8, this procedure would have yielded $\mathrm{V}_{\mathrm{DSQ}}=(30-3) / 2=13.5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{D}}=(30-13.5) / 0.5$ (0.52 t 0.24) $\mathrm{mA}-1 \mathrm{~K} \Omega=42.5 \mathrm{~K} \Omega$.

Step 5. Check to ensure that with this R_{D}, device B is not in a saturated condition $-V_{D Q B}=$ $V_{D D}-I_{D B Q} R_{D}>2 V_{G S \text { (off) }}+R_{S} I_{D B Q}$. Decrease $\mathbf{R}_{\mathbf{D}}$ if this condition is not met.

An alternate method, that selects $\mathbf{R}_{\mathbf{D}}$ to provide a specified voltage gain, follows Steps 1 and 2 above and then proceeds as follows:

Step 3. Determine required stage gain, A , and set $\mathrm{R}_{\mathrm{D}}=\mathrm{A}_{\mathrm{v}} / \mathrm{g}_{\mathrm{fSQ}}$.
Step 4. Calculate V_{DS} to ensure that the criteria of Step 2 are not violated:
$\mathrm{V}_{\mathrm{DSQ}}=\mathrm{V}_{\mathrm{DD}}-\left(\mathrm{R}_{\mathrm{D}}+\mathrm{R}_{\mathrm{S}}\right) \mathrm{I}_{\mathrm{DQ}}$
Step 5. If necessary, change $\mathrm{I}_{\mathrm{DQ}}, \mathrm{V}_{\mathrm{DD}}, \mathrm{A}_{\mathrm{v} \text { and/or }}$ R_{T} to obtain an optimum compromise. $1 /$

FETSOURCE-FOLLOWER CIRCUITS

Too little knowledge of biasing methods for FET amplifiers sometimes keeps engineers from making maximum use of FETs in circuit designs. The common-drain amplifier, or source follower, is a particularly valuable configuration; its high input impedance and low output impedance make it very useful for impedance transformations between FETs and bipolar transistors.

By considering 10 circuits, which represent virutally every source-follower configuration, the designer can obtain consistent circuit performance despite wide device variations.

There are two basic connections for source followers: with and without gate feedback. Each connection comes in several variations (Figure 10). Circuits 10(a) through 10(e) have no gate feedback; their input impedances, therefore. are equal to \mathbb{R}_{G}. Circuits $10(f)$ throueh $10(\mathrm{k})$ employ feedback to their gates to increase the input impedance above R_{G}.

Before getting into the details of bias-circuit design, note several general observations that can be made about the circuits of Figure 10:

- Circuits a, d and f can accept only positive and small negative signals, because these circuits have their source resistors connected to ground. The other circuits can handle large positive and negative signals limited only by the available supply voltages and device breakdown voltage.
- Circuits $\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{h}, \mathrm{j}$, and k employ current sources to improve drain-current $\left(\mathbf{I}_{\mathrm{D}}\right)$ stability and increase gain.
- Circuits d, e and k employ FETs as current sources. In circuit d, Q_{2} must have a lower cut-off voltage, $\mathrm{V}_{\mathrm{GS} \text { (off) }}$, and a lower zero gate-voltage drain current, $\mathrm{I}_{\mathrm{DSS}}$, than Q_{1}.
- Circuits $\mathrm{e}, \mathrm{g}, \mathrm{h}$ and k employ a source resistor, $\mathrm{R}_{\mathbf{S}}$ which may be selected to set the quiescent output voltage equal to zero.
- Circuits e and k use matched FETs. $\mathbf{R}_{\mathbb{S}}$ is selected to set I_{D} near the specified low-drift operating current. The input-output offset is zero.

g

h

j

k

Figure 10. Virtually every practical source-follower configuration is represented in this collection of ten citcuits. The configurations in the fop row do not employ gate feedback: the corresponding ones in the bottom row do.

Biasing Without Feedback is Simple

The no－feedback circuits of Figure 10 （circuits 10（a）through 10 （e）use simple biasing techniques（see the earlier article）． Circuit 10（a）is a self－bias configuration；the voltage drop across $\mathbf{R}_{\mathbf{S}}$ biases the gate（whichdraws essentially zero cur－ rent）through resistor R_{G} ．Since no gate－to－source voltage， \mathbf{V}_{GS} ，can be developed when $\mathrm{I}_{\mathrm{D}}=0$ ，the self－biasload line passes through the origin（Figure 11）．For the 2N4339 FET， whose limiting transfer characteristics are used throughout this article，the quiescent drain current is seen to lie between about 0.25 and 0.55 mA when a $1 \mathrm{~K} \Omega$ source resistor is used．The quiescent output voltage lies between +0.25 and +0.55 V ．

Figure 11．Self biasing（Figure 10a）user the valtage dropped across the source resistor， R_{S} to bias the gate．The load line passes through the origin and has a slope of $-1 / \mathrm{R}_{\mathrm{S}}$ ．

Circuit $10(b)$ is another example of source－resistor biasing with a $-\mathrm{V}_{\mathrm{SS}}$ supply added．The advantage aver circuit $10(\mathrm{a})$ is that the signal voltage can swing negative to approxi－ mately $-\mathrm{V}_{\mathrm{SS}}$ ．Two bias lines are shown in Figure 12，one for $\mathrm{V}_{\mathrm{SS}}=-15 \mathrm{~V}$ and the other $\mathrm{V}_{\mathrm{SS}}=-1.6 \mathrm{~V}$ ．For the first case， the quiescent output voltage lies between +0.18 and $t 0.74 \mathrm{~V}$ ． For the second，it lies between +0.3 and +0.82 V ．

Figure 12．Adding a $V_{S S}$ supply to the self－bias circuit（Figure 10b） allows if to handle large negative signals．The load line＇s intercept with the $V_{G S}$－axis is at $V_{G S}=-V_{S S}$ ．Bias lines are shown for $V_{S S}=-15 V$ and $V_{S S}=-1.6 V$ ．

The bias load line tor circuit $10(c)$ is just a horizontal h e （ $\mathrm{I}_{\mathrm{D}}=$ constant）．The quiescent output voltage is between +0.15 and 0.7 V for $\mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~mA}$ ．

Circuit $\mathbf{1 O (d)}$ is similar to $\mathbf{1 O (c)}$ except that the $\mathrm{V}_{\mathrm{GS}}=0$ out－ put characteristic of FET Q_{2} is used as a current source．As seen in Figure $13, Q_{2}$ does not supply constant current when its V_{DS} gets very small．This technique should therefore be used only to bias FETs whore $\mathrm{V}_{\mathrm{GS} \text {（off）}}$ is significantly high－ er than the equivalent $\mathrm{V}_{\mathrm{GS} \text {（off）}}$ of the current－source PET diode．

Figure 13．$F E T Q_{2}$ doesn＇t behave like an ideal current source when its VoS gets very small（ F igure 10d）．Therefore，Q_{1} should haves significantly larger $\mathrm{V}_{\mathrm{GS}}(\mathrm{off})$ than Q_{2} does．
A pair of matched FETs isused in the circuit of Figure $10(\mathrm{e})$ ， one as a source follower and the other as a current source． The operating drain current $\left(\mathrm{I}_{\mathrm{DQ}}\right)$ is set by $\mathrm{R}_{\mathrm{S} 2}$ ，as indicated by the load line of Figure 14．The drain current may be any－ where from 0.20 to 0.42 mA ，as shown by the limiting transfer characteristic intercepts；however， $\mathrm{V}_{\mathrm{GS} 1}=\mathrm{V}_{\mathrm{GS} 2}$ because the FETs are matched．

Figure 14．This load line is set by $\mathrm{R}_{\$ 2}$ and Q_{2} which acts as a cur－ rent source（Figure 10 e ）．If its components are properiy matched． the circuit will have zero or near－zero offset．
Since $\mathbf{I}_{\mathbf{D} 1}=\mathbf{I}_{\mathbf{D} 2}$ and $\mathbf{V}_{\mathrm{GS} 1}=\mathbf{V}_{\mathbf{G S} 2}$ ，choosing $\mathbf{R}_{\mathbf{S} 1}=\mathbf{R}_{\mathbf{S} 2}$ will ensure that the voltage from point A to B equals the voltage point from point C to D （Figure $10(\mathrm{e})$ ）．This source follower，therefore，exhibits zero or near－zero offset．If the FETs are temperature－matched at the operating \mathbf{I}_{D} ，the source follower will exhibit zero or near－zero tempera－ ture drift．

Biasing With Feedback Increases $\mathbf{Z}_{\text {in }}$

Each of the feedback－type source followers（Figure 10（f） through $10(\mathrm{k})$ ）is biased by a method similar to that used with the nonfeedback circuit above it．However，in each case， $\mathbf{R}_{\mathbf{G}}$ is returned to a paint in the source circuit that provides almost unity feedback to the lower end of $\mathbf{R}_{\mathbf{G}}$ ．If \mathbf{R}_{S} is chosen so that \mathbf{R}_{G} is returned to zero dc volts（except in circuit $10(f)$ ，then the input／output offset is zero． \mathbf{R}_{1} is usually much larger than R_{S} ．

Circuit $10(f)$ is useful principally for ac-coupled circuits. $\mathbf{R}_{\mathbf{S}}$ is usually much less than \mathbf{R}_{1} to provide near-unity feedback. The bias load line is set by $R_{\mathbb{S}}$ (Figure 15). The output load line, however is determined by the sum of $\mathbf{R}_{S} \mathbf{t} \mathbf{R}_{1}$. The feedback voltage V_{FB}, measured at the junction of R_{S} and \mathbf{R}_{1}, is determined by the intercept of the $\mathrm{R}_{\mathbf{S}}+\mathrm{R}_{1}$ load line with the $V_{G S}$ axis. The quiescent output voltage is $\mathrm{V}_{\mathrm{FB}}-\mathrm{V}_{\mathrm{GS}}$.

Figure 15. The bias load line is set by R_{S} but the output load line is determined by $\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{1}$ when gate feedback is employed (Figure 10f). The feedback V_{fb} is determined by the intercept of the $\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{1}$ load line and the V_{GS} axis.

In the circuit of Figure $10(\mathrm{~g}), \mathrm{R}_{\mathrm{S}}$ can be trimmed to provide zero offset. As the curves show (Figure 16), R_{S} will be between 670 ohms and $2.5 \mathrm{~K} \Omega . \mathrm{R}_{\mathrm{S}}$ is much less than R_{1}. The source load line intercepts the V_{GS} axis at $\mathrm{V}_{\mathrm{SS}}=$ $-\mathrm{V}_{\mathrm{GG}}=-15 \mathrm{~V}$.

Figure 16. Ris can be trimmed to provide zero offset at some point between 670 ohms and $2.5 \mathrm{~K} \Omega$ (Figure 10 gl . The source load line intercepts the $V_{G S}$ axis at $V_{S S}=V_{G G}=-15 \mathrm{~V}$. Note that this load line is not perfectly flat. It has a slope of $-1 / 50 \mathrm{~K}$, because the currant source is not perfect; it has s finite impedance.

Circuit $\mathbf{1 O (h)}$ is almost the same as $\mathbf{1 0 (g)}$; the difference is that resistor \mathbf{R}_{1} is replaced by a current source. Since an ideal current source has infinite impedance, the bias curve of
circuit $1(\mathrm{~h})$ differs from that of Figure $10(\mathrm{~g})$ (Figure 16) in that the load line is perfectly fat. In Figure 16 the load line is almost, but not quite, flat; it has a slope of $-1 / 50 \mathrm{k}$.
Circuit $10(\mathrm{j})$ is similar to $10(\mathrm{~h})$ except that the output is taken from the top of R_{S} to reduce the output impedance. R_{S} must be trimmed if the circuit is to work at all properly.

In Figure 17, the constant-current load line represents a $0.3-\mathrm{mA}$ current source, and the effect of a $1 \mathrm{~K} \Omega$ source resistor is shown. The offset voltage is seen to lie between 0.2 and 0.75 V . The intercept of the R_{S} load line and the V_{GS} axis sets the voltage at the junction of R_{S} and the current source $\left(\mathrm{V}_{\mathrm{FB}}\right)$. For $\mathrm{R}_{\mathrm{S}}=1 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{FB}}$ will be between -0.1 V and +0.45 V . Since V_{FB} appears at the gate, it must be zero if the dc input impedance of the circuit is to be preserved.

Figure 17. If R_{S} is not trimmed so that the load line passes through the origin. a voltage will appear at the gate causing a reduction in de input impedance. The incremental imput impedance will not be affected.

This can be done by trimming \mathbf{R}_{S}, as shown dashed in Figure 17. The biasing then becomes the same as for circuit $10(h)$.

Biasing for circuit $10(\mathrm{k})$ is identical to that far circuit $10(\mathrm{e})$ (Figure 14) except that feedback is added to raise the input impedance...

REFERENCES

(1) Sherwin, J.S., "How, Why and Where to Use FETs," Electronic Design, May 17, 1966, p. 94.
(2) Sherwin, J.S., ' Knowing the Cause Helps to Cure Distortion in FET Amplifiers," Electronics, Dec. 12, 1966, pp. 99-105.

APPLICATION NOTE

Don't Trade Off Analog Switch Specs. VMOS-A Solution to High Speed, High Current, Low Resistance Analog Switches

Walt Heinzęr

INTRODUCTION

For analog switches, Vertical MOS (VMOS) transistors give you a nearly ideal combination of characteristics-without the tradeoffs required by the more conventional components. These devices are now available from two American suppliers: Siliconix and its licensee, Semtech.

Unlike the commonly used N-channel JFETs. VMOS chips that handle mare than a few hundred milliamps are also small enough for economical production. Smaller chips lead to lower inherent capacitances. Moreover, the basic VMOS structure provides lower ON resistance.

Some analug switches use relays, bipolan transistors and even triacs. Although electromechanical relays offer the lowest ON resistance initially, their ON resistance will vary with current and degrade with use. Also, relays suffer from mechanical limitations.

Bipolar transistors require base-drive current that causes offset in the switched analog signal. Triacs are only suitable fur switching raw power; for analog switching, they introduce too much offset and non-linearity although they easily handle high power.

VMOS Offers High Performance

VMOS devices aren't limited by any of these disadvantages. They can switch 10 W , linearly, aver a wide dynamic range. In addition, VMOS input impedance is very high, and only input voltage (no current) turns the transistors OFF or ON.

And since the drain-to-source channel is purely resistive while ON, you get low distortion.

VMOS transistors in analog switches offer several more advantages, including

- $1.8 \Omega \mathrm{ON}$ resistance, which results in low insertion Ioss in low-impedance systems
- 20 A DC current capability-paralleling three VMOS devices increases this capability to 6.0 A and unlike other devices. paralleled VMOS do not require powerwasting ballast resistors
- 3 A peak current, which makes VMOS super for driving capacitive lines and quickly charging and discharging capacitors in high speed A/D converters, sample and hold circuits, and integrators
- 60 dB isolation at 10 MHz and 500 nA DC leakage in the OFF state
- Enhancement-mode operation with a 0.8 to 2.0 V threshold, which gives VMOS direct compatibility with CMOS and TTL. And the logic gates aren't loaded by the VMOS.
- Linear ON resistance, which results in low total harmonic and intermodulation distortion

What's more, all these capabilities come. in a TO-202AA package.

Reprinted with permission from ELECTRONIC DESIGN, ©Hayden PublishingCo.. Inc., 1977.

Examine the output characteristics of a low resistance VMOS device like the Siliconix VN46AF. A look at the transfer characteristic in Figure 1 A reveals that varying the gate-to-source voltage from 0 to +10 V switches the VN46AF from OFF to ON -with a 3Ω ON resistance. From the curve you can see that the device turns OFF well before zero volts, which eases interfacing with logic.

In the VN46AF schematic in Figure 1 B , note that the body and source are internally connected. Figure 1 C and 1 D , respectively, show simplified models of the VN46AF's OFF and ON states. Diode D_{1} is the body-to drain PN junction. When the VN46AF is OFF, its drain current ws drain-tosource voltage characteristics (Figure 1E) is essentially the curve for D_{1}.

The breakdown for D_{1} is 40 V , and the diode exhibits forward conduction for drain-to-source potential as low as 0.6 V . This diode therefore constrains the analog voltage, which a simple switch (one VMOS transistor) can handle, to between -0.6 and t 40 V .

When the VN46AF is ON, a 2Ω resistance is in paraliel with D_{1}. Maximum continuous current in either direction is 2.0 A , even though the diode is forward-biased for currents over 0.5 A .

One VMOS Device Makes an Analog Gate

VMOS characteristics are put to good use in the analog switch of Figure IF. In the ON state, the gate of the VN46AF is positive with respect to the source. In the OFF state, the gate-to-source voltage is zero. The 2.0 A capability and the $\mathbf{3} \Omega \mathrm{ON}$ resistance of the VMOS transistor can be fully exploited in this circuit. The input signal, however, is restricted to positive voltages and must always be greater than the output voltage. Otherwise, OFF isolation is impaired.

Both ON and OFF switching takes 200 ns ; charge feedthrough during the ON-to-OFF transition is 80 pC with a 50Ω load. Charge transfer is, of course, especially important in sample and hold systems. For example, 80 pC into $0.01 \mu \mathrm{~F}$ causes an offset of 8 mV .

Schematic Symbol of VN46AF
Figure 1B

Equivalent OFF Condition $\mathbf{V G S}_{\mathbf{G S}}=01$
Figure 1C

Figure 1A

Equivalent ON Condition $\left(\mathbf{V}_{\mathbf{G S}}=10 \mathbf{V}\right)$ Figure 10

drain source voltage ivolts)

A Simple Unidirectional VMOS Analog Switch $\left(\mathbf{v}_{\mathbf{i}} ■ \mathbf{v}_{\mathbf{0}}\right)$ Figure 1 F

Small Signal Characteristics of VN46AF

Figure 1 E
The VN46AF switthes from OFF to ON with a 3Ω drain-to-source resistance, when its gate-to-source potential swings from 0 to +10 V . The device tiurns OFF at about 1 VIAI. Soma VMOS transistors (B) carry an an-board zener diode that protects the gate-to-source junction. A VMOS transistor is equivalent to two diodn in the OFF ruts (C), when the gate-to-source voltage is lass than the threshold value. The equivalant diode, \mathbf{D}_{1} is shanted by 3Ω when the VMOS device is $\mathrm{ON}\{\mathbf{D}$), with the gate-to-source potential at $+\mathbf{1 0} \mathrm{V}$. The small signal drain-to-mums voltage vs current characteristic (\mathbf{E}) is essentially determined by the body-to-drain diode. The input is restricted to positive voltages in the single-VMOS analog gate (F).

Figure 1

To increase the switch's dynamic range, connect two VN88AF's in series (Figure 2A). In the ON state, both halves of the DG300 analog switch are open, so the gates of both VN88AF's are pulled to +15 V through the $10 \mathrm{~K} \Omega$ resistor. The ON resistance of this analog switch is twice as high as the drain-to-source resistance of a single VN88AF. The maximum current that this two-transistor switch can handle is the same as that for a single-transistor switch (2.0 A).

The switch is turned OFF by shorting the gates to the negative supply, thereby reducing the gate-to-source voltage to less than the threshold of 0.8 V . The second section of the DG300 adds 30 dB OFF isolation by shunting the signal-leakage path (through both sources) to the negative
supply. OFF-isolation curves (Figure ZB) show that the DG300 raises the circuit's isolation and that decreasing the load resistance increases isolation.

Since the two transistors are back-to-back, one body-todrain diode is always reverse-biased. This eliminates the OFF-state problem caused by forward-biasing the diode.

Since the bidirectional switch's gate drive is referenced to a fixed supply, its ON resistance varies with the input analog voltage (Figure 2C). This variation introduces distortion when you're driving low-impedance loads such as speakers or transmission lines. For constant ON resistante, use the circuit in Figure 3A.

ON resistance is doubled in the two VMOS switch (A), but inputs of both polarities are handled without losing isoletion. The DG300 analog gate (B) raises the circuit's isolation by $30 \mathbf{d g}$. Decreasing load resistance also improves isolation. With the gate drive referenced to a fixed voltage (C), the ON resistance varies undesirably with the input, and generates distortion, especially with law impedance loads like speakers and transmission lines.

Figure 2

In the ON state, a bootstrap voltage that tracks the input drives the gates of the VN88AF's. This bootstrapping keeps the VMOS's gate-to-sourcevoltage constant and independent of the input signal. So, changes in the input-signal level do not modulate the ON resistance of the switch.

The buffer circuit reduces the computed total harmonic distortion from 1.5% to 0.005%, for 8 Vrms at 1 kHz into 5012 (Figure 3B). The papular 1012 DG186 JFET analog switch generates a higher total harmonic distortion of about 2%.

The two buffer circuits shown in Figures 3C and 3D isolate the input signal and employ a zener diode to provide a fixed gate-to-source voltage. The general-purpose buffer of

Figure 3C has a flat frequency response of up to 300 kHz and accepts inputs ranging between $\pm \mathbf{1 5} \mathrm{V}$. The buffer of Figure 3D, VN66AK source follower, has. its frequency response extended to $50 \mathbf{M H z}$ and, when operated from $\pm 30 \mathrm{~V}$ supplies, increases the signal range to $\pm 30 \mathrm{~V}$.

The VN66AK and VN88AF do not have on-board zenet diodes like the VN66AF transistor. At the expense of the diode protection, the VN66AK and VN88AF gain lower capacitance from gate-to-source and reduced DC "see through" from driver to signal path. Bootstrapping the switch's gate circuits with a buffer permits the switch to operate with low distortion even as the signal amplitude comes close to the positive supply voltage.

Bootstrapping the gete and input cuts distortion by holding the ON resistance constant (A). The buffered bootstrap circuit (A) distorts less than either a JFET or e nonbootstrapped VMOS analog switch (B). A general-purpose buffer (C) using the LM310 op amp is suitable for low speed switches, but when you need a fast anglog switch, use the VN66AK buffer (D). In addition to speed, this buffer gives you increased isolation.

VMOS Devices Parallel Without Padding

Paralleling devices lowers the total ON resistance. For example. three paralleled legs, each with two VN46AF's in series, make a 1Ω switch (Figure 4A). Because VMOS devices are immune to current hogging, no ballast or balance resistors are needed. Negative tempcos, a VMOS feature, cause these devices to draw less current as they heat up. As a result, excess current is automatically shared by paralleled VMOS devices.

Paralleling three VN46AF's not only decreases ON resistance, but also increases the current capability to 6.0 A
and extends the linear range of the large signal transfer characteristic from $\mathbf{0 . 3}$ to 1.2 A (Figure 4B).

The voltage range of the basic analog switch can also be increased. Simply use a higher breakdown VMOS unit (Figure 5). The VN98AK's have a 90 V breakdown, which allows up to $\pm 40 \mathrm{~V}$ of voltage swing capability. However, these higher voltage devices do carry a penalty the ON resistance is higher: 3.512 vs $\mathbf{3 . 0} \Omega$ for the VN46AF. Zener diode D_{1} limits the gate-to-source potential to $\mathbf{3 0} \mathbf{V}$, and thereby prevents a possible gate-oxide rupture. Diode CRI 10 limits the current from the 50 V gate-bias supply.

No ballast or balance resistors are needed when VMOS devices are parallaled (A) because negative tempcos immunize them from eurrent hogging. Paralleling extends the linear range from 0.3 to $1.2 \mathrm{~A}(\mathrm{~B})$ as it decreases the ON resistance of the analog switch to 1 nand increases its current-handling capability to 4.5 A.

Figure 4

90 V Peak to Pssk Analog Switch
You pay for 90 V breakdown in the VN98AK with 3.0Ω ON resistance, which allows swings of $\pm 40 \mathrm{~V}$. The zener diode limits the gats to-source potentials to 30 V .

Figurg 5

For the Ultimate in Switching Speed

The high power RF switch shown in Figure 6A performs very well up to $50 \mathrm{MHz}-$ with tom-ON and turn-OFF times of 50 ns . At 10 MHz , isolation is 60 dB with a 20 V pk-pk input signal. Insertion loss is only 1 dB with a 50Ω load (Figure 6B). The gain ws input power curve in Figure 6 C shows that the RF analog switch using VN66AK's can put 1 W into a 50Ω load at 14 MHz . The two-tone, third order, intermodulation product curves show a 42 dB
intercept point with 1 dB of gan compression at 25 dBm input power.

Turn-ON time of the switch (Figure 6D) is determined by the passive pull-up resistor combined with the capacitance at the gates of the VN66AK's. The negative turn-OFF transient is caused by charge-coupling to the output through the output capacitance of the VN66AK.

Insertion Loss and Isolation vs Frequency of RF Analog Switch Figure 68

Gain and Two Tone 3rd Order Intermodulation Figure 6C

Switching Response of RF Switch info $\mathbf{5 0} \mathbf{O h m}$ Load
Figure 6D
The VN66AK switches high power at RF (A). At 10 MHz a a 20 V pk-pk signal is attenuated by $\mathbf{6 0} \mathbf{0} \mathbf{d B}$ and the insertion loss is only 1 dB info 50Ω and 10 pF (B_{B}). Third-order intermodulation distortion is given by the 42 dB intercept point, and 1 dB gain comprassion occurs at 25 dBm input tor 14 MHz (C). The negative turn-OFF transient (D) is caused by charge-coupling to the output through the output capacitance of the VNG6AK,

APPLICATION NOTE
 Driving VMOS Power FETs

Dave Hoffman
January 1979

INTRODUCTION

Using VMOS Power FETs you can achieve performance never before possible-if you drive them properly. This article describes circuits and suggests design methods to be used in order to oblain the performance from VMOS that you need.

When designing with VMOS there are some facts that must be kept in mind in order to get optimum results with every circuit. The first fact is that VMOS is a very high frequency device. The cut-off frequency fur all VMOS FETs is several hundred megahertz. Most power designers are not used to designing with extremely high frequency devices because with bipolars the frequency response decreases as the Dower increases. The very high frequency response of VMOS is the basis for many of its advantages but it must be kept in mind while designing. With improper circuit design VMOS can oscillate. This osciliation can be eliminated, though, by exercising two simple precautions. First, minimize lead and trace lengths whenever possible, especially leads associated with the gate of the FET. If it is not possible to have short leads to the gate place a ferrite bead on the gate lead or a small resistor in series with the gate. The ferrite bead or the resistor must be very close-to the gate. Second, because of the extremely high input impedance of VMOS (in excess of $10^{12} \Omega$) drive circuits may be designed which are very high impedance. Under these conditions it is possible for the gate node to get enough positive feedback from the gate-to-drain capacitance or just from stray fields in the circuit to cause oscillation. This must be kept in mind in the design of the circuit.

A Typical VMOS Switching Circuit Figure 1

When driving VMOS it must be kept in mind that the dynamic input impedance is very different than the static input impedance. The input of a VMOS device is capacilive. The DC input impedance is very high but the AC input impedance varies with frequency. Because of this effect. the rise and fall times of VMOS are dependent on the output impedance of the circuit driving it. The first approximation of the rise or fall time is simply

$$
\begin{equation*}
t_{\mathrm{r}} \text { or } \mathrm{t}_{\mathrm{f}}=2.2 \cdot \mathrm{R}_{\text {OUT }} \cdot \mathrm{C}_{\text {iss }} \tag{1}
\end{equation*}
$$

where ROUT is the output impedance of the drive circuit. This equation is valid only if the drain load resistance is much larger than ROUT. Knowing this fact, along with the fact that there is no storage or delay time with VMOS, it is very easy to calculate the rise and fall times and set them to any desired value. For example, if you wanted to calculate the 10% to 90% rise or fall time for the circuit shown in Figure 1 using Equation 1 the rise time is equal to:

$$
\mathrm{t},=(2.2)(500)\left(50 \times 10^{-12}\right)=55 \mathrm{nsec}
$$

The dynamic input characteristics of VMOS are covered very thoroughly in Siliconix' application note AN79-3.1

A last thing to remember when you are driving VMOS is the input protection zener diode. When putting a positive voltage on the gate with respect to the source, the maximum voltage rating of the zener diode should not be exceeded. It is more important, however. that you do not forward bias the zener diode by putting a negative voltage on the gate while the VMOS is operating in a circuit. The reason for thii is most easily explained by referring to Figure 2. As can be seen in the figure, the zener diode is actually the base-emitter junction of a bipolar transistor. If a negative voltage greater than 0.6 V is placed on the gate, the base-emitter junction of the bipolar will be forward biased which will turn on the bipolar transistor. When the bipolar is turned on, cur. rent will flow from the drain through the bipolar and out the gate. This operating condition is very likely to be destructive. If negative voltages must be placed on the gate it is recommended that you use a VMOS part that does not have an input zener diode. Non-zenered equivalents are available for most of Siliconix' zenered devices.

A Parasitic NPN Transistor in Zener Protected MOSFETS Figure 2

Of all operating modes the commur-suurce connguration is the simplest to drive. Because of the high input impedance of VMOS it can be driven directly from many logic families. When driving from a CMOS gate as shown in Figure 3, rise and fall times of about 60 nsec can he expected due to the limited source and sink currents available from the CMOS gate. 2 If faster rise and fall times are required there are several ways to obtain them. One easy way is if there are extra gates in the package that is driving the VMOS simply put the extra gates in parallel with the gate already being used. The additional current available will cut down the rise and fall times. If no extra gates are available an emitter-follower buffer can be used as shown in Figure 4. With this circuit the current available to the VMOS will he the output current of the CMOS multiplied by the beta of the bipolars. Because the bipolars are operating as emitter-followers there will still be no storage time to worry about and the frequency limit will be determined by either the CMOS gate or the f_{τ} of the bipolars, whichever comes first.

VMOS can also be driven directly from TTL gates. Because the output voltage of TTL is limited, the output current of the VMOS will be limited to some value less than its maximum rated current. The output current that can be expected can be determined from the transfer characteristic of the device being used. For example, if a TTL gate is driving VN46AF the minimum output current of the VMOS will be approximately 250 mA . This value was obtained by using the minimum output voltage of the TTL gate (3.2 V) for a high level output and referring to the transfer characteristic for the VNAZ which is the VMOS geometry used in the VN46AF. If more than 250 mA is required the output of a standard VMOS gate can be pulled up to the 5 V rail as shown in Figure 5. With a full 5 V on the gate the VN46AF will typically sink 600 mA .

For very high speeds a capacitive driver such as the MH0026 can be used as shown in Figure 6. With this drive configuration typical rise and fall times are less than 10 nsec.

When operated in the common-drain mode VMOS is somewhat more difficult to drive than when in the com-mon-source mode. Because of VMOS' high input impedance, though, it is considerably easier to drive commondrain than a bipolar would be when operated common collector. Common-drain circuits can be used when the load needs to be connected to ground, when an active pull-up and pull-down is required (totem pole circuit), or in bridge lype circuits. For the purpose of this discussion all examples will be shown with totem pole circuits.

Driving VMOS with a CMOS Gats Fiqure 3

Pulling Up a ITL Output Will Increase the Sink Current of the VMOS Figure 5

An Emitter-Follower Circuit Will Decrease VMOS Rise and Fall Times
 Figure 4

Using an MOS Clock Driver to Drive VMOS Figure 6

The difficulty with common-drain circuits occurs because an the voltage across the load increases the enhancement voltage of the common-drain device decreases. Referring to Figure 7, as the voltage across R_{L} approaches V_{2} the enhancement voltage for the upper VN66AF decreases. If V_{1} is not greater than V_{2} then the voltage across R_{L} can never reach V_{2}. For this reason whenever a com-mon-drain circuit is used it is always necessary to have or to generate a voltage that is greater than the voltage which is desired to be impressed across the load. The amount the voltage has to be above the desired drain voltage is dependent upon the current the VMOS must source and can be determined from the transfer characteristic of the VMOS being used. If no supply voltage is available other than the one the load is to be pulled up to, one can be generated. This can be done very easily because of the very low drive current requirements of the VMOS.

VMOS in Totem Pole Configuration Figure 7

One way of generating the required gate voltage is the boutstrap circuit shown in Figure 8. In the circuit, when Q_{1} and Q_{3} are on, C_{1} is charged to the supply rail through D_{1}. When Q_{1} and Q 3 are turned off, the gate voltage on Q_{2} goes to the supply mil. As the source of Q_{2} begins to pull R_{L} up, the voltage across C_{1} will be maintained, therefore, the gate-tosource voltage of Q_{2} will be maintained. The size of C_{1} should be large enough so that when it charges the gate capacitance of $\cdot \mathrm{Q}_{2}$ a minimum voltage ' equal to the required enhancement voltage of Q_{2} will be

VMOS Bootstrap Circuit Figure 8
maintained across it. A good rule of thumb is to make C_{1} equal to ten times the $\mathrm{C}_{\text {iss }}$ of the FET. Figure 9 shows the same bootstrap circuit with some added components to improve the rise and fall times. In the circuit Q_{2} acts as an emitter-follower to increase the peak gate current to Q3. D_{2} will be forward biased when Q_{1} turns on and serves as a low impedance path to discharge the pate of Q3.

Bootstrap Circuit with Emitter-Follower for Improved Rise Times Figure 9

Inductive Kickback Drive Circuit Figure 10

Another method to drive a commondrain VMOS FET is shown in Figure 10. Rather than charging a capacitor and then feeding a signal back from the output as was done in the bootstrap circuit, this circuit stores the required charge in an inductor. When Q_{1} is turned off a flyback voltage is generated across the inductor. This voltage is used to maintain an enhancement voltage equal to the voltage of zener diode D_{2} across the VMOS FET. Once the Q_{2} has been fully turned on and the voltage on R_{L}, in at the rail a negligible amount of energy is required to keep Q_{2} on. Q_{2} will remain on until Q_{1} is turned on. or until the leakage currents of Q_{1} and D_{2} discharge the gate capacitance of Q_{2}.

Another method that can be used to drive a commondrain VMOS is transformer drive. A transformer drive circuit is shown in Figure 11. In this circuit the transformer is used in the flyback mode when turning on the upper FET. R_{1} and R_{3} are used to suppress ringing and R_{2}

Transformer Drive Circuit for VMOS Figure 17
and R_{4} are used to assist with turn-off of the FETs. When driving with a transformer, care must be taken to design the transformer so that the secondary inductance in con. junction with the input capacitance of the FET does not create ringing of oscillation problems.

SUMMARY

The very high input impedances of VMOS Power FETs greatly simplify the drive requirements as compared to bipolars. The input drive requirements for both commonsource and commondrain configurations were discussed in detail. With common-source circuits the requirement that needs to be kept in mind is the rise and fall time required. With common-drain circuits a method of maintaining an adequate enhancement voltage must be considered in addition to required rise and fall time requirements.

REFERENCES

1. A. Evans, D. Hoffman, "Dynamic Input Characteristics of a VMOS Power Switch" AN79-3.
2. D. Hoffman, L. Schaeffer, "VMOS - A Breakthrough in Power MOSFET Technology" AN76-3

Publications Index

Document Number	Title	Document Number	Tille
	Application Notes		Design Aids
AN70. 1	FET Cascode Circuits Reduce Feedback Capacitance	- DA74 1	Design Aid of the LD110fLD111 $3^{1 / 2}$ Digit DVM Demonstrator Board
* AN70-2	FETS for Video Amplitiers	- DA76 1	The VMOS Power FET Audio Amplifier
AN71.1	A High Resolution CMRR Test Method	- DA76-2	Design Aid of the LD130 ± 3 Digit DVM
'AN721	FETS in Balanced Mixers		Demonstrator Board
- AN72-2	FETs as Analod Switches	DA.76-3	Design Aid of the LD130 ± 3 Digit Auto-Ranging
AN73-1	FETs as Voltage-Controlled Resistors		DMM Design Aid to Build a Portable 0 to $999^{\circ} \mathrm{F}$
AN73-2	IC Multiplexer Increases Analog Switching Speeds	- Da77-1	nid to Build a Portable Display Thermometer using the DF419
AN73-3	Switching High-Frequency Signals With FET integrated Circuits	- DA77 2 - DA77-3	Desian Aid of the LD120/LD $12141 / 2$ Digit DVM Design A d to Build a Smoke Alarm
AN73.4	Junction FETs in Active Double-Balanced Mixers		Demonstrator with the SM110 Detector IC
AN73.5	Driver Circuits for the JFET Analog Switch	- DA77-4	Design Aid to Build a Plezoelectric Smoke Alarm Demonstrator with the SM110 Detector IC
* AN73-6	Function/Application of the L144 Programmable Micro-Power Triple Op Amp	- DA77-5	Design Aid far a Versatile Darkroom Jimer using the DF215
- AN73.7	An Introduction to FETs	* DA78. 1	Design Ad to Build a CODEC Evaluation
- AN74-1	Functiontapplication of the LD110/LD111 3\% Digit A/D Converter Set	- DA78	Demonstrator with the DF331/DF332/DF334
AN74.2	Analog Switches in Sample and Hod Circuits	-	Signals in DF $331 / \mathrm{DF} 332 / \mathrm{DF} 334$ CODEC Converter
AN74-3	Designing Junction FET Input Op Amps		Applications
- AN74.4	Audio-Frequency Noise Characteristics of Junction FETs	DA78-4	Desgn Aid to Build a Smoke Detector with the SM110 1 C
	CMOS Analog Switches-A Powerfui Design Tool		
	Measuring High Frequency S-Parameters an the Dual Gate MOSFET		Design Ideas
* AN76-2	Function/Application Problem Solving with the DF215 Dual Set Point Timer	D171-1	The FET Constant Current Source
- AN76-3	VMOS - A Breakthrough in Power MOSFET	D171-4	Wideband Mixer Preamplifer Using FETs
	Technology	D171-5	A FET Frequency Doubler
* AN76-4	Function/Application of the LD110/LD114 31/2	D171-6	Using FETs in Selective VHF Amplifiers
	Digit A/D Converter Set	0171.8	Using JFETs in Ultra Wideband UHF Amplifiers
* AN76-5	Function/Application of the LD130 ± 3 Digit converter	- D171.9	Wideband UHF Amplifier with High Performance FETS
* AN76-6	DG300-Series Analoa Switch Applications	- D173-2*	High Performance FETs in Low No se VHF
- AN76.7	Function/Application of the L161 Industry's First Programmable Micropower Comparator		Oscillators
* AN77-1	Function/Application of the LD120/LD121 $41 / 2$ Digit A/D Converter Set in Measurement Systems		Technical Articles
- AN77-2	Don't Trade off Analog Switch Specs. VMOS-A Solution to High Speed, High Current. Law Resistance Analog Switches	TA70. 1	High Frequency Junction FET Characterisation and Application
* AN77.3	Function/Application of the LO120/LD121 4\%	- TA70-2	FET Biasing
	Digit AD Converter Interfaced with an 8080A Microprocessor	- TA73-1	Multiplexer Adds Efficiency To 32 Channel Telephone System
- AN77-4	Function/Application of the DF331/DF332 New	- TA73-2	Designing with Monolithic FET Switches
	Companding Converter Chip Set	- TA76-1	VMOS Power FETs in your next Broadband
- AN79.1	A 500 KHz switching Inverter for 12 V Systems		Oriver
* AN79-2	Stepping Motor Controller	- TA76-2	A New Technology: Application of VMOS Power
- AN79-3	Dynamic Input Characteristics of VMOS Power Switch	TA78-1	FETs for High Frequency Communications Designing with CODECs: Know your A's and μ 's
* AN79.4	Driving VMOS Power FETs	- TA78-2	Designing a VMOS 250 Watt Off-Line Inverter

Siliconix

Document Number	Title
	Catalogs
	Analog Switen Data Book
	Analog Switches and Their Applications (\$400 chargel
	OG300 Series Design Catalog
	FET Data Book
	LSI Design Catalog
	Telecommunications Data Book
	VMOS Power FET Design Catalog
-	OEM Pricing/Product Information Selector Guide

Document Number

Title

Reprints \& Reports

Designing a VMOS 250 Watt Off-Line Inverter David C. Hoffman, Power Coo 3178
Designing with Codec's: Know your A's and μ 's. Thomas J. Mroz, EDN 5176
Lag Data under μ Controi. Gary Grandbois, Electronic Design 5176
Higher Power Ratings Extend VMOS FETs. Dorninion. Arthur D. Evans, David C. Hoffman, Edwin S. Oxner, Waiter Heinzer and Lee Shaeffer. Electronics 6/78
Siliconix, Inc. Annual Report. 1979

glossary of terms and abbreviations

1. Upper care letters indicate DC voltages and currents.

2 Lower care letters indicate AC voltages and currents.
3. Subscripts can refer to the terminals used in the measurements, i.e., $\mathrm{V}_{\mathrm{G}}=$ Gate Voltage; or simply help define the symbol, i.e., $\mathbf{t}_{\mathrm{f}}=$ Fall Time. $\mathbf{t}_{\mathbf{r}}=$ Rise Time.
4. Triple subscripts are used for terminal references only. The first subscript is the object terminal. The second subscript is the common terminal. The third giver the condition of the remaining terminal(s). $\mathrm{S}=\mathrm{Short}, 0=$ open and $\mathrm{X}=$ neither open nor short [refer to the test conditions). Example: $\mathrm{BV}_{\mathrm{GSS}}=$ Breakdown Voltage from gate to source with the drain shorted to the source.

bfg	= Common-Gate Forward Susceptance	$\mathrm{C}_{\text {rss }}$	$=$ Common-Source Reverse Transfer Capaci- tance
$\mathrm{b}_{\text {fs }}$	= Common-Source Forward Susceptance		
		$\mathrm{C}_{\text {sb }}$	= Source-Body Capacitance
$\mathrm{b}_{\text {igs }}$	= Common-Gate Input Susceptance		
		$\mathrm{C}_{\text {sd }}$	= Source-Drain Capacitance
$b_{\text {iss }}$	= Common-Source Input Susceptance		
		Csgo	= Source-Gate Capacitance
$\mathrm{b}_{\text {ogs }}$	= Common-Gate Output Surceptance	0	= Drain
$\mathrm{b}_{\text {Oss }}$	= Common-Source Output Susceptance		
$\mathrm{b}_{\mathbf{r g}}$	= Common-Gate Reverse Susceptance	$\overline{\mathbf{e}}_{\mathbf{N}}$	\qquad
b_{rs}	= Common-Source Reverse Susceptance	$\mathbf{f}_{\mathbf{m}}$	$=$ Figure of Merit
BV ${ }_{\text {DGO }}$	= Drain-Gate Breakdown Voltage	G	= Gate
BVDSS	= Drain-Source Breakdown Voltage	Sfg	= Common-Gate Forward Transconductance
BV ${ }_{\text {SDX }}$	= Drain-Source Breakdown Voltage	9fs	$\begin{aligned} & =\text { Common-Source Forward Transconduc- } \\ & \text { tance } \end{aligned}$
BVG1G2	= Gate-Gate Breakdown Voltage		
BVG1ss	= Gate 1 to Source Breakdown Voltage	$\mathrm{g}_{\text {fo }}$	$\begin{aligned} & =\text { Common-Source Forward Transconduc- } \\ & \text { tance } \mathrm{V}_{\mathrm{GS}}=0 \end{aligned}$
$\mathbf{B V}_{\mathbf{G 2 S S}}$	=Gate 2 to Source Breakdown Voltage	Gfs $1 / \mathrm{gfs} 2$	```=Common-Source Forward Transconduc- tance Ratio```
BV ${ }_{\text {GBS }}$	= Gate-Body Breakdown Voltage	9 g	$=$ Common-Gate Input Conductance
BVGSS	= Gate-Source Breakdown Voltage	gis	= Common-Source Input Conductance
BV ${ }^{\text {SDS }}$	= Source-Drain Breakdown Voltage	8 Og	= Common- Gate Output Conductance
BVSGO	= Source-Gate Breakdown Voltage	Gos	= Common-Source Output Conductance
$C_{\text {db }}$	= Drain-Body Capacitance	$\mathrm{g}_{\text {oss }}$	= Common Source Output Conductance @ $V_{G S}=0$
$C_{\text {dgo }}$	$=$ Drain-Gate Capacitance	Gos1-9os2	= Differential Output Conductance
C_{gb}	= Gate-Body Capacitance	G_{pg}	= Common-Gate Power Gain
$\mathrm{Cgd}^{\text {g }}$	= Gate-Drain Capacitance	G_{ps}	= Cammon-Source Power Gain
C_{95}	= Gate-Source Capacitance	${ }^{1} \mathrm{D}$ (off)	= Drain Cutoff Current
$\mathrm{Ciss}^{\text {is }}$	= Common-Source Input Capacitance	ID(on)	= Drain ON Current
Coss	= Common-Source Output Capacitance	IDGO	= Drain-Gate Leakage

glossary of terms and abbreviations (cont'd)

mechonicel doto ond soles offices

BOTTOM VIEW
TO-18

TO-39

ALL DIMENSIONS IN INCHES
(ALL DIMENSIONS IN MILLIMETERS!

BOTTOM YIEW

U．S．Sales Offices

Sales Offices

Eastern
Siliconlx incorporatad 401 Broad Hollow Ad，At．110 Expwy Plaza，Suite L120 （516）6944－8474 Twx：510－224．6508

Silliconix incorpozated 395 Totter Pond Ad Waltham，MA Twx：710．324－1783

Central

Siliconix incorporafed
1040 S．Milwaukee，Sulle 117 Wheeling，HL 60090 Wreeling，it
i312／541－0131 Twx： 816.576 －2778

Siliconix tneorporated
4615 W．Streetstoro R
4615 W．Streelsbors
Richtield．OH 44286
Richtield． 659 H
Twx： 810.427 .2972

Northwestern

Sulconlx incorporated
2201 Laurelwood Rd Santa Clara，CA 95054 （408） $988-6000$
$T_{w \times x}: 910.338 .02$

Southwestern
Stliconix incorporated
1525 E．17th St．，Suite L
Santa Ana，CA 82701
Santa Ana，CA
i714is47－4474
Twx：910－595－2643

Sales Representatives

ALABAMA，Huntsville（35803） Rep inc： 11527 S Memoriat Pkwy （205） 8819270 Twx 810．726－2102
ARIZONA，Phoenix（85034） Quatra incorporated 2436 South zath Street （602） 252 －5885 Tw：910－951 1369
CALIFORNIA，Cupertino（95014） Costar Incorporated 10080 North Wolfe Ra Sulte swa 175 ［ 408 446．9339 Twx 910338.0206
CALIFORNIA TVine（92714） Cettec Company 18009 Siny Park G：Sulte B （714）557．5021 THK 910.595 .2512
CALIFORNIA，S月TMDiego（92111） Geitec Company 7867 Convay Ct Sulte 312 （714）279．7961 TW． K 910．335 1512
CALIFORNIA，Sherman Oaks（\＄1403） Celtec Compary 15335 Morrison Street Sulfe 215 ［213） 783.0620 TWX 910.495 .2008
COLORADO，Lilleton（80t22） Quatra incorporated
2275 E Arapahoe Road Sulte 217 1303｜795－3197 Twx 910.935 .0874
CONNECTICUT，RIdgefleld（CEG77）： Phoenix Sales Company 389 Man Street （2034438－9644 Twx 710．467．0682
FLORIDA，FL．L，auderdate（33318） Perroil Associates （ 305792221 L
FLORIDA，Largo（33540\} Perroll Associares 511 Rosery Rd NE （813） 585 －3327 Twx．A10－866．0328

FLORIDA，Orlando（32BO7） Perroll Associates	MIHNESOTA，Minneapolis（55435） KELCOM	TEXAS，Richarotson（75080） Semaconduttor Sales Associates
1605 Forsyth Road	5200 West 73 rdS Sreet	P．O Bux 2618
［305］ 2751132	（612）835－0242	［214］231－6181
Tw $\times 810.850 .0103$	TWx 910－576．2740	
GEQRGIA，Tucker（30084）	MISSOURI，Hazelmood（63042）	VIFGRIN：A Charloltesville（22901）
Rep ine 1844 Cooledge Road （404）9384359	BC Eiectrontcs 300 Erookes Dr Suite 206 	Coulboutn DeGreal inc
		1616 Inglewood 9 r 18041977.0031
		Twx 710．236．9011
ILLINOIS，Merthtipld（60093）		
Electron Marketing Corp	NEW YORK，Syracuse（13206） T＇Elecironics	WASHING TON，Seattio（9b107） Batar Hirsh C_{0}
S00 Central Ave	${ }^{4054}$ New Counil Axe	4013 Leary way NW
［312） $441 / 477$ Fwㅐㄷㅏ 910．992．0686	13154 4 493－8592	（206．783－3423
INDIANA，Casmal（46032）		WISCONSIN，Milwaukee（53220）
Rir．m Flestranic Markeling sos Industrial or	NEW YOAK Victor（14564） TV Electronics	Jik Saies 5 8522 Wr Forest Home Ave
	2 E Main St．	（414） 546.0040
Tw\％ $810-260-2635$	$\begin{aligned} & \text { (716)924.9101 } \\ & \text { Twx } 510 \cdot 254 \cdot 8542 \end{aligned}$	TWX 910.576 .2778
INDIANA，Fort Wayne（46804）	NORTH CAROLINA，Cary \｛275t1\}	
Fuch Eleclronie Marheting 3448 W Taylor St		
3448 W Taylor St． （219） 432.5553		
Twx 810．332－1404	$\begin{aligned} & (919 \mid 457-6319 \\ & T_{W} \times 510-920.0634 \end{aligned}$	ONTARIO，Etobicoke（明9C FET） RFO Ltd 335 The West Mald Suite 399
KANSAS，Shawnee Mission（66212）		（416） 626.1445
㫙 Electronics	OHiO，Dayton（45414）	Twx 510－492．2540
1913）888－6680	4812 Frederick，Suile 101	OUEBEC（H9G 2HB1
Twx 910.749 .6414	（ 5131278.0714	```R.F.O LId P.O Box 213 Dolfard Des Ormeaus```
KANSAS，WIchila（87207） BC Electronics	OHIO．Hiohland Heights（44143） Lyons Corporation 615 Wilson Mill Ra Suite 101 （218） 481828 8．	$\begin{aligned} & 1514 ; 694.5724 \\ & \mathrm{~T} 1 \times 05821762 \end{aligned}$
6405 K Kellogg Surte 14 （316）654－0051		
MARYLAND，Ealtimore（21227）	PENNSYLVANIA，Erdenheim（19118）	
5205 Easiof prive	GCM T0才A Bethlenem Place	istributor
1301） 247.4646		
TWX：710．236－9014	4\％8 310.661 .9170	$\underset{\text { Chip }}{\text { FLORIDA，ORLANDO（3200T）}}$
MASSACHUSETTS，Reading \｛01867）		1607 Forsyin hoad （305） 275 －3610
Kanan Associales 100 Main Streel	TENNESSEE Jefferson City（37760） Rep Inc－	（305）275－3610 TIx：810－850－0103
（617）944 4894 Twx $^{2} 710.393 .6552$	P． C ． 28.7 （615）475．4105 Twx $810 \cdot 5 \cdot \mathbf{P} 0-4203$	
MrCHIGAN，Bloomfield Hilils \｛48013\}Enco Marketing inc		
	TEXAS，Housion（77022）	
860 West Long Lake Road	Semiconductor Sales Assocrates	
（313）642－0203	4101 N Freeway．Sult 202	
Twx： $810.232 \cdot 1669$	（713） 661.0681	

International Sales Offices

European Sales Offices

FAAMCE
Silicomx S ARL
70.72 Avenue du Generar de Gaulle
tchat 680
94022 Cretell Cedex
T01 377.12.51
Tlx Siconx 2303日gF
WEST GERHANY
Suliconix Gmbr
Posifach 1340
Johannesstrasse 27
07024 Filderstadi 1
Tel (10711) 702066
T1x 7255553

UNITED KINGOONs
Silitonix Lid
Erook House
Newbury Berks
Newroury
RG 131 AH
TEI 10635164846
Suliconix Lid
Mortisonix Lid Swansea
United K, ngdom SA6 6NE
$\begin{array}{lll}\text { Tel } & 107927 \\ \mathrm{~T} \mid x & 48197\end{array}$

Far East Sales Officer

HONG KONG

Solicionix (H K.t Let
516177h Ftoors
Siven House
6163 King Yip Street Kwun Tong
Kowion, Mong Nong
Tel 3.427151
TIX 74449 SILXHX
JAPAN
Siliconix DISC Japan Branch
101 Oargo Tanaka Bldg
Chiyoda.Ku Tokyo Japan 102 Tel 03.262 .4777
Tix j 23411

TAIWAN

Sileonix (Taiwan) Ltd
Nantze Export Processing Zone
Kaonsiung
Tel 362010,362018
Tix 78571235

European Distributors/Representatives

AUSTAIA	
Ing. Erasi Sleiner	A Balizinger
A 1130 wien	18.25 Route du Gereral de Gautle
Geylinygasse 16	67300 Schiltigneim
Tel 2228822674	Tel. 488) 331852
T:x 135026	Tix 870952F
BELGIUM	Ouest Composants
Ritra Electronics 8 V 172 P:antun an Moretusle B 2000 Anlwerpen B Tel 031.353272 Tix. 33637	5 rue Lesage
	3500 Hennes
	Tel' (99) 360058
	TIx. 730004
	Sanelec Electrongue
DENMARK	7 Rue de la Couture
Oitz Sumwerizer AS Vallensbaek~el 4 DK. 2600 Grosirup Tel $\{01145 \cdot 30 \cdot 4 \mathrm{~d}$ Tix 33257	S9700 Marçener Garoeul
	Tel: $\langle 20\rangle 98 \cdot 92 \cdot 13$
	fix. 560 143F
	SCAIE
	80 Rue ot Arceuir
FINLAND	Z Silic 137
Oy Findid AB Teollesuusitie / POB. 34 5F 02700 Kauniainen Te: 90302255 TIX 12-3129	Aurgis. 94523 Cedex
	Ted 687.23.13
	Tix: 204 674F
FRANCE	GERMANY
	Ditror e Gimbl
Airtex 48 Rue de L' Aultepine 92160 Ariloriy Tel: S66 211_{12} T1×250067	IM Asemwaca 4
	7500 Stuttgat 10
	Tel
	TIx. 07255638
Alradis AD Hue Vilion 6900 dyon Tel. (78) 695952 TIX. 330174	Ing Burc K.ry Deypr
	Fiernsburger sirasse 3
	2380 Schlesw'g
	4,101 104621) 23121
	I:x 0221334
Aquitaine Composants 30 Rue Dentert Fochereau 33400 Talence Tel' (56) 802470	ESV Elektromik Gmor
	Gabriel Max Strasse 72
	8000 Munchen 90
	Tel. (1089) 644055
	Fix 0524535

	holland	SWITZERLAND
EbV Eiektonik Gmoli	Gatron BV	Kontron Electronic AC
Alexanderstrasse 42	P() ${ }^{120} 50 \times 75$	Bernerstrasse Sut 169
7000 Stuttgar1 1	12432 HS Grawn-anid NL	8048 Zutich
Tel t07111 247481	Te1 03560834	Te! $01 \cdot 62 \cdot 82 \cdot 82$
Tix 07-22271	T1× 43943	TIx-58836
EBV Elektrianik Gmith	Fito Electrorics 5 V	UNITED KINGDOM
Ostrasse 129	Gry rewey 22	
4000 Dus5eldorf	Postbick 123	Dage Eutoser cta haywoun Huuse
Tel. 102111 848.46:7	3770 AC Ba-nerelds NL	High S! reet
Tix 08-53726\%	Tel 03.3820 .5041	-
	Tix. 405s?	MIDOLESEX
EAV Flakrionik 5 mbth	Italy	Tel. 01-HEN-0028
In der Menneworth 9A		Tix 245CE
3006 Burgwedel $1 / \mathrm{H}$ annover	Adelsy	
Tel. 0 (05139) 4570	Via Domerichino 12	
TIX: 09.23694	20149 Milaro	Linturg Elecironics id Hilerd Moustra Esidit
	Tel (02) 4985051	
Eav Eiektronik GmbH	T1x 332423	SCOTLAND
Myllussirasse 54		-e1 10343) 223222
5000 Frankfur: 1	Coit. Ing. Giuseppe Demica	- $\times 727438$
fell: $0611+72041607$	V Va Manzoni 31	
TIX: 04×359	2012 M Milano	
	Tel: 55313 \%	395 Bath Road
1\%.electrofic	T1* 1021312035	Slauyr Bere
Käus versermain Ku		Tel ;06286; 4422
Hachsitasse 30a	NORWAY	T:x 847945
€380 gad Horraurfi v Li H		
Te. 106172, 230615	Postbox :4.a	Sem conductor Soecialists (UK) I.:d
11×04!5464	2010 Siommeri. Nygaten 4à	Premie nouso. Farifield Roas
	$\mathrm{T}_{\text {¢ }}$ (02; 71 18 727:5350	Yiewsley. West Draylon
Uistaltonik Gimut	T. $\times 19407$	MIODLESEX
Munither Slasse 6		Tel $: 08954$ as522
8031 ciocraling ingelelli		$\mathrm{T} \times 21958$
Te 168152: 7774	SPAIN	
	ATAIC ETH HiLe Latrela 1 cy 12	Wealtay Comporients ca
Ur tiorue Scoluter Gmbi a Co kg	Madrid 16.	Altuncham. CrHESHIAE WA145AZ
Nariskesiasse 29	Tel. 7330562 or 7333700	Tel 10619al) 1919
3 3¢0 Lertre	Tix 27289	Tix. 669735
${ }^{T}$ el		
1:\% 0922084	SWEDEN	YUGOSLAVIA
GREECE	Kompunentboragel NAXAB	Belram S.A.
General Electromics. Lid.	S 17704 Sutra	1150 Brussels. Beigium
209 thevon St	Tel. 06985140	Tal 1343332734.2619
Nikala. Piraeus 77	Tix 17912 KOMP	T**21790
Tel. 361-8145		

Other International Distributors/Representatives

JAPAN
Telpm Advanced Producis Corp
Chiyoda.Ku Tohyo 1006
fel 0031506 rokyo 1005
Ix $\triangle 23548$

KOREA

Tel $65-046 \mathrm{k}$
If. $\times 24123$
MEXICO
Merel
Dacoquemecat। No 139.401
Mexico 12 D.F
© S75 78.68. y 575.79 .24
IA MEXEL O177 3197

NEW ZEALAMD
Erecironic Component Services O mifsoares NZ LId PO E 1048 Palmersion North Tel 77.407
T18. N23766

SOUTH AFRICA
Electrolonk (Pty) 님
Po 80×1020
Capetown
Tel 457656/7
T1× $\$ 77320$

TAIWAN

Don Business Corp
No 265 Chang Chung Ad
To1 $5>1.2911$
Cablo DONBC TAIPEI
TlA 2584100 NBC

VENEZUELA

ibars s Cia Sa Amercial Tamanato Nivel C2, Locel 53-C.03
Chuao-Caracas
Apartado 68d
Caracas 106
Jat 928053

E
 Siliconix

MANUFACTURING FACILITIES

UNITED STATES

Siliconix Incorporated 2201 Laurelwood Rd. Santa Ciara. CA 95054
Tel: (408) 246-8000
T1x: 910-338-0227

HONG KONG
Siliconix (HK) Ltd.
5/6/7th Floors
Liven House
61-63, King Yip Street
Kwun Tong, Kowioon
Hong Kong
Tel: 3-427151
TIX: 74449SILXHX

UNITED KINGDOM

Siliconix Ltd.
Morriston SWANSEA SA6 6NE Tel: (0792)74681
Tix: 48197

TAIWAN

Siliconix (Taiwan) Ltd.
Nantze Export Processing Zone Kaohsiung
Tel: 362010, 362019
Tlx: 78571235

[^0]: x!uOP!!

[^1]: －JEDEC registered data
 NOTES：
 1．Due to symmetrical geometry，these units may be operated with source and drain ieads interchanged．
 2．Derate linearly $10175^{\circ} \mathrm{C}$ free－air temperature at rate of $2.0 \mathrm{~mW} / \rho^{\circ} \mathrm{C}$

[^2]: "JEDEC Registered Data.

[^3]: *JEDEC registered data,
 NRL
 NOTES:
 1 Due to symmetrical geometry, these units may be operated with source and drain lads interchanged.
 2. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at rat. of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
 3. These parameters are measured during a 2 msec interval 100 msec after d-c power is applied.

[^4]: -JEDEC registered data.

[^5]: NOTES:

[^6]: NOTES:
 3. Approximately doubles tor every $10^{\circ} \mathrm{C}$ increase in T_{A}
 2. Pulse test duration $=300$ usec: duty cycle $\leqslant 3 \%$.

[^7]: - L. Evans; "Biasing FETr for Zero DC Drift": Electro Technology, August 1964.

[^8]: *JEDEC registered data
 $\mathbf{N H}$ NOTE:

 1. Pulse test $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 3 \%$.
[^9]: NOTES:

 1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
 2. Pulse test duration $=\mathbf{3 W} \mu$ s; duty cycie $\leqslant \mathbf{3 \%}$.
[^10]: NOTES.
 1 Geometry is symmetricai Units may be operated with source and drain leads interchanged
 2 Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in TA.
 3 Pulse test duration = 2 ms.

[^11]: NOTES:

 1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
