

FET Design Catalog

Contents

AN72-1

AN73-1

Index

7

INTRODUCTION	Index	1
How to use the FET Cross Reference and Index FET Cross Reference and Index Product Information Process Option Flaw Chart		1-2 1-14
SELECTOR GUIDES	Index	2
Tips on Selecting the Right FET for your Application . How to Choose the Correct FET for your Application . JFET Geometry Selector Guide . Useful JFET Parameter Relationships . N-Channel . P-Channel . Product Specifications . Nand P-Channel Single JFETs . N-Channel Dual JFETs . Low Leakage Diodes . Voltage Controlled Resistors . P-Channel MOSFETs . Current Regulator Diodes . VMOS Power FETs . Die Process Information . PC Board Layout and Construction for Low Leakage Applications .		2.2 2-3 2-3 2-4 2-5 2-6 2-12 2.14 2-14 2-14 2-14 2-15 2-16 2-17
DATA SHEETS, METAL CAN (In Numeric-Alpha Order)	Index	3
Refer to FET Cross Reference and Index		
DATA SHEETS, PL/ (In Numeric-Alpha Order)	Index	4
Refer to FET Cross Reference and Index		
GEOMETRY CHARACTERISTICS	Index	5
Refer to FET Cross Reference and Index		
APPLICATION NOTES	Index	6
AN73-7 An Introduction to FETs		6-13

D171-1 DI71-9 DI73-2 TA70-2 **MECHANICAL DATA & SALES OFFICES**

i

F Siliconix

PARTS NOT READILY AVAILABLE IN EUROPE

The following device types are classified as specials (non-preferred parts). These devices are not readily available through European Sales Outlets. For further details and availability contact the Siliconix Sales Office or Franchised Distributor nearest you.

2N3368169170	J230/31/32	PN4416
2N3684/85/86/87	K114—18	PN5163
2N3909	K1837—18	U1837
2N4867A/68A/69A	K210/11/12 (—18)	U1994
2N5078	KK441618	
2N5515-24	MFE823	
2N5555	MPF102	
2N5556/57/58	MPF108	
2N5653/54	MPF109	
2N5669/70	MPF111	
JAN/JANTX Series	MPF112	

EUROPEAN HI-REL PARTS

The Following Devices Have Been Approved to BS CECC European Standards:

TV	~~	NL:	ım	ber	
- i y k	76	1 1 1	JIII	DEI	

Type Number	BS CECC Specification
2N3970/1/2	BS CECC 50 012-001 (ISSUE 1, JUNE 1978)
2N4091/2/3	BS CECC 50 012-002 (ISSUE 1, JUNE 1978)
2N4391/2/3	BS CECC 50 012-004 (ISSUE 1, APRIL 1978)
2N4856/7/8	BS CECC 50 012-005 (ISSUE 1, JUNE 1978)
2N4859/60/61	BS CECC 50 012-005 (ISSUE 1, JUNE 1978)
2N4856A/7A/8A	BS CECC 50 012-006 (ISSUE 1, JUNE 1978)
2N4859A/60A/61A	BS CECC 50 012-006 (ISSUE 1, JUNE 1978)

For Details on Other Products Submitted for Approval, Contact Your Nearest Siliconix Sales Office or Franchised Distributor.

FET Design Catalog

© 1979 Siliconix incorporated Printed in U.S.A.

Siliconix incorporated reserves the right to make changer in the circuitry or specifications in this book at any time without notice.

Siliconix incorporated assumes no responsibility for the use of any circuits described herein and maker no representations that they are free from patent infringement.

how to use the FET Cross Reference and Index

The following examples illustrate how the FET Cross Reference and Index should be used:

Case (1) Recommended replacement offered by Siliconix is identical to Industry Part Number.

Industry Part Number	Type and Classification	Recommended Replacement
2N3458	NJFET	2N3458

Case (2) Recommended replacement offered by Siliconix is not identical to Industry Part Number.

Industry Part Number	Type and Classification	Recommended Replacement
2N3457	NJFET	2N4338

The recommended replacement may be exact, tighter or looser on electrical characteristics, and may be a different package or pin-out. Data sheets for both parts should, if possible, be reviewed for a complete comparison. Refer to appropriate page number listed under Data Sheet or Geometry column.

Type and classification abbreviations are described as follows:

CR (Current Limiter) D (Dual) DPAD (Dual Pico Ampere Diode) ENH (Enhancement-Mode Normally-Off1 G (Gate) JPAD (Plastic **Pico** Ampere Diode) N (N-Channel) P (P-Channel) PAD (**Pico** Ampere Diode) VMOS (Vertical **MOSFET**)

FET Cross Reference and Index

Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page	industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page
1N5283	CL N JFET	CR022	3.45	5.12	2N3071	N JFET	2N4338		
1N5284	CL N JFET	CR024	3-45	5-12	2N3084	N JFET	2N3459		
1N5285	CL N JFET	CR027	3-45	5-12	2N3085	N JFET	2N3459		
1N5286	CL N JFET	CR030	3-45	5-12	2N3086	N JFET	2N3459		
1N5287	CL N JFET	CR033	3-45	5-12	2N3087	N JFET	2N3459		
1N5288	CL N JFET	CR039	3-45	5-12	2N3088	N JFET	2N3460		
1N5289	CL N JFET	CR043	3-45	5-12	2N3088A	N JFET	2N3460		
1N5290	CL N JFET	CR047	3-45	5-12	2N3089	N JFET	2N3460		
1N5291 1N5292	CL N JFET CL N JFET	CR056 CR062	3-45 3-45	5-12 5-12	2N3089A 2N3113	N JFET P JFET	2N3460 2N2843		
1N5293	CL N JFET	CR068	3-45 3-45	5-13 5-13	2N3277 2N3278	P JFET P JFET	2N2608 2N2608		
1N5294	CL N JFET CL N JFET	CR075 CR082	3-40 3-45	5-13	2N3278	P JFET	2N3438		
1N5295 1N5296	CL N JFET	CR091	3-45	5-13	2N3329	PJFET	2N3329	3-3	5-36
1N5297	CL N JFET	CR100	3-45	5-13	2N3330	P JFET	2N3330	3-3	5-36
1N5298	CL N JFET	CR110	3-45	5-13	2N3331	P JFET	2N3331	3-3	5-36
1N5299	CL N JFET	CR120	3-45	5-13	2N3332	PJFET	2N3332	3-3	5-36
1N5300	CL N JFET	CR130	3-45	5-13	2N3365	N JFET	2N4340		
1N5301	CL N JFET	CR140	3-45	5-13	2N3366	N JFET	2N4338		
1N5302	CL N JFET	CR150	3-45	5-13	2N3367	N JFET	2N4338		
1N5303	CL N JFET	CR160	3-45	5-14	2N3368	N JFET	2N3368	3-4	5-19
1N5304	CL N JFET	CR180	3-45	5-14	2N3369	N JFET	2N3369	3-4	5-19
1N5305	CL N JFET	CR200	3-45	5-14	2N3370	N JFET	2N3370	3-4	5-19
1N5306	CL N JFET	CR220	3-45	5-14	2N3376	P JFET	2N3329		
1N5307	CL N JFET	CR240	3-45	5-14	2N3378	P JFET	2N3330		
1N5308	CL N JFET	CR270	3-45	5-14	2N3380	P JFET	2N3331		
1N5309	CL N JFET	CR300	3-45	5-14	2N3382	P JFET	2N3382	3-5	5-38
1N5310	CL N JFET	CR330	3-45	5-14	2N3384	P JFET	2N3384	3-5	5-38
1N5311 1N5312	CL N JFET CL N JFET	CR360 CR390	3-45 3-45	5-14 5-14	2N3385 2N3436	P JFET N J FET	2N3386 2N3436	3-5 3-6	.5-38 5-19
								3-6	5-19
1N5313	CL N JFET	CR430	3-45	5-14 5-14	2N3437	N JFET	2N3437 2N3438	3-6	5-19
1N5314 2N2386	CL N JFET	CR470 2N608	3-45	5-14	2N3438 2N3452	N JFET N JFET	2N3438 2N4340	3-0	5-19
2N2386A	P JFET P JFET	2N609			2N3453	N JFET	2N4338		
2N2497	P JFET	2N3329			2N3454	N JFET	2N4338		
2N2498	P JFET	2N3330			2N3455	N JFET	2N4340		
2N2499	P JFET	2N3331			2N3456	N JFET	2N4338		
2N2500	PJFET	2N3332			2N3457	N JFET	2N4338		
2N506	P JFET	2N2608			2N3458	N JFET	2N3458	3-7	5-19
2N2606JAN	P JFET	2N2608JAN			2N3459	N JFET	2N3459	3-7	5-19
2N2607	P JFET	2N2608			2N3460	N JFET	2N3460	3-7	5-19
2N2607JAN	P JFET	2N2608JAN			2N3574	P JFET	2N2843		
2N2608	P JFET	2N2608	3-1	5-36	2N3575	P JFET	2N2843		
2N2608JAN 2N2609	P JFET P JFET	2N260BJAN 2N2609	3-1	5-37	2N3578 2N3608	P JFET PMOS ENH	2N2608 3N163		
			0.4	5.01					
2N2609JAN 2N2841	P JFET P JFET	2N2609JAN 2N2843			2N3684 2N3685	N JFET N JFET	2N3684 2N3685	3-8 3-8	5-6 5-6
2N2842	P JFET	2N2843			2N3686	N JFET	2N3686	3-8	5-6
2N2843	P JFET	2N2843	3-2	5-36	2N3687	N JFET	2N3687	3-8	5-6
2N2844	P JFET	2N2844	3-2	5-37	2N3819	N JFET	2N3819	4-1	5-25
2N3066	N JFET	2N4340			2N3820	P JFET	J270		
2N3067	N JFET	2N4338			2N3821	N JFET	2N3821	3-9	5-25
2N3068	N JFET	2N4338			2N3822	N JFET	2N3822	3-9	5-25
2N3069	N JFET	2N4341			2N3823	N JFET	2N3823	3-10	5-25
2N3070	N JFET	2N4339			2N3824	N JFET	2N3824	3-11	5-2 5

© 1979 Siliconix incorporated

B Siliconix

Industry Part Number	Typo and Classification	Recommended Replacement	Date Sheet Page	Geometry Page	Industry Part Number	Typo and Classification	Recommended Replacement	Date Sheet 7_	Geometry Page
2N3909 2N3909A 2N3921 2N3922 2N3922 2N3954	P JFET P JFET D N JFET D N JFET D N JFET D N JFET	2N3909 2N3909 2N3921 2N3922 2N3922 2N3954	3-12 3-13 3-13 3-14	5-36 5-17 5-17 5-6	2N4340 2N4341 2N4352 2N4381 2N4382	N JFET N JFET PMOS ENH P JFET P JFET	2N4340 2N4341 3N163 2N2609 2N5115	3-24 3-24	5-19 5-19
2N3954A 2N3955 2N3955A 2N3956 2N3957	D N JFET D N JFET D N JFET D N JFET D N JFET	2N3954A 2N3955 2N3955A 2N3956 2N3956 2N3957	3-14 3-14 3-14 3-15 3-15	5-6 5-6 5-6 5-6 5-6	2N4391 2N4392 2N4393 2N4416 2N4416A	N JFET N JFET N JFET N JFET N JFET	2N4391 2N4392 2N4393 2N4416 2N4416A	3-26 3-26 3-26 3-27 3-27	5-3 5-3 5-3 5-8 5-8
2N3958 2N3966 2N3967 2N3967 2N3967A 2N3968	D N JFET N JFET N JFET N JFET N JFET	2N3958 2N3966 2N4221 2N4221 2N3685	3-15 3-16	5-6 5-8	2N445 2N446 2N448 2N448 2N448 2N4856	N JFET N JFET N JFET N JFET N JFET	2N5432 2N5433 2N5432 2N5433 2N5433 2N4856	3-28	5-3
2N3968A 2N3969 2N3969A 2N3970 2N3971	N JFET N JFET N JFET N JFET N JFET	2N3685 2N3686 2N3686 2N3970 2N3971	3-17 3-17	5-3 5-3	2N4856A 2N4856JAN 2N4856JANTX 2N4856JANTXV 2N4856JANTXV 2N4857	N JFET N JFET N JFET N JFET N JFET	2N4856A 2N4856JAN 2N4856JANTX 2N4856JANTXV 2N4856JANTXV 2N4857	3-29 3-28	5-3 5-3 5-3 5-3 5-3
2N3972 2N3993 2N3993A 2N3994 2N3994 2N3994A	N JFET P JFET P JFET P JFET P JFET	2N3972 2N3386 2N3386 2N3382 2N3382 2N3382	3-17	5-3	2N4857A 2N4857JAN 2N4857JANTX 2N4857JANTXV 2N4857JANTXV 2N4858	N JFET N JFET N JFET N JFET N JFET	2N4857A 2N4857JAN 2N4857JANTX 2N4857JANTXV 2N4857JANTXV 2N4858	3-29 3-28	5-3 5-3 5-3 5-3 5-3
2N4084 2N4085 2N4091 2N4091 A 2N4092	D N JFET D N JFET N JFET N JFET N JFET	2N4084 2N4085 2N4091 2N4091 2N4091 2N4092	3-13 3-13 3-19 3-19	5-17 5-17 5-3 5-3	2N4858A 2N4858JAN 2N4858JANTX 2N4858JANTXV 2N4858JANTXV 2N4859	N JFET N JFET N JFET N JFET N JFET	2N4858A 2N4858JAN 2N4858JANTX 2N4858JANTXV 2N4858JANTXV 2N4859	3-2 <u>9</u> 3-28	5-3 5-3 5-3 5-3 5-3
2N4092A 2N4093 2N4093A 2N4117 2N4117 2N4117A	N JFET N JFET N JFET N JFET N JFET	2N4092 2N4093 2N4093 2N4117 2N4117A	3-19 3-20 3-20	5-3 5-29 5-29	2N4859A 2N4859JAN 2N4859JANTX 2N4859JANTXV 2N4859JANTXV 2N4860	N JFET N JFET N JFET N JFET N JFET	2N4859A 2N4859JAN 2N4859JANTX 2N4859JANTXY 2N4859JANTXY 2N4860	3-79 3-28	5-3 5-3 5-3 5-3 5-3
2N4118 2N4118A 2N4119 2N4119A 2N4119A 2N4120	N JFET N JFET N JFET N JFET P MOS ENH	2N4118 2N4118A 2N4119 2N4119A 3N163	3-20 3-20 3-20 3-20	5-29 5-29 5-29 5-29	2N4860A 2N4860JAN 2N4860JANTX 2N4860JANTXV 2N4860JANTXV 2N4861	N JFET N JFET N JFET N JFET N JFET	2N4860A 2N4860JAN 2N4860JANTX 2N4860JANTXV 2N4860JANTXV 2N4861	3-29 3-28	5-3 5-3 5-3 5-3 5-3
2N4139 2N4220 2N4220A 2N4220A 2N4221 2N4221A	N JFET N JFET N JFET N JFET N JFET	2N3822 2N4220 2N4220A 2N4220A 2N4221 2N4221A	3-22 3-22 3-22 3-22	5-25 5-25 5-25 5-25	2N4861A 2N4861JAN 2N4861JANTX 2N4861JANTXV 2N4861JANTXV 2N4867	N JFET N JFET N JFET N JFET N JFET	2N4861A 2N4861JAN 2N4861JANTX 2N4861JANTXV 2N4861JANTXV 2N4867	3-29 3-30	5-3 5-3 5-3 5-3 5-27
2N4222 2N4222A 2N4223 2N4224 2N4224 2N4267	n JFET n JFET n JFET n JFET PMOS ENH	2N4222 2N4222A 2N4223 2N4223 2N4224 3N163	3-22 3-22 3-23 3-23	5-25 5-25 5-25 5-25	2N4867A 2N4868 2N4868A 2N4868A 2N4869 2N4869A	N JFET N JFET N JFET N JFET N JFET	2N4867A 2N4868 2N4868A 2N4868A 2N4869 2N4869A	3-30 3-30 3-30 3-30 3-30	5-27 5.27 5-27 5-27 5-27
2N4302 2N4303 2N4304 2N4338 2N4338 2N4339	n jfet N jfet N jfet N jfet N jfet	PN4302-18 PN4303-18 PN4304-18 2N4338 2N4339	3-24 3-24	5-19 5-19	2N4977 2N4978 2N4979 2N5018 2N5019	N JFET N JFET N JFET P JFET P JFET	2N5432 2N5433 2N5434 2N5018 2N5019	3-31 3-31	5-39 5-39

Siliconix

h

Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page	Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometi Page
2N5020	P JFET	2N2843			2N5484	N JFET	2N5484	4-3	5-8
2N5021	P JFET	2N2608			2N5485	N JFET	2N5485	4-3	5-8
2N5033	PJFET	2N2608			2N5486	N JFET	2N5486	4-3	5-8
			0.00	F 47					
2N5045	D N JFET	2N5045	3-32	5-17	2N5515	D N JFET	2N5515	3-37	5-27
2N5046	D N JFET	2N5046	3-32	5-17	2N5516	D N JFET	2N5516	3-37	5-27
2N5047	D N JFET	2N5047	3-32	5-17	2N5517	D N JFET	2N5517	3-37	5-27
2N5103	N JFET	2N4416			2N5518	D N JFET	2N5518	3-37	5-27
2N5104	N JFET	2N4416			2N5519	D N JFET	2N5519	3-37	5-27
2N5105	N JFET	2N4416			2N5520	D N JFET	2N5520	3-37	5-27
2N5114	PJFET	2N5114	3-33	5-39	2N5521	D N JFET	2N5521	3-37	5-27
				5 00	01/5500	D N IFFT	0115500	0.07	E 07
2N5115	P JFET	2N5115	3-33	5-39	2N5522	D N JFET	2N5522	3-37	5-27
2N5116	P JFET	2N5116	3-33	5-39	2N5523	D N JFET	2N5523	3-37	5-27
2N5158	N JFET	2N5434			2N5524	D N JFET	2N5524	3-37	5-27
2N5159	N JFET	2N5433			2N5545	D N JFET	2N5545	3-38	5-15
2N5196	D N JFET	2N5196	3-34	5-15	2N5546	D N JFET	2N5546	3-38	5-15
2N5197	D N JFET	2N5197	3-34	5-15	2N5547	D N JFET	2N5547	3-38	5-15
			3-34		2N5549	N JFET	2N4392	0.00	5.5
2N5198	D N JFET	2N5198		5-15					F 0
2N5199	D N JFET	2N5199	3-34	5-15	2N5555	N JFET	2N5555	4-4	5-8
2N5245	N JFET	KK4418			2N5556	N JFET	2N5556	3-39	5-25
2N5246	N JFET	J305-18			2N5557	N JFET	2N5557	3-39	5-25
2N5247	N JFE	J304-18			2N5558	N JFET	2N5558	3-39	5-25
2N5248	N JFET	2N5486			2N5561	D N JFET	U401		
2N5257	N JFET	2N5457			2N5562	D N JFET	U402		
N5258	N JFET	2N5458			2N5563	D N JFET	U404		
2N5259	N JFET	2N5459			2N5564	D N JFET	2N5564	3-40	5-3
2N5265	P JFET	2N2608			2N5565	D N JFET	2N5565	3-40	5-3
2N5266	P JFET	2N2608			2N5566	D N JFET	2N5566	3-40	5-3
2N5267	P JFET	2N2608			2N5592	N JFET	2N3822		
2N5268	P JFET	2N2608			2N5593	N JFET	2N3822		
2N5269	P JFET	2N3331			2N5594	N JFET	2N3822		
DNE 070	0.1557	0110001			2N5638	N JFET	2N5638	4-5	5-3
2N5270	P JFET	2N3331							
2N5358	N JFET	2N3686			2N5639	N JFET	2N5639	4-5	5-3
2N5359	N JFET	2N3686			2N5640	N JFET	2N5640	4-5	5-3
2N5360	N JFET	2N3685			2N5647	N JFET	2N4117A		
2N5361	N JFET	2N3684			2N5648	N JFET	2N4117A		
2N5362	N JFET	2N3684			2N5649	N JFET	2N4117A		
	N JFET	2N4222A			2N5653	N JFET	2N5653	4-6	5-3
2N5363									
2N5364	N JFET	2N4224			2N5654	N JFET	2N5654	4-6	5-3
2N5391	N JFET	2N4867A			2N5668	N JFET	2N5668	4-7	5-8
2N5392	N JFET	2N4868A			2N5669	N JFET	2N5669	4-7	5-8
N5393	N JFET	2N4869A			2N5670	N JFET	2N5670	4-7	5-8
N5394	N JFET	2N4869A			2N5797	P JFET	2N2608		
N5395	N JFET	2N4869A			2N5798	PJFET	2N2608		
	N JFET	2N4869A				P JFET			
2N5396 2N5397	N JFET	2N4869A U310			2N5799 2N5800	P JFET	2N2608 2N2608		
N5398 N5432	N JFET N JFET	U312 2N5432	3-35	5-10	2N5801 2N5802	N JFET N JFET	2N4393 2N4393		
N5433	N JFET	2N5433	3-35	5-10	2N5803	N JFET	2N4392		
N5434 N5452	n jfet D n jfet	2N5434 2N5452	3-35 3-36	5-10 5-6	2N5902 2N5903	D N JFET D N JFET	2N5902 2N5903	3-41 3-41	5-29 5-29
110702	UNITE					CHUEL	210300		
N5453	D N JFET	2N5453	3-36	5-6	2N5904	D N JFET	2N5904	3-41	5-29
N5454	D N JFET	2N5454	3-36	5-6	2N5905	D N JFET	2N5905	3-41	5-29
N5457	N JFET	2N5457	4-2	5-25	2N5906	D N JFET	2N5906	3-41	5-29
N5458	N JFET	2N5458	4-2	5-25	2N5907	D N JFET	2N5907	3-41	5-29
N5459	N JFET	2N5459	4-2	5-25	2N5908	D N JFET	2N5908	3-41	5-29

Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page	industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometr Page
2N5909	D N JFET	2N5909	3-41	5-29	1350	N JFET	2N4339		
		2N5911	3-43	5-34	1550	N JFET	2N4416		
2N5911	D N JFET								
2N5912	D N JFET	2N5912	3-43	5-34	182S	N JFET	2N4391		
2N5949	N JFET	K1837-18			183S	N JFET	2N3823		
2N5950	N JFET	K1837-18			1975	N JFET	2N4338		
2N5951	N JFET	K1837-18			198S	N JFET	2N4340		
2N5952	N JFET	K305-18			1995	N JFET	2N4341		
2N5953	N JFET	K305-18			200S	N JFET	2N4392		
2N6451	N JFET	2N4393			2000	N JFET	2N3824		
2N6452	N JFET	2N4393			2015	N JFET	2N4391		
2N6453	N JFET	2N4393			2025	N JFET	2N4392		
		2N4393			2035	N JFET	2N3821		
2N6454	N JFET								
2N6483	D N JFET	U401			204S	N JFET	2N3821		
2N6484	O N JFET	U402			2100	N JFET	2N4416		
2N6585	D N JFET	U404			2315	D N JFET	2N3954		
2N6568	N JFET	U290			2328	O N JFET	2N3955		
2N6656	V MOS N ENH	2N6656			233S	D N JFET	2N3956		
2N6657	V MOS N ENH	2N6657			234S	D N JFET	2N3957		
2N6658	V MOS N ENH	2N6658			2355	D N JFET	2N3958		
2N6659	V MOS N ENH	2N6659			2410	N JFET	2N4869		
ONCORO.		010000			2500	N JFET	2N4091		
2N6660	V MOS N ENH	2N6660							
2N6661	V MOS N ENH	2N6661			251U	N JFET	2N4392		
3N145	P MOS ENH	3N163			7030	N JFET	2N4220		
3N146	P MOS ENH	3N163			7040	N JFET	2N4220		
3N155	PMOS ENH	3N163			7050	N JFET	2N4224		
3N155A	PMOS ENH	3N163			707U	N JFET	2N4860		
3N156	PMOS ENH	3N163			714U	N JFET	2N3822		
		3N163			7340	N JFET	2N4416		
3N156A	PMOS ENH								
3N157 3N157A	P MOS ENH P MOS ENH	3N163 3N163			734EU 751U	N JFET N JFEI	KK4416-18 2N4340		
3N158	PMOS ENH	3N163			7520	N JFET	2N4340		
3N158A	P MOS ENH	3N163			7530	N JFET	2N4341		
3N163	PMOS ENH	3N163	3-44	5-1	754U	N JFET	2N4340		
3N164	PMOS ENH	3N164	3-44	5-1	755U	N JFET	2N4341		
3N174	PMOS ENH	3N163	• • •	• •	7560	N JFET	2N4340		
14T	N JFET	2N4224			1277A	N JFET	2N3822		
142T		PN4392			1278A	N JFET	2N3821		
	N JFET								
158T	N JFET	2N4302			1279A	N JFET	2N3821		
159T 100S	N JFET N JFET	KK4416-18 2N4304			1280A 1281A	N JFET N JFET	2N4224 2N3822		
1000	N JFET	2N3684			1282A	N JFET	2N4341		
102M	N JFET	2N5486			1283A	N JFET	2N4340		
102S	N JFET	2N4302			1284A	N JFET	2N4222		
103M	N JFET	2N5457			1285A	N JFET	2N3821		
1035	N JFET	2N5459			1286A	N JFET	2N4220		
104M	N JFET	2N5458			1325A	N JFET	2N4222		
105M	N JFET	2N5459			1714A	N JFET	2N4340		
1050	N JFET	2N4222			2000M	N JFET	2N3823		
106M 107M	N JFET N JFET	2N5485 2N5486			2001M 2078A	N JFET D N JFET	2N3823 2N3955		
110U 115U	N JFET N JFET	2N3685 2N4340			2079A 2080A	D N JFET D N JFET	2N3955 2N5546		
	N JFET	2N3686							
1200					2081A	D N JFET	2N5546		
1250	N JFET	2N4339			2093M	N JFET	2N3687		
1300	N JFET	2N3687			2094M	N JFET	2N3686		

Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page	industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometr Page
2095M	N JFET	2N3686			BFS77	N JFET	2N4859		
2098A	D NJFET	2N5545			BFS78	N JFET	2N4860		
					BFS79	N JFET	2N4861		
2099A	D N JFET	2N5546			BFS80	N JFET	2N4416A		
21300	d n jfet	2N5452							
21320	D N JFET	2N3955			BFW10	N JFET	2N3823		
2134U	D N JFET	2N3956			BFW11	N JFET	2N3822		
21360	O N JFET	2N3957			BFW54	n jfet	2N3822		
21380	O N JFET	2N3958			BFW55	N JFET	2N3822		
21390		2N3958			BFW56	N JFET	2N4869		
21390	d n jfet d n jfet	2N3958			BFW61	N JFET	2N4224		
					BSV22	n jfet	DN 4416		
21480	D N JFET	2N3958					2N4416		
2149U	D N JFET	2N3958			BSV78	N JFET	2N4856A		
A5T3821	N JFET	K305-18			BSV80	N JFET	2N4858A		
A5T3822	N JFET	K305-18			C413N	N JFET	2N5434		
A5T3823	N JFET	KK4416-18			C673	N JFET	2N4341		
A5T3824	N JFET	J302-18			C674	N JFET	2N4341		
					C680	N JFET	2N4338		
A192	N JFET	2N4416							
AD830	d n jfet	U421			C680A	N JFET	2N4338		
AD831	d n jfet	U421			C681	n jfet	2N4338		
AD832	D N JFET	U422			C681A	N JFET	2N4338		
AD833	d n jfet	U426			C682	N JFET	2N4339		
AD833A	D N JFET	U423			C682A	N JFET	2N4339		
					C683	N JFET	2N4339		
AD835	D N JFET	2N3921							
AD836	d n jfet	2N3921			C683A	N JFET	2N4339		
AD837	D N JFET	2N3922			C684	N JFET	2N4220		
AD838	D N JFET	2N4085			C684A	N JFET	2N4220		
AD839	D N JFET	2N4085			C685	N JFET	2N4220		
AD840	D N JFET	2N5196			C685A	N JFET	2N4220		
AD841					C6690	N JFET	2N3458		
AD842	d n jfet d n jfet	2N5197 2N5199			C6691	N JFET	2N3458		
					00000	N IECT	0110.150		
AD3954	D N JFET	2N3954			C6692	N JFET	2N3459		
AD3954A	D N JFET	2N3954A			CM600	N JFET	2N4092		
AD3955	D N JFET	2N3955			CM601	N JFET	2N4091		
AD3956	D N JFET	2N3956			CM602	N JFET	2N4091		
AD3957	D N JFET	2N3957			CM603	N JFET	2N4091		
					CM640	N JFET	2014002		
AD3958	D N JFET	2N3958					2N4093		
BC264	N JFET	2N4304			CM641	N JFET	2N4093		
3C264A	N JFET	2N4302			CM642	N JFET	2N4093		
BC264B	N JFET	2N4304			CM643	N JFET	2N4092		
BC264C	N JFET	2N4304			CM644	N JFET	2N4092		
3C264D	N JFET	KK4416-18			CM645	N JFET	2N4092		
					CM646	N JFET	2N4092		
BFR45	N JFET	2N4416							
BFS21	D N JFET	2N5199			CM647	N JFET	2N4091		
3FS21A	d n jfet	2N5199		1	CM650	n jeet	2N5432		
BFS67	N JFET	2N3821			CM651	N JFET	2N5433		
BFS67P	N JFET	2N4303			CM652	N JFET	2N5432		
BFS68	N JFET	2N3823			CM653	N JFET	2N5433		
					CM697	N JFET	2N5434		
3FS68P	N JFET	KK4416-18			CM800				
BFS70 BFS71	n jfet N jfet	2N3821 2N3822			CM800 CMX740	N JFET N JFET	2N5434 U290		
					CP640				
BFS72	N JFET	2N3823			CP640 CP643	N JFET	U296		
BFS73	N JFET	2N3821		1		N JFET	2N5434		
3FS74	N JFET	2N4856			CP650	N JFET	U322		
BFS75	N JFET	2N4857		1	CP651	N JFET	U320		
BFS76				1	CP652	N JFET	U322		
vra/0	N JFET	2N4858			CP653	N JFET	U320		

Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page	industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page
CRO22 Thru CR4	70 Referenced Un	der 1N Series	•	-	E415	D N JFET	U412		,
					E420 E421	DN JFET DN JFET	U440 U441		
DPAD1 DPAD2	D PAD N JFET D PAD N JFET	DPAD1 DPAD2	3-48 3-48		E430	D N JFET	U430		
DPAD5	D PAD N JFET	DPAD5	3-46		E431	D N JFET	U431		
DPAD10	D PAD N JFET	DPAD10	3-48		E500	CL N JFET	J500		
DPAD20	D PAD N JFET	DPAD20	3-48		E501	CL N JFET	J501		
DPAD50	D PAD N JFET	DPAD50	3-48		E502 E503	CL N JFET CL N JFET	J502 J503		
DPAD100 DU4339	D PAD N JFET D N JFET	DPAD100 U235	3-48		E504	CL N JFET	J504		
DU4340	D N JFET	U235			E505	CL N JFET	J505		
E100	N JFET	J203-18			E506	CL N JFET	J506 J507		
E101 E102	N JFET N JFET	J201-18 J202-18			E507 EPAUSO	CL N JFET DD N JFET	JPAD50		
E102 E103	N JFET	J105-18			EPAD100	DD N JFET	JPAD100		
E105	N JFET	J105-18			EPAD200	DD N JFET	JPAD200		
E106	N JFET	J106 18			EPAD500	DD N JFET	JPAD500		
E107	N JFET	J107 18			FE100 FE100A	N JFET N JFET	2N3821 2N3821		
E108 E109	N JFET N JFET	J108-18 J109-18			FE102	N JFET	2N4119		
E110	N JFET	J110-18			FE102A	N JFET	2N4119		
E111	N JFET	J111-18			FE104	N JFET	2N4118		
E112	N JFET	J112-18			FE104A FE200	N JFET N JFET	2N4118 2N3821		
E113 E114	N JFET N JFET	J113-18 K114-18			FE202	N JFET	2N3821		
E174	P JFET	J174-18			FE204	N JFET	2N3821		
E175	P JFET	J175-18			FE300	N JFET	2N3822		
E176	P JFET	J176-18			FE302 FE304	N JFET N JFET	2N3821 2N3821		
E177 E201	P JFET N JFET	J177-18 J201-18			FE0654A	N JFET	2N5486		
F202	N JFET	J202-18			FE0654B	N JFET	2N5485		
E203	N JFET	J203-18			FE3819	N JFET	2N3819		
E204	N JFET	J204-18			FE5457 FE5458	N JFET N JFET	2N5457 2N5458		
E210 E211	N JFET N JFET	K210-18 K211-18			FE5459	N JFET	2N5459		
E212	N JFET	K212-18			FE5484	N JFET	2N5484		
E230	N JFET	J230-18			FE5485	N JFET	2N5485		
E231 E232	N JFET N JFET	J231-18 J232-18			FE5486 FM3954	N JFET D N JFET	2N5486 2N3954		
E270	P JFET	J270-18			FM3954A	D N JFET	2N3954A		
E271	P JFET	J271-18			FM3955	D N JFET	2N3955		
E300	N JFET	K300-18			FM3955A	D N JFET	2N3955A		
E304	N JFET	K304-18			FM3956 FM3957	D N JFET D N JFET	2N3956 2N3957		
E305 E308	N JFET N JFET	K305-18 K308-18			FM3958	D N JFET	2N3958		
E309	N JFET	K309-18			FT0654A	N JFET	2N5486		
E310	N JFET	K310-18			FT0654B	N JFET	2N5486		
E400	D N JFET	U410			FT0654C FT0654D	N JFET N JFET	2N4221 2N4221		
E401 E402	D N JFET D N JFET	U411 U410			FT0654D FT704	PMOS ENH	3N163		
E410	D N JFET	U410			GET5457	N JFET	2N5457		
E411	D N JFET	Ū411			GET5458	N JFET	2N5458		
E412	D N JFET	U412			GET5459	N JFET	2N5459 2N162		
E413 E414	D N JFET D N JFET	U410 U 4 11			HDIG1030 ID100	PMOS ENH D PAD N JFET	3N163 DPAD1		

Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page	Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page
ID101	D PAD N JFET	DPAD10			J112-18	N JFET	J112-18	4	5-3
IMF3954	D N JFET	2N3954			J113	N JFET	J113	4-10	5-3
IMF3954A	D N JFET	2N3954A			J113-18	N JFET	J113-18	4	5-3
IMF3955	0 N JFET	2N3955			J114	N JFET	J114	4-11	5-34
IMF3955A	D N JFET	2N3955A			J174	P JFET	J174	4-12	5-39
IMF3956	Ú N JFET	2N3956			J174-18	P JFET	J174-18	4-12	5-39
IMF3957	D N JFET	2N3957			J175	P JFET	J175	4-12	5-39
MF3958	Û N JFET	2N3958			J175-18	P JFET	J175-18	4-12	5-39
MF6485	D N JFET	U405			J176	P JFET	J176	4-12	5-39
IT100	P JFET	2N5116			J176-18	P JFET	J176-18	4-12	5-39
T101	P JFET	2N5114			J177	P JFET	J177	4-12	5-39
IT108	N JFET	2N5486			J177-18	P JFET	J177-18	4-12	5-39
IT109	N JFET	U310			J201	N JFET		4-13	5-19
11700	PMOS ENH	3N163			J201-18	N JFET		4-13	5-1 9
11702	P MOSENH	3N163			J202	N JFET		4-13	5-19
ITE500	CL N JFET	J500			J202-18	N JFET		4-13	5-19
ITE501	CL N JFET	J501			J203	N JFET		4-13	5-19
ITE502	CL N JFET	J502			J203-18	N JFET		4-13	5-19
TE503	CL N JFET	J503			J204	N JFET	J204	4-14	5-19
TE504	CL N JFET	J504			J204-18	N JFET	J204-18	4-14	5-19
TE505	CL N JFET	J505			J210	N JFET	J210	4-15	5-34
TE506	CL N JFET	J506			J211	N JFET	J211	4-15	5-34
TE507	CL N JFET	J507			J212	N JFET	J212	4-15	5-34
TE3066	N JFET	J202-18			J230	N JFET	J230	4-16	5-27
TE3067	N JFET	J201-18			J230-18	N JFET	J230-18	4-16	5-27
TE3068	N JFET	J201-18			J231	N JFET	J231	4-16	5-27
TE4117	N JFET	2N4117			J231-18	N JFET	J231-18	4-16	5-27
TE4118	N JFET	2N4118			J232	N JFET	J232	4-16	5-27
TE4119	N JFET	2N4119			J232-18	N JFET	J232-18	4-16	5-27
TE4338	N JFET	J201-18			J270	P JFET	J270	4-17	5-39
TE4339	N JFET	J201-18			J270-18	P JFET	J270-18	4-17	5-39
TE4340	N JFET	J202-18			J271	P JFET	J271	4-17	5-39
TE4341	N JFET	J203-18			J271-18	P JFET	J271-18	4-17	5-39
TE4391	N JFET	PN4391-18			J300	N JFET	J300	4-18	5-34
TE4392	N JFET	PN4392-18			J304	N JFET	J304	4-19	5-8
TE4393	N JFET	PN4393-18			J305	N JFET	J305	4-19	5-8
TE4416	N JFET	KK4416-18			J308	N JFET	J308	4-20	5-32
TE4867	N JFET	J230-18			J309	N JFET	J309	4-20	5-32
TE4868	N JFET	J231-18			J310	N JFET	J310	4-20	5-32
TE4869	N JFET	J232-18			J401	D N JFET	U401		
105	N JFET	J105	4-8	5-31	J402	D N JFET	U402		
105-18	N JFET	J105-18	4-8	5-31	J403	D N JFET	U403		
J106	N JFET	J106	4-8	5-31	J404	D N JFET	U404		
106-18	N JFET	J106-18	4-8	5-31	J405	D N JFET	U405		
1107	N JFET	J107	4-8	5-31	J406	D N JFET	U406		
107-18	N JFET	J107-18	4-8	5-31	J410	D N JFET	U410		
1108	N JFET	J108	4-9	5-10	J411	D N JFET	U411		
108-18	N JFET	J108-18	4-9	5-10	J412	D N JFET	U412		
109	N JFET	J109	4-9	5-10	J500	CL N JFET	J500	4-21	5-5
109-18	N JFET	J109-18	4-9	5.10	J501	CL N JFET	J501	4-21	5-5
110	N JFET	J110	4-9	5-10	J502	CL N JFET	J502	4-21	5-5
110-18	N JFET	J110-18	4-9	5-10	J503	CL N JFET	J503	4 21	5-5
111	N JFET	J111	4-10	5-3	J504	CL N JFET	J504	4-21	5-5
111-18	N JFET	J111-18	4-10	5-3	J505	CL N JFET	J505	4-21	55
112	N JFET	J112	4-10	5-3	J506	CL N JFET	J506	4-22	5-5

1979 Siliconix incorporated

industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page	Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometr Page
J507 J508 J509 J510 J511	CL N JFET CL N JFET N JFET N JFET CL N JFET	J507 J508 J509 J510 J511	4-22 4-22 4-22 4-22 4-22 4-22	5-5 5-5 5-5 5-5 5-5	KK4416-18 LDF603 LDF604 LDF605 M163	N JFET N JFET N JFET N JFET P MOS ENH	KK4416-18 2N4221A 2N4221A 2N4221A 3N163	4-30	5-8
JPAD50 JPAD100 JPAD200 JPAD500 J1401	PAD N JFET PAD N JFET PAD NJFET PAD N JFET D N JFET	JPAD50 JPAD100 JPAD200 JPAD500 U401	4-23 4-23 4-23 4-23		M164 MEM520 MEM520C MEM561 MEM561C	PMOS ENH PMOS ENH PMOS ENH PMOS ENH PMOS ENH	3N164 3N164 3N164 3N163 3N163		
J1402 J1403 J1404 J1405 J1406	D N JFET D N JFET D N JFET D N JFET D N JFET	U402 U403 U404 U405 U406			MEM806 MEM806A MFE823 MFE2000 MFE2001	PMOS ENH PMOS ENH PMOS ENH N JFET N JFET	3N163 3N163 MFE823 2N4416 2N4416	3-47	5-1
K114-18 K1837-18 K210-18 K211-18 K211-18 K212-18	N JFET N JFET N JFET N JFET N JFET	K114-18 K1837-18 K210-18 K210-18 K210-18 K210-18	4-24 4-25 4-26 4-26 4-26	5-34 5-8 5-34 5-34 5-34	MFE2004 MFE2005 MFE2006 MFE2007 MFE2008	N JFET N JFET N JFET N JFET N JFET	2N4093 2N4092 2N4091 2N4860 2N4859		
K300-18 K304-18 K305-18 K308-18 K309-18	N JFET N JFET N JFET N JFET N JFET	K300-18 K304-18 K304-18 K308-18 K309-18	4-27 4-28 4-28 4-29 4-29	5-34 5-8 5-8 5-32 5-32	MFE2009 MFE2010 MFE2011 MFE2012 MFE2093	N JFET N JFET N JFET N JFET N JFET	2N4859 2N5434 2N5433 2N5432 2N3687		
K310-18 KE3684 KE3685 KE3686 KE3686	N JFET N JFET N JFET N JFET N JFET	K310-8 2N3684 2N3685 2N3686 2N3686 2N3687	4-29	5-32	MFE2094 MFE2095 MFE4007 MFE4008 MFE4009	N JFET N JFET P JFET P JFET P JFET	2N3686 2N3685 2N2608 2N2608 2N2608 2N3329		
KE3823 KE3970 KE3971 KE3972 KE4091	N JFET N JFET N JFET N JFET N JFET	J304-18 PN4391-18 PN4392-18 PN4393-18 PN4393-18 PN4391-18			MFE4010 MFE4011 MFE4012 MK10 MMF1	P JFET P JFET P JFET N JFET D N JFET	2N3330 2N3330 2N3331 2N4416 2N3921		
KE4092 KE4093 KE4220 KE4221 KE4222	N JFET N JFET N JFET N JFET N JFET	PN4392-18 PN4393-18 2N5457 2N5457 2N5459			MMF2 MMF3 MMF4 MMF5 MMF6	D N JFET D N JFET D N JFET D N JFET D N JFET	2N3921 2N3921 2N3921 2N3921 2N3921 2N3921		
KE4223 KE4224 KE4391 KE4392 KE4393	N JFET N JFET N JFET N JFET N JFET	J304-18 J304-18 PN4391-18 PN4392-18 PN4393-18			MMT3823 MPF102 MPF103 MPF104 MPF105	N JFET N JFET N JFET N JFET N JFET	2N3823 MPF102 2N5457 2N5458 2N5459	4-31	5-8
KE4416 KE4856 KE4857 KE4858 KE4859	N JFET N JFET N JFET N JFET N JFET	KK4416-18 PN4391-18 PN4392-18 PN4393-18 PN4393-18 PN4391-18			MPF106 MPF107 MPF108 MPF109 MPF111	N JFET N JFET N JFET N JFET N JFET	2N5485 2N5486 MPF108 MPF109 MPF111	4-32 4-33 4-34	5-8 5-25 5-25
KE4860 KE4861 KE5103 KE5104 KE5105	N JFET N JFET N JFET N JFET N JFET	PN4392-18 PN4393-18 K305-18 K304-18 K304-18			MPF112 MPF256 MPF820 MPF970 MPF971	N JFET N JFET N JFET P JFET P JFET	MPF112 J309 U310 J174 J176	4-35	5-8

SI iconix

industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page	Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page
MPF4391 MPF4392 MPF4393 NF500	N JFET N JFET N JFET N JFET	PN4391-18 PN4392-18 PN4393-18 2N4416			PN4093 PN4302 PN4302-18 PN4303 PN4303 PN4303-18	N JFET N JFET N JFET N JFET N JFET	PN4093 PN4302 PN4302-18 PN4303 PN4303-18	4-37 4-38 4-38 4-38 4-38 4-38	5-3 5-19 5-19 5-19 5-19 5-19
NF501 NF506 NF510 NF511 NF520 NF521	N JFET N JFET N JFET N JFET N JFET N JFET	2N4416 2N4493 2N4393 2N4393 2N3684 2N3684 2N3686			PN4303-16 PN4304-18 PN4304-18 PN4391 PN4391-18 PN4392	N JFET N JFET N JFET N JFET N JFET	PN4303-18 PN4304-18 PN4391 PN4391-18 PN4391-18 PN4392	4-38 4-36 4-38 4-39 4-39	5-19 5-19 5-3 5-3 5-3 5-3
NF522 NF523 NF530 NF531 NF532	N JFET N JFET N JFET N JFET N JFET	2N3684 2N3686 2N4341 2N4339 2N4341			PN4392-18 PN4393 PN4393-18 PN4316 PN5163	N JFET N JFET N JFET N JFET N JFET	PN4392-18 PN4393 PN4393-18 PN4416 PN5163	4-39 4-39 4-39 4-40 4-41	5-3 5-3 5-3 5-8
NF533 NF580 NF581 NF582 NF583	N JFET N JFET N JFET N JFET N JFET	2N4339 2N5432 2N5432 2N5433 2N5433 2N5434			PF510 PF511 SU2078 SU2079 SU2098	P JFET P JFET D N JFET D N JFET D N JFET	2N5018 2N5014 U425 U425 2N5197		
NF584 NF585 NF4302 NF4303 NF4304	N JFET N JFET N JFET N JFET N JFET	2N5433 2N4859 2N4302 2N4303 2N4303 2N4304			SU2098A SU2098B SU2099 SU2099A SU2099A SU2365	D N JFET D N JFET D N JFEI D N JFET D N JFET	2N5197 2N5196 2N5197 2N5197 U401		
NF4445 NF4446 NF4447 NF4448 NF5163	N JFET N JFET N JFET N JFET N JFEI	2N5432 2N5433 2N5432 2N5433 2N5433 2N5163			SU2365A SU2366 SU2366A SU2367 SU2367 SU2367A	D N JFET D N JFET D N JFET D N JFET D N JFET	U401 U402 U402 U403 U403 U403		
NF5457 NF5458 NF5459 NF5484 NF5485	N JFET N JFET N JFET N JFET N JFET	2N5457 2N5458 2N5459 2N5484 2N5485			SU2368 SU2368A SU2369 SU2369A SU2369A SU2410	D N JFET D N JFEI D N JFET D N JFET D N JFET	U404 U404 U405 U405 U424		
NF5486 NF5555 NF5638 NF5639 NF5640	N JFET N JFET N JFET N JFET N JFET	2N5486 2N5555 2N5638 2N5639 2N5640			SU2411 SU2412 TD5902 TD5902 TD5902 TD5902A	D N JFET D N JFET D N JFET D N JFET D N JFET	U425 U426 2N5902 2N5902 2N5902 2N5902		
NF5653 NF5654 PAD1 PA02 PA05	N JFET N JFET PAD N JFET PAD N JFET PAD N JFET	2N5653 2N5654 PAD1 PAD2 PAD5	3-49 3-49 3-49		TD5903 TD5903A TD5904 TD5904A TD5905	D N JFET D N JFET D N JFET D N JFEI D N JFEI D N JFET	2N5903 2N5903 2N5904 2N5904 2N5904 2N5905		
PAD10 PAD20 PAD50 PAD100 P 1086	PAD N JFET PAD N JFET PAD N JFET PAD N JFET P JFET	PAD10 PAD20 PAD50 PAD100 P1086	3-49 3-49 3-49 3-49 4-36	539	TD5905A TD5906 TD5906A TD5907 TD5907A	D N JFET D N JFET D N JFET D N JFET D N JFET	2N5905 2N5906 2N5906 2N5907 2N5907 2N5907		
P1086-18 P1087 P1087-18 PN4091 PN4092	P JFET P JFET P JFET N JFET N JFET	P1086-18 P1087 P1087-18 PN4091 PN4092	4-36 4-36 4-36 4-37 4-37	539 5-39 5-39 53 53 53	TD5908 TD5908A TD5909 TD5909A TD5909A TD5911	D N JFET D N JFET D N JFET D N JFET D N JFET	2N5908 2N5908 2N5909 2N5909 2N5909 2N5911		

Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page	Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page
TD5911A TD5912 TD5912A TIS14 TIS25	D N JFET D N JFET D N JFET N JFET D N JFET	2N5911 2N5912 2N5912 2N4340 U401			U243 U248 U248A U249A U249A	N JFET D N JFET D N JFET D N JFET D N JFET	2N5433 2N5902 2N5906 2N5903 2N5907		
TIS26 TIS27 TIS41 TIS58 TIS59	D N JFET D N JFET N JFET N JFET D N JFET	U402 U404 2N4859 J305-18 U1837			U250 U250A U251 U251A U254	D N JFET D N JFET D N JFET D N JFET N JFET	2N5904 2N5908 2N5905 2N5909 2N4859		
TIS73 TIS74 TIS75 TIS88 TIX541	N JFET N JFET N JFET N JFET N JFET	PN4391-18 PN4392-18 PN4393-18 2N5486 2N5486 2N4859			U255 U256 U257 U273 U273A	N JFET N JFET D N JFET N JFET N JFET	2N4860 2N4861 U257 2N4118A 2N4118A	3-52	5-34
TIXS42 TN4117 TN4117A TN4118 TN4118 TN4118A	N JFET N JFET N JFET N JFET N JFET	PN4393-18 2N4117 2N4117A 2N4118 2N4118A			U274 U274A U275 U275A U280	N JFET N JFET N JFET D N JFET	2N4119A 2N4119A 2N4119A 2N4119A U231		
TN4119 TN4119A TN4338 TN4339 TN4339 TN4340	N JFET N JFET N JFET N JFET N JFET	2N4119 2N4119A 2N4338 2N4339 2N4339 2N4340			U281 U282 U283 U284 U284 U285	D N JFET D N JFET D N JFET D N JFET D N JFET	U231 U232 U232 U233 U233 U234		
TN4341 TP5114 TP5115 TP5116 U110	N JFET P JFET P JFET P JFET P JFET	2N4341 2N5114 2N5115 2N5116 2N2608			U290 U291 U295 U296 U300	N JFET N JFET N JFET P JFET	U290 U291 U295 U296 2N5114	3-53 3-53	5-31 5-31
U112 U133 U146 U147 U148	P JFET P JFET P JFET P JFET P JFET	2N2608 2N2608 2N2608 2N2608 2N2608 2N2608			U301 U304 U305 U306 U308	P JFET P JFET P JFET P JFET N JFET	2N5115 U304 U305 U306 U308	3-54 3-54 3-54 3-55	5-39 5-39 5-39 5-32
U149 U168 U182 U183 U197	P JFET P JFET N JFET N JFET N JFET	2N2609 2N2609 2N4857 2N3824 2N4339			U309 U310 U311 U312 U320	N JFET N JFET N JFET N JFET N JFET	U309 U310 U311 U312 U320	3-55 3-55 3-57 3-58 3 - 59	5- 32 5-32 5-32 5-34 5-10
U198 U199 U200 U201 U202	N JFET N JFET N JFET N JFET N JFET	2N4340 2N4341 U200 U201 U202	3-50 3-50 3-50	5-3 5-3 5-3	U321 U322 U401 U402 U403	N JFET N JFET D N JFET D N JFET D N JFET	U321 U322 U401 U402 U403	3-59 3-59 3.61 3-61 3-61	5-10 5-10 5-17 5-17 5-17
U221 U222 U231 U232 U233	N JFET N JFET ON JFET D N JFET D N JFET	2N4391 2N4391 U231 U232 U233	3-51 3-51 3-51	5-15 5-15 5-15	U404 U405 U406 U410 U411	D N JFET D N JFET O N JFET D N JFET D N JFET	U404 U405 U406 U410 U411	3-61 3-61 3-61 3-63 3-63	5-17 5-17 5-17 5-21 5-21
U234 U235 U240 U241 U242	D N JFET D N JFET N JFET N JFET N JFET	U234 U235 2N5432 2N5433 2N5433 2N5432	3-51 3-51	5-15 5-15	U412 U421 U422 U423 U423 U424	D N JFET D N JFET D N JFET D N JFET D N JFET	U412 U421 U422 U423 U423 U424	3-63 3-64 3-64 3-64 3-64	5-21 5-23 5-23 5-23 5-23 5-23

F	T
Silic	onix

U425 U426 U430 U431	D N JFET		Page	Page	Part Number	Classification	Replacement	Page	Page
U426 U430 U431		U425	3-64	5-23	UC41	P JFET	2N2608		
U430 U431	D N JFET	U426	3-64	5-23	UC100	N JFET	2N3684		
U431	D N JFET	U430	3-66	5-32	UC110	N JFET	2N3685		
	D N JFET	U431	3-66	5-32	UC115	N JFET	2N4340		
U440	D N JFET	U440	3-67	5-34	UC120	N JFET	2N3686		
U441	D N JFET	U441	3-67	5-34	UC130	N JFET	2N3687		
U508	N JFET	CR030	3-07	3-34	UC155	N JFET	2N4416		
U1177	N JFET	2N4220A			UC200	N JFET	2N3824		
U1178	N JFET	2N3821			UC201	N JFET	2N3824		
01179	N JFET	2N3821			UC210	N JFET	2N4416		
01100	N JFET	2N4221A			UC220	N JFET	2N3822		
U1180 U1181	N JFET	2N4220A			UC240	N JFET	2N4869		
U1182	N JFET	2N3821			UC241	N JFET	2N4869		
01102	N JFET	2N3684			UC250	N JFET	2N4091		
U1278	N JFET	2N3685			UC251	N JFET	2N4392		
111070		010606			UC300	P JFET	2N2608		
U1279 U1280	N JFET	2N3686 2N3684			UC310	P JFET	2N2843		
U1280 U1281	N JFET N JFET	2N3822			UC320	P JFET	2N2843		
U1282	N JFET	2N3022 2N4341			UC330	P JFET	2N2843		
U1283	N JFET	2N4340			UC340	P JFET	2N2843		
U1284	N JFET	2N4341			UC400	P JFET	2N3331		
					UC401	PJFET	2N5116		
U1285	N JFET	2N4220			UC410	PJFET	2N3330		
U1288	N JFET	2N4341			UC420	PJFET	2N3329		
U1287 U1321	N JFET N JFET	2N4092 2N3966			UC450	PJFET	2N5114		
U1322	N JFET	2N4221A			UC451	P JFET	2N5116		
U1323	N JFET	2N4221A			UC588	N JFET	2N4417		
					UC703	N JFET	2N4220		
U1324	N JFET	2N4220A			UC704	N JFET	2N4220		
U1325 U1420	N JFET N JFET	2N4222 2N3821			UC705	N JFET	2N4224		
U1421	NICET	2112022			UC707	N JFET	2N4860		
U1421	N JFET N JFET	2N3822			UC714	N JFET	2N3822		
U1422 U1714	N JFET	2N3822			UC714E	N JFET	J203-18		
U1837	N JFET	2N4340	4.40	C 0	UC734	N JFET	2N4416		
U1837E	N JFET	U1837 U1837	4-42	5-8	UG734E	N JFET	KK4416 18		
U1897		114907	4 40	5.0	UC751	N JFET	2N4340		
U1897-18	N JFET N JFET	U1897	4-43	5-3 5-3	UC752	N JFET	2N4340 2N4340		
U1897E	N JFET	U1897-18	4-43	5-3	UC753	N JFET	2N4341		
U1898	N JFET	U1897-18	4-43	5-3	UC754	N JFET	2N4340		
U1898-18	N JFET	U1898 U1898-18	4-43 4-43	5-3 5-3	UC755	N JFET	2N4340 2N4341		
U1898E	N JFET				UC756	N JFET	2N4340		
U1899	N JFET	U1898-18	4 42	5.2	UC805	P JFET	2N3331		
U1899-18	N JFET	U1899	4-43	5-3	UC805	N JFET	2N4860		
U1899E	N JFT	U1899-18	4-43	5-3	UC814	P JFET	2N4660 2N3331		
U1994	N JFET	U1899-18 U1994	4-44	5-8	UC851	P JFET	2N2608		
U1994E	N JFET				UC853	P JFET	2N2608		
U2047E	N JFET	U1994			UC854	P JFET	2N2608 2N2608		
U3000		KK4416-18			UC855	PJFET	2N2609		
U3000 U3001	N JFET	2N4341			UC1700	P MOS ENH			
U3001 U3002	N JFET N JFET	2N4339 2N4338			UC1764	P MUS ENH P MOS ENH	3N163 3N163		
U3010	N JFET	2N4341			UC2130	D N JFET	2N5452		
U3011	N JFET	2N4340			UC2130	D N JFET	2N3955		
U3012	N JFET	2N4340 2N4338			UC2134	D N JFET	2N3956		
UC20		2N3687			UC2134 UC2136	D N JFET	2N3956 2N3957		
UC40	N JFET P JFET	2N3607 2N2608			UC2138	ON JFET	2N3957 2N3958		

Siliconix

Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Geometry Page	Industry Part Number	Type and Classification	Recommended Replacement	Date Sheet Page	Gepagetry
UC2139 UC2147 UC2148 UC2149 VCR2N	D N JFET D N JFET D N JFET D N JFET N JFET	2N3958 2N3958 2N3958 2N3958 2N3958 VCR2N	3-68	5-3	VN40AF VN46AF VN64GA VN66AF VN66AJ	VMOS N ENH VMOS N ENH VMOS N ENH VMOS N ENH VMOS N ENH	VN40AF VN46AF VN64GA VN64GF VN66AJ		
VCR3P VCR4N VCR5P VCR6P VCR7N	P JFET N JFET P JFET P JFET N JFET	VCR3P VCR4N VCR5P 2N5116 VCR7N	3-68 3-68 3-66 3-68	5-38 5-19 5-36 5-29	VN66AK VN67AA VN67AB VN67AF VN67AJ	VMOS N ENH VMOS N ENH VMOS N ENH VMOS N ENH VMOS N ENH	VN66AK VN67AA VN67AB VN67AF VN67AJ		
VMP1 VMP2 VMP4 VMP11 VMP12	VMOS N ENH VMOS N ENH VMOS N ENH VMOS N ENH VMOS N ENH	2N6657 2N6660 VMP4 2N6656 2N6658			VN67AK VN88AF VN89AA VN89AB VN89AF	VMOS N ENH VMOS N ENH VMOS N ENH VMOS N ENH VMOS N ENH	VN67AK VN88AF VN89AA VN89AB VN89AF		
VMP21 VMP22 VN30AA VN30AB VN33AJ	VMOS N ENH VMOS N ENH VMOS N ENH VMOS N ENH VMOS N ENH	2N6659 2N6661 VN30AA VN30AB VN30AB VN33AJ			VN90AA VN90AB VN98AJ VN98AK VN99AJ	VMOS N ENH VMOS N ENH VMOS N ENH VMOS N ENH VMOS N ENH	VN9CAA VN9CAB VN98AJ VN98AK VN98AK VN99AJ		
VN33AK VN35AA VN35AB VN35AJ VN35AJ VN35AK	VMOS N ENH VMOS N ENH VMOS N ENH VMOS N ENH VMOS N ENH	VN33AK VN35AA VN35AB VN35AJ VN35AJ VN35AK			VN99AK WK5457 WK5458 WK5459	VMOS N ENH N JFET N JFET N JFET	VN99AK 2N5457 2N5458 2N5459		

product information

Siliconix products are divided into three basic categories:

Standard Products. Modified Standard Products. Custom Productr

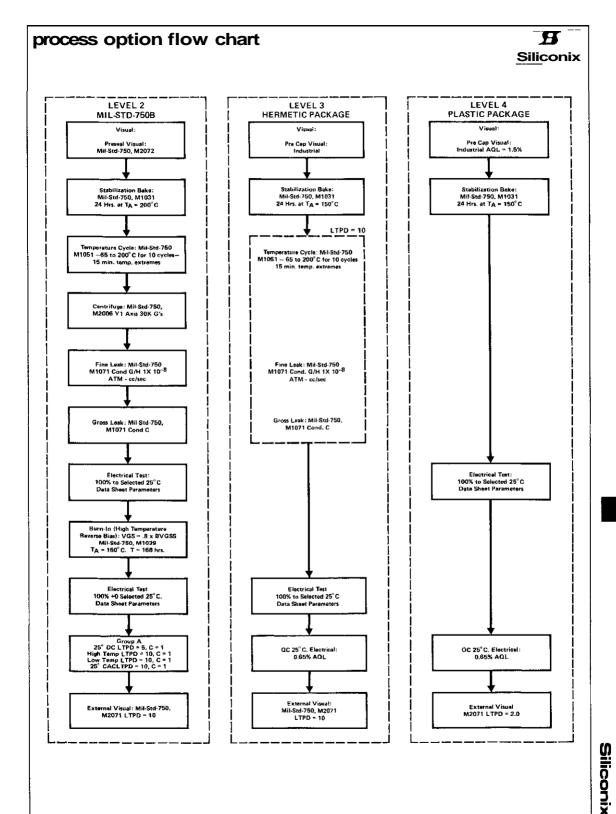
- Standard Products All the part numbers described in this catalog are standard products. A summary list of the prefixes used is shown below in the Device Identification Table. Ordering any of the standard products is easily done by referring to the data sheet part number. For example, a 2N4391 is simply ordered by that number: "2N4391." It will also appear in that form on the price lists, published separately.
- Examples of Modified Standard Products are:

Electrical Specials Devices with either tightened, relaxed and/or special electrical specifications selected from a rtandard product.

Mechanical Specials Devices with standard or modified electrical specifications mounted in non-standard packager or modified (lead formed) rtandard packager. Modifications and/or additions to standard marking are also considered mechanical specials.

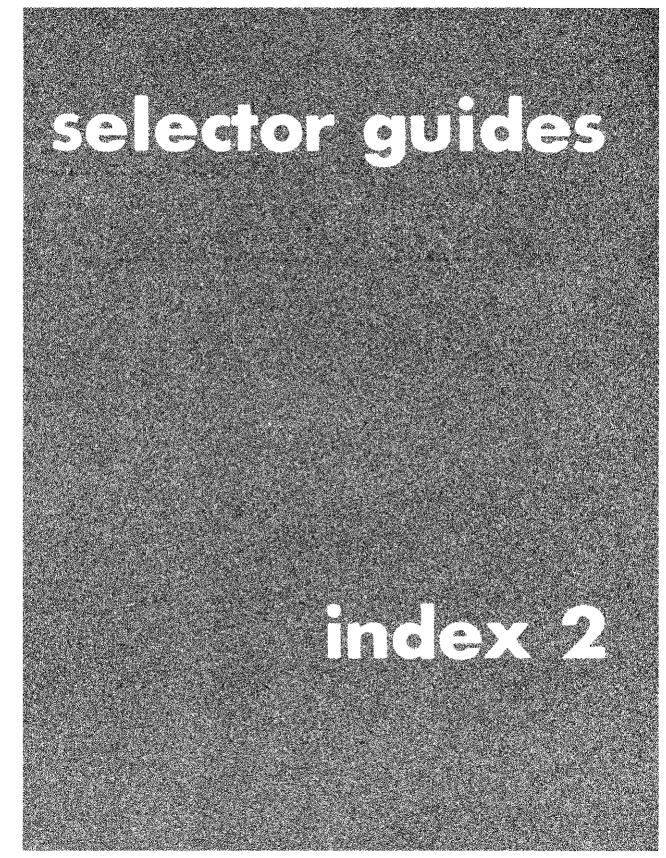
High Reliability Specials Silicanix has a number of rtandard High-Reliability screening options that can be ordered as rtandard products. These options include MIL-750B. High-Rel process option details will be found in the introductory section of this data book. In addition. Silicanix offers certain JEDEC-registered FETs with JAN. JANTX, or JANTXV processing. Refer to any current Siliconix OEM price list for details on specific part numbers. If existing screening processes do not meet individual customer requirements, Siliconix can provide special additional inspections and controls to meet the stringent demands.

In all of the above carer (with the exception of JAN. JANTX, or JANTXV parts), a special part number is assigned which definer the part either by reference to customer's print(s) or by associated rpecial requirements. Each rpecial product is proprietary to the customer, and is *nor* made available to other customers.


Custom Products Are designed to meet customer requirements not realizable by selection from standard parts; usually, there productr require rpecial engineering development. The proprietary relationship described above also applies to custom products.

Inquiries for SPECIAL DEVICES may be directed to the nearest field sales office or to:

FET Marketing Department, Siliconix incorporated, 2207 Laurelwood Road, Santa Clara. California 95054, Telephone: (408) 988-8000


FETs/Part Number Prefixes and Suffixes

Prefix	XXX	XXXX
CR	Si Standard N-Channel	
	current Regulator	
DPAD	Si Standard Dual JFET Diode	
FN	Special N-Channel JFET	Special N-Channel JFET
J	Si Standard TO-92 Cared FET	Special TO-92 Cared FET
JPAO	Si Standard TO-92 Cared JFET Diode	
К	Si Standard TO-92 Cared FET	
кк	Si Standard TO-92 Cared FE1	
M	Si Standard MOSFET	
MEM	Si Standard MOSFET	1
MŲ	Special MOSFET	
PAD	Si Standard JFET Diode	1
PF	Special P-Channel JFET	
PN		Si Standard TO-92 Cared FET
su	Special P-Channel JFET	1
u l	Si Standard FET	Si Standard FET
VCR	Si Standard N-and P-Channel	
	Voltage Controlled Resistors	
VMP	VMOS Power FET N-Channel	
VN		VMOS Power FET N-Channel
2N		JEDEC-Registered Device
ЗN	JEDEC-Registered Device	
Suffix		
-18	Std TO 92 Package with Center Lead Formed To	ward Flat in TO-18 Pin Circle

L

1-15

tips on selecting the right FET for your application

The "Product Specification," a short form version of technical data, will provide you direct reference to Siliconix part numbers and a condensed version of technical specifications

IF YOU ARE NOT FAMILIAR WITH THE FET PARAMETERS YOU NEED:

- 1. Turn to page 2-2 "How to Choose the Correct FET for Your Application." Using this guide, determine the important FET parameters.
- 2. Next, turn to page 2-4 "JFET Geometry Selector Guide." Using this guide, choose the appropriate geometry.
- 3. Once you have chosen a geometry, turn to the "Geometry Characteristics" section 5 of the catalog. Here you make the choice of a suitable part number,
- **4.** Now that you have the part number, you will find complete electrical specifications of these products in the "Data Sheets" sections 3 and 4 of the catalog.

IF YOU ARE FAMILIAR WITH THE PARAMETERS YOU NEED:

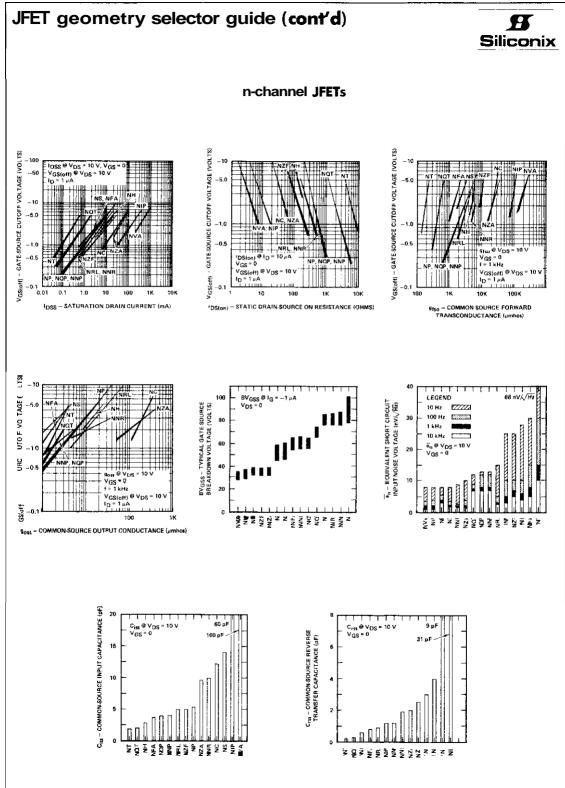
- 1. Turn to the "Product Specifications" pages 2-6 through 2-16 to determine the proper part number(s).
- 2: Double-check your choices against the data sheets, and select the part most suited for your application.

hc	w	t	0	cho	00	se	th	e c	or	re	ct	FE	T 1	foi	r y	yc	bu	r a	ap	pli	Ca	atio	or	ו	ç	Sili	A	5 oniz	<
ameters	-									Noise e. NF	while using high	level signars	while operating	below RF frequencies	c 	Capacitance &	times while	operating in audio and lower	frequencies										
Unimportant FET Parameters				RDS(an)	VDS(on)	¹ D(off)	Switching Times						<pre>9fs, RDS(on), ¹D(off), VDS(on) witching times, RF parameters</pre>	capacitance		^R DS(an)	^V DS(on)	lD(off)				č	-1 ^s	SOP				412, 12 10 10 10 10 10 10 10 10 10 10 10 10 10	
Major Tradeoffs				Voltage amplification	factor µ	= 9ts/9 ₀₅	= ∆VDS/∆VGS @ ID = const																RDS(on)	Capacitance					-
Important FET Parameters Required	Low noise (En), gfs/g _{os}	Low I _G , high g _{fs}	Good matching V _{GS} , 9 _{fs} , I _{DSS} , I _G	Very low IG (eg., MOSFET)	High gfs/Ciss ratio, NF, RF parameters	Good matching VGS, 9fs, IDSS, IG	High VGS(off) compared to signal amplitude	Low VGS(off)	Low en, In, Iow 1/f noise, Iow NF	Operate near IDZO, high gfs/ID ratio	High gf _S /C _{jss} ratio, NF		Low g _{ass} , Iow V _{GS(off)} , high BV _{GSS}		-	RF parameters, NF, high g _{fs} /C _{iss} ratio,	low Crss	Matching characteristics	Good g _{fs} at operating frequency	Low C _{iss} for VHF operation	Fast switching time	^r DS ^{/1} D(off) switching efficiency	Low Crss	Fast switching time	Very low RDS(on), High IDSS	Low Crss		range and low distortion	
Detail Application	Audio	Buffer	Differential	High Input Impedance	High Frequency	FET Input Op Amp	Low Distortion	Low Supply Voltage	Low Noise	Preamplifier	Video	Current Limiting	Reference Current Source	Biasing	n	VHF	UHF	Double Balanced	Class A	Class C	Analog Gates	Choppers	Commutators	Digital	Integrator Reset	Sample and Hold	Gain Control	Amplitude Stability Artenuators	
Application						AMPLIFIER							CURRENT	SOURCE			MIXERS		OSCILLATORS				SWITCHES				VOLTAGE	CONTROLLED RESISTORS	_

JFET geometry selector guide

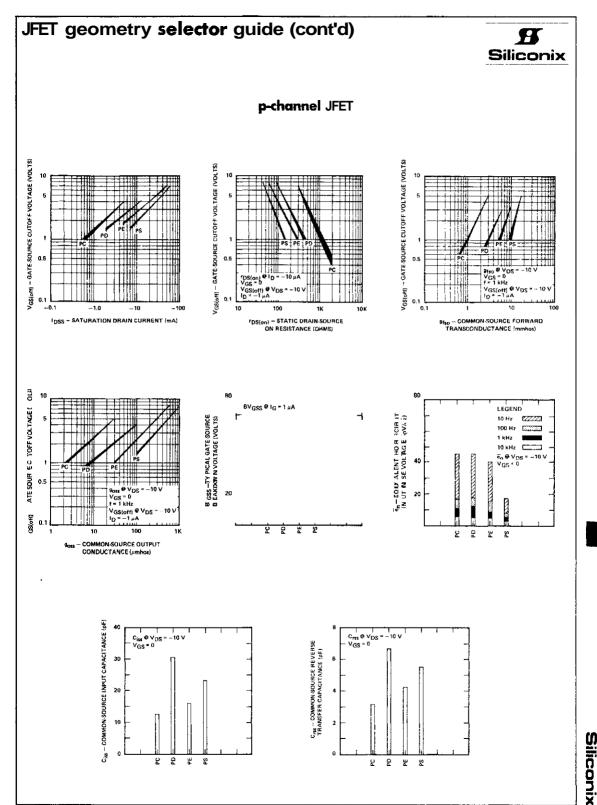
Once you have chosen the major FET parameters, you will find selecting the optimum JFET geometry is easy. If you are familiar with Field Effect Transistors. start your selection using the characteristic graphs on page 2-4. You will find the $V_{GS(off)}$ vs I_{DSS} graph the most meaningful, since it shows — in order of ascending active area — the complete line of Siliconix junction FETs.

To give you an idea how this guide works, let's find the most suitable geometry for a 70 ohm ON-resistance analog switch


which will be required to operate as close as 5 volts from the negative power supply. The power supply restraint requires a maximum v \sim of 5 volts. Examining the RDS(on) vs VGS(off) figure. you will find the NC. NIP, and NVA geometries meet the R_{ON} and VGS(off) requirements. In order to minimize your cost, choose the geometry having the least chip area, that is the NC. You will find characteristic data and part numbers in the Geometry Characteristics section of the catalog. Below are the most important parameter inter-relationships expressed in analytical form.

USEFUL JFET PARAMETER RELATIONSHIPS (APPROX.)

9fso	-	$\kappa = \frac{I_{DSS}}{V_{GS(off)}}$	Forward transconductance as a function of t_{DSS} and $V_{GS(off)}$ at zero gate-source voltage (K = 1.5 to 2.5: typically = 2 for N-channel junction FET)
^g fs	=	$g_{fs0} \left(1 - \frac{V_{GS}}{V_{GS(off)}}\right)$	Variation of g _{fs} with gate bias
9fs	=	g _{fso} √ID/IDSS	variation of g _{fs} with drain current
V _{GS(off)}	=	2 I _{DSS} 9fso	Gate-Source cutoff voltage in terms of I _{DSS} and g _{fso}
V _{DS}		$V_{GS(off)} \left(\frac{I_D}{I_{DSS}}\right)^{1/2}$	Drain voltage at which drain current saturates
rds		1 9fs	Reciprocal relationship between drain-source resistance and forward transconductance. Accurate when $V_{DS} \le V_{GS\{off\}}$ i.e. in the triode region
rDS	21	$\frac{[V_{GS(off)}]^2}{K_{IDSS}[V_{GS(off)} - V_{GS}]}$	K = 1.5 to 2.5 Variation of drain resistance in the triode region
٦	=	$I_{\text{DSS}} \left(1 - \frac{V_{\text{GS}}}{V_{\text{GS}(off)}}\right)^2$	Variation of drain current with gate-source voltage. The square law transfer characteristic.


2

Siliconix

Silconi×

© 1979 Siliconix incorporated

2

Siliconix

ſ								N&P-0	Channe	Single	JFETs							Pro
	PART NUMBE	N or	PACKAGE (TO-)	(nA, MAX.)	LEAKAGE	THRESHOLD VOLTAGE (V, MAX.)	BREAKDOWN VOLTAGE (V, MAX.)	(mA)	SATURATION	gfs (µmhas)	TRANS-	INPUT CAPACITANCE (pF, MAX.)	NOISE VOLTAGE (nV/\/Hz, MAX.) (NF, dB, MAX.)	RESISTANCE		GEOMETRY (Section 5)	DEVICE	Product Specifications
	E 72	קי	с) m	Gate	Chnl	þ	N N	Min.	Max.	Min.	Max.	_ ≌	약 ጦ	Gate Ω	Chnl Ω, Max.	Ť	H	G
	2N4117 2N4117A 2N4118 2N4118A 2N4119 2N4119A		72 72 72 72 72 72 72 72	0.01 0.001 0.01 0.001 0.01 0.01 0.001		1.8 1.8 3.0 3.0 6.0 6.0	40 40 40 40 40 40	0.03 0.03 0.08 0.08 0.2 0.2	0.09 0.09 0.24 0.24 0.6 0.6	70 70 80 90 100 100	210 210 250 250 330 330	3 3 3 3 3 3 3	-		-	NT NT NT NT NT	LOW LEAKAGE	tions
61.0	2N3459 2N3460 2N4220A 2N4221A 2N4222A 2N4338 2N4339 2N4340 2N4341 2N4867 2N4867A 2N4867A 2N4868 2N4868A 2N4869 2N4869A 2N4869A 2N4869A 2N5556 2N5557 2N5555 J230 J230-18 J231 J231-18 J232 J232-18		18 18 72 72 18 18 18 18 72 72 72 72 72 72 72 72 72 72 72 72 72 92 92 92 92 92 92 92 92 92 92 92 92 92 92	0.25 0.25 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25		3.4 3.4 1.8 4.0 6.0 8.0 1.0 1.8 3.0 6.0 2.0 2.0 3.0 5.0 5.0 4.0 5.0 5.0 4.0 5.0 5.0 6.0 3.0 5.0 5.0 6.0 6.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	50 50 50 30 30 50 50 50 50 50 50 50 50 50 50 50 50 50 40 40 40 30 30 30 30 40 40 40 40 40 40 40 40 40	0.8 0.2 0.5 2.0 5.0 0.2 0.5 1.2 3.0 0.4 1.0 1.0 2.5 2.5 0.5 2.0 4.0 0.7 0.7 2.0 5.0 5.0 5.0	4.0 1.0 3.0 6.0 15 0.6 1.5 3.6 9.0 1.2 1.2 1.2 3.0 3.0 7.5 7.5 2.5 5.0 10 3.0 3.0 6.0 10 10 10 10 10 10 10 10 10 1	1500 800 1000 2500 2500 800 1300 2000 700 700 700 1000 1300 1300 1500 1500 1500 1500 15	6000 4500 4000 5000 6000 1800 2400 3000 2000 2000 2000 3000 3000 4000 6500 6500 6500 6500 2500 3000 3000 3000 4000	18 18 6 6 7 7 7 7 25 25 25 25 25 25 25 6 6 6 - - - -	4 4 2.5 2.5 2.5 1.0 1.0 1.0 1.0 20 10 20 10 20 10 20 10 20 10 35 35 35 30 30 30 30 30 30 30 30	1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 		NP NP NRL NRL NRL NP NP NS NS NS NS NS NS NS NS NS NS NS NS NS	LOW NOISE	
20 Siliconix incornorated	J270-18 2N3819 2N3823 2N4223 2N4224 2N4416 2N4416A 2N5078	P N N N N N	92 92 72 72 72 72 72 72 72 72 72	0.2 2.0 0.5 0.25 0.5 0.1 0.1 0.25		2.0 8.0 8.0 8.0 6.0 6.0 8.0	30 25 30 30 30 30 30 35 30	2.0 2.0 4.0 3.0 2.0 5.0 5.0 4.0	15 20 20 18 20 15 15 25	6000 2000 3500 2000 4500 4500 4500	15000 6500 7000 7500 7500 7500 10000		 2.5 5.0 2.0 2.0 3.0	– 1K 1K 1K 1K 1K		PS NRL NRL NRL NRL NH NH	RF AMP	Siliconix

2-6

							N&P-	Channe	l Single	JFETs							1
PART NUMB	N or	PACKAGI (TO-)	(nA, MAX.)	LEAKAGE	THRESHOLD VOLTAGE (V, MAX.)	BREAKDOWN VOLTAGE (V, MAX.)	(mA)	SATURATION	gfs (µmhos)	TRANS-	INPUT CAPACITANCE (pF, MAX.)	NOISE VOL TAGE (nV/\/Hz, MAX.) or (NF, dB, MAX.)			GEOMETRY (Section 5)	DEVICE	
ĒR	P	GE CE	Gate	Chnl	0	Ň	Min.	Max.	Min.	Max.	ĥ	۹ ^۳	Gate Ω	Chnl Ω, Max.	Ŷ	ň	
2N5484	N	92	1.0	_	3.0	25	1.0	5.0	3000	6000	5	3.0	1K		NH		1
2N5485	N	92	1.0	-	4.0	25	4.0	10	3500	7000	5	2.0	1K		NH		
2N5486	N	92	1.0		6.0	25	8.0	20	4000	8000	5	2,0	1K	-	NH		
2N5668	N	92	2.0	_	4.0	25	1.0	5.0	1500	6500	7	2.5	1K	_	NH	1	
2N5669	N	92	2.0	_	6.0	25	4.0	10	2000	6500	7	2.5	1K	_	NH		
2N5670	N	92	2.0		8.0	25	8.0	20	3000	7500	7.0	2.5	1K		NH		
J210	N	92	0.1	_	3.0	25	2.0	15	4000	12000		2,5	_	_	NZF		:
J211	N	92	0.1	_	4.5	25	7.0	20	7000	12000	_		-	_	NZF		
J212	N	92	0.1	_	6.0	25	15	40	7000	12000	_	_	_	_	NZF		1
J270	P	92	0.2	_	2.0	30	2.0	15	6000	15000	_	 	_	-	PS		1
J271	P	92	0.2	_	4.5	30	6.0	50	8000	18000		÷			PS PS		1
J300	N	92	0.5		6.0	25	6.0	30	1	9000	5.5				-		1
J300	N	92	0.5	_	6.0	25 30	5.0	15	4500			-	-	-	NZF		1
J305	N	92	0.1	_	3.0	30	1.0	8.0	4500	7500	-	- 1	-		NH		
J308	N	92	1.0		6.5	30 25	12	60	3000		-	-		-	NH	_	
J308	N	92	1.0	_	4.0	25 25	12	30	8000 10000	20000 20000	7,5	-		-	NZA NZA	RF	
J310	N	92	1.0		6.5	25	24	60	8000	18000	7,5	-	-	-	NZA		
	N	92		_			24	15			7.5		-	-	• •	ž	
K210-18 K211-18	N	92	0.1		3.0	25	2.0 7.0	20	4000	12000	-	-			NZF	Ŧ	
		92		-	4.5	25		1	7000	12000	· -	-	-	-	NZF	<u> </u>	
K212-18	N		0.1	-	6.0	25	15	40	7000	12000	-	-	-	-	NZF	AMPLIFIE	
K300-18	N	92	0.5	-	6.0	25	6.0	30	4500	9000	5.5	-		- '	NZF	m	
K304-18	N	92	0.1	-	6.0	30	5.0	15	4500	7500	-	-	-		NH	RS	
K305-18	N	92	0.1	-	3.0	30	1.0	8.0	3000	_	-	—	-	-	NH	~	
K308-18	N	92	1.0	-	6.5	25	12	60	8000	20000	7.5	-	-	-	NZA		ł
K309-18	N	92	1.0	-	4.0	25	12	30	10000	20000	7.5	-	-	-	NZA		1
K310-18	N	92	1.0	-	6.5	25	24	60	8000	18000	7.5	_	-	-	NZA		1
K1837-18	N	92	0.25	-	8.0	30	4.0	25	4500	10000	6.0	3.0	1K	-	NH		1
КК4416-18	N	92	1.0	-	6.0	30	5.0	15	4500	7500	4.0	2.0	1K	-	NH		1
PN4416	N	92	1.0		6.0	30	5.0	15	4500	7500	4.0	2.0	1K	-	NH		1
MPF102	N	92	2.0	-	7.5	25	2.0	20	2000	7500	7.0	-		-	NH		
MPF108	N	92	1.0	-	8.0	25	1.5	24	2000	7500	6.5	2.5	1M		NH		
MPF112	N	92	100	-	10	25	1.0	25	1000	7500	-	-	-	- 1	NH		
U308	N	52	0.15		6.0	25	12	60	10000	20000	7.5	- 1	-	- 1	NZA		
U309	N	52	0.15	-	4.0	25	12	30	10000	20000	7.5	-	-	-	NZA		Siliconix
U310	N	52	0.15	-	6.0	25	24	60	10000	18000	7.5	<u> </u>	-	_ 1	NZA		
U311	N	72	0.15	_	6.0	25	20	60	10000	20000	7.5	-	-		NZA		0
U312	N	52	0.1	_	6.0	25	10	30	6000	10000	5.0	_	_	_	NZF		
U320	N	39	3.0	_	10	25	100	500	75000	200000	30	_	_		NIP		1 2.
U321	N	39	3.0		40	25	80	250	75000	200000	30		-	-	NIP		X
UU21	IN	37	30		- 1 0	45	00	250	/5000	200000			-	-			

xinopili2

Siliconix

PA N H H H H H H H H H H H H H H H H H H								N&P-(Channe	Single	JFETs							Pro
⊥ 0 0 0 <th></th> <th></th> <th>РАСКА (ТО-)</th> <th>(nA, MAX.)</th> <th>LEAKAGE</th> <th>THRESHOI VOLTAGE (V, MAX.)</th> <th>BREAKDOV VOLTAGE (V, MAX.)</th> <th>(mA)</th> <th>SATURATION</th> <th>gts (µmhos)</th> <th>TRANS-</th> <th>INPUT CAPACITAN (pF, MAX.)</th> <th>NOISE VOLTAG (nV/\/Hz, MAX.) {NF, dB, MAX.}</th> <th></th> <th></th> <th>GEOMETF (Section 5)</th> <th>DEVI</th> <th>Product Specifications (cont'd)</th>			РАСКА (ТО-)	(nA, MAX.)	LEAKAGE	THRESHOI VOLTAGE (V, MAX.)	BREAKDOV VOLTAGE (V, MAX.)	(mA)	SATURATION	gts (µmhos)	TRANS-	INPUT CAPACITAN (pF, MAX.)	NOISE VOLTAG (nV/\/Hz, MAX.) {NF, dB, MAX.}			GEOMETF (Section 5)	DEVI	Product Specifications (cont'd)
U1837 N 92 0.25 - 8.0 30 4.0 25 4500 10000 6.0 3.0 1K - NH > > > NH > NH > NH > NH	Ĥ	r P		Gate	Chni	5	ž	Min.	Max.	Min.	Max.	<u> </u>	약 ^{[[]}		Chni Ω, Max.	- 4	Ê	
2N3824 N 72 0.1 0.1 8.0 50 - - - - 6.0 - - 220 NRL 2N3966 N 72 0.1 1.0 6.0 30 2.0 - - - 6.0 - - 220 NH 2N3970 N 18 0.25 0.25 5.0 40 25 75 - - 25 - - 60 NC 2N3972 N 18 0.25 0.25 3.0 40 5.0 30 - - 255 - - 100 NC 2N4091 N 18 0.2 0.2 7.0 40 15 - - - 16 - - 80 NC 2N4092 N 18 0.1 0.1 50 40 25 75 - - 14 - - 100 NC	U1837 U1837-18	N N	92 92	0.25 0.25		8.0 8.0	30 30	4.0 4.0	25 25	4500 4500	10000 10000	6.0 6.0	3.0 3.0	1K 1K	-	NH NH	RF AMP	tions (
0 2N5114 P 18 0.5 0.5 10 30 30 90 - - 25 - - 75 PS 0 2N5115 P 18 0.5 0.5 6.0 30 15 60 - - 25 - - 100 PS 2N5116 P 18 0.5 0.5 4.0 30 5.0 25 - - 25 - - 100 PS 2N5116 P 18 0.5 0.5 4.0 30 5.0 25 - - 25 - - 150 PS 2N5432 N 52 0.2 0.2 10 25 150 - - - 30 - - 5.0 NIP 2N5433 N 52 0.2 0.2 100 25 30 - - 30 - - 10 NIP 2N5655 N 92 1.0 100 25 15 -	2N3824 2N3866 2N3970 2N3970 2N3971 2N4091 2N4092 2N4093 2N4093 2N4391 2N4392 2N4856 2N4856 2N4856 2N4857A 2N4857A 2N4857A 2N4858 2N4858 2N4858 2N4858 2N4859 2N4860 2N4860 2N4861 2N4861 2N4861 2N4861 2N4861 2N5018 2N5019 2N5116 2N5116 2N5432 2N5433 2N5433 2N5434 2N5555	222222222222222222222222222222222222222	72 72 18 18 18 18 18 18 18 18 18 18 18 18 18	0.1 0.1 0.25 0.25 0.25 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.1 1.0 0.25 0.25 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	8.0 6.0 10 5.0 10 7.0 5.0 10 7.0 5.0 10 7.0 5.0 10 6.0 4.0 4.0 10 6.0 4.0 4.0 10 6.0 4.0 10 6.0 4.0 10 6.0 4.0 10 6.0 4.0 10 6.0 4.0 10 6.0 4.0 10 6.0 4.0 10 6.0 4.0 10	50 30 40 40 40 40 40 40 40 40 40 40 40 40 40	2.0 50 25 5.0 30 15 8.0 50 25 50 20 20 8.0 8.0 8.0 50 50 20 20 8.0 8.0 10 5.0 30 15 5.0 15 8.0 15 8.0 50 25 50 20 20 20 8.0 8.0 50 20 20 20 8.0 8.0 50 20 20 20 20 8.0 8.0 50 20 20 20 20 20 20 20 20 20 2	- 150 75 30 - - 150 75 30 - - 100 100 80 80 80 - 100 100 80 80 - - - - - - - - - - - - - - - -			6.0 6.0 25 25 16 16 16 14 14 14 14 18 10 18 10 18 10 18 10 18 10 18 10 18 10 18 10 18 10 25 25 25 25 30 30 30 5.0			250 220 30 60 100 30 50 80 30 60 100 25 25 40 40 60 60 25 25 40 40 60 60 75 150 75 150 75 100 150 5.0 7.0 10	NRL NH NC NC NC NC NC NC NC NC NC NC NC NC NC	SWITCHES &	(cont'd) Siliconix

2-8

							N&P-0	Channe	l Single	JFETs							Pro
PART NUMBE	Z	PACKAGE (TO-)	(DA, MAX.)	LEAKAGE	THRESHOLD VOLTAGE (V, MAX.)	BREAKDOWN VOLTAGE (V, MAX.)	(mA)	SATURATION	gfs (µmhos)	TRANS- CONDUCTANCE	INPUT CAPACITANCE (pF, MAX.)	NOISE VOLTAGE (nV/\/Hz, MAX.) (NF, dB, MAX.)		RECIETANCE	GEOMETRY (Sæction 5)	DEVIC	Product Specifications (cont'd)
E P	or P	Ğ	Gate	Chnl	5	ŴŻ	Min,	Max.	Min.	Max.	CE	ę m	Gate Ω	Chni Ω, Max.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ê	<u>6</u>
2N5640	N	92	1.0	1.0	6.0	30	5.0	-	-	-	10	-		100	NC		Ī
2N5653	N	92	1.0	1.0	12	30	40	-	-	-	10	-	-	50	NC		3
2N5654	N	92	1.0	1.0	8.0	30	15	-	-	-	10	-	-	100	NC		N N
J105	N	92	3.0	3.0	10.0	25	500	-		-	-	-	-	3.0	NVA		ା ହି
J105-18	N	92	3.0	3.0	10	25	500	-	-	-		-	-	3.0	NVA		9
J106	N	92	3.0	3,0	6.0	25	200	- 1	-	-	-	-	-	6.0	NVA		1 4
J106-18	N	92	3.0	3.0	6.0	25	200	-	-	-	-			6.0	NVA		
J107	N	92	3.0	3.0	4.5	25	100	-	-	-	-	-	-	8.0	NVA		Ŭ
J107-18	N	92	3.0	3.0	4.5	25	100	-	[-	-	-	·	-	8.0	NVA		
J108	N	92	3.0	3.0	10	25	80	-	-	-	-	-		8.0 8.0	NIP		
J108-18	N	92	3.0	3.0	10	25	80	-	-	-	-	-	-	12	NIP		
J109	N	92	3.0	3.0	6.0	25 25	40 40	_		-	_	-	-	12	NIP		
J109-18	N	92 92	3.0 3.0	3.0 3.0	6.0 4.0	25 25	40		-	-	-	_	_	18	NIP		
J110 J110-18	N	92	3.0	3.0	4.0	25	10	_	_	_	<u> </u>			18	NIP	5	
J111	N	92	1.0	1.0	10	35	20	_	_	_	_			30	NC		
J111-18	N	92	1.0	1.0	10	35	20	_	_	_	_	_		30	NC		
J112	N	92	1.0	1.0	5.0	35	5.0	_	- 1	_	- 1	_	-	50	NC	Ξ	
J112-18	N	92	1.0	1.0	5.0	35	5.0	- 1			_	_	_	50	NC	SWITCHES	
J113	N	92	1.0	1.0	3.0	35	2.0	_	_	_	_	- 1	-	100	NC	\$°	
J113-18	N	92	1.0	1.0	3.0	35	2.0			_	-		_	100	NC		
J114	N	92	1.0	1.0	10	25	15		-		- 1	-		150	NIF	снорр	
J174	Р	92	1.0	1.0	10	30	20	100	_	_	_	- 1	-	85	PS	ō	
J174-18	P	92	1.0	1.0	10	30	20	100	_	_	_	_	_	85	PS	P	
J175	P	92	1.0	1.0	6.0	30	7.0	60	-	-		_	_	125	PS		
J175-18	P	92	1.0	1.0	6.0	30	7.0	60	-	-	-	-	-	125	PS	RS	1
J176	Р	92	1.0	1.0	4.0	30	2.0	25	1	- 1	1 -	- 1		250	PS		1
J176-18	Р	92	1.0	1.0	4.0	30	2.0	25		-	- 1		_	250	PS		
J177	Р	92	1.0	1.0	2.25	30	1.5	20	-	-	-	-	-	300	PS		Ì
	Р	92	1.0	1.0	2.25	30	1.5	20	-	-			_	300	PS		1
K114-18	N	92	1.0	1.0	10	25	15	-	i –	-	-		_	150	NZF		
	N	92	1.0	1.0	10	40	50	150		_	14	_	-	30	NC		
PN4391-18	N	92	1.0	1.0	10	40	50	150	-	_	14	-	-	30	NC		
PN4391 PN4391-18 PN4392 PN4392	N	92	1.0	1.0	5.0	40	25	75	- 1	_	14	-	-	60	NC		Siliconix
	N	92	1.0	1.0	5.0	40	25	75	-	-	14	-		60	NC		
PN4393	N	92	1.0	1.0	3.0	40	5.0	30	-	-	14	-		100	NC		8 🗖
PN4393-18	N	92	1.0	1.0	3.0	40	5.0	30	- 1	-	14	-	-	100	NC		4 🝽
PN4393 PN4393-18 P1086 P1086-18	Р	92	2.0	10.0	10	30	10	-	-	- 1	45	-	-	75	PS		1 15
P1086-18	P	92	2.0	10.0	10	30	10	-	-		45		-	75	PS		

xinocili2

2-9

Siliconix

							N&P-0	hanne	Single	JFETs							Pro
PART NUMB	Z	PACKAGE (TO-)	(nA, MAX.)	LEAKAGE	THRESHOLD VOLTAGE (V, MAX.)	BREAKDOWN VOLTAGE (V, MAX.)	(mA)	SATURATION	gfs (µmhos)	TRANS-	INPUT CAPACITANCE (pF, MAX.)	NOISE VOLTAGE (nV/\/Hz, MAX.) (NF, dB, MAX.)	nesis i ANCE		GEOMETF (Section 5)	DEVIC	Product Specif
ËR	or P	GE	Gate	Chnl	5	Ž	Min.	Max.	Min.	Max.	IC€	٩ ^m	Gate Ω	Chnl Ω, Max.	5) 5)	Ê	
P1087 P1087-18 U200 U201 U290 U291 U304 U306 U306 U306 U397 U1897-18 U1898.18 U1898-18 U1899-18	P P N N N N N P P P N N N N N	92 92 18 18 18 52 52 18 18 18 18 92 92 92 92 92 92 92	2.0 2.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4	10.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2	5.0 5.0 3.0 5.0 10 4.5 10 6.0 4.0 10 7.0 5.0 5.0	30 30 30 30 30 30 30 30 30 30 40 40 40 40 40	5.0 5.0 3.0 15 30 200 30 15 5.0 30 30 30 15 15 8.0 8.0 8.0	 25 75 150 - 90 60 25 - - - - - - - -			45 45 30 30 60 60 27 27 27 16 16 16 16 16 16			150 150 75 50 2.5 7.0 85 110 175 30 30 50 50 80 80 80	PS PS NC NC NC NVA NVA PS PS NC NC NC NC NC NC NC	SWITCHES & CHOPPERS	Specifications (cont'd)
2N2608 2N2609 2N2843 2N3844 2N3329 2N3330 2N3331 2N3368 2N3368 2N3369 2N3384 2N3386 2N3386 2N3386 2N3386 2N3436 2N3438 2N3438 2N3458 2N3684 2N3684 2N3685 2N3685 2N3685	₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	18 18 18 72 72 72 72 18 18 18 18 18 18 18 18 18 18	10 30 10 30 10 10 10 5.0 5.0 5.0 15 15 15 15 0.5 0.5 0.5 0.25 0.1 0.1 0.1		4.0 4.0 1.7 5.0 6.0 8.0 6.0 11.5 6.5 3.2 5.0 5.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	30 30 30 20 20 20 40 40 40 40 30 30 30 50 50 50 50 50 50 50 50	0.9 2.0 0.2 0.44 1.0 2.0 5.0 1.0 2.0 0.5 0.1 3.0 15.0 3.0 0.8 0.2 3.0 0.8 0.2 3.0 2.5 1.0 0.4 0.1	4.5 10.0 1.0 2.2 3.0 6.0 15 6.0 12 2.5 0.6 30 30 50 15 4.0 1.0 15 7.5 3.0 1.2 0.5	1 000 2500 540 1 400 1 500 2000 1 500 2000 1 500 300 4 500 7 500 2 500 1 500 8 00 2 500 1 500 1 500 1 500 3 00 2 500 1 500 5 00 2 500 1 500 5 00 2 500 5 00 5		17 30 17 30 20 20 20 20 20 20 20 20 20 20 	3 3 3 3 4 1 - - 2 2 2 6 0.5 0.5 0.5 0.5	1M 1M 1M 1M 1M 1M 1M 1M 1M 10M 10M		PC PD PC PC PC PC PC PC PC PC PC PC PC PC PC	GENERAL PURPOSE	B Siliconix

-								N&P-	Channe	l Single	JFETs							Pro
	PART NUMBER	N or P	PACKAGI (TO-)	Gate	LEAKAGE	THRESHOLD VOLTAGE (V, MAX.)	BREAKDOWN VOLTAGE (V, MAX.)	(m A) Min.	CURRENT Nax.	gfs (µmhos) Min.	CONDUCTANCE Max.	INPUT CAPACITANCE (pF, MAX.)	NOISE VOLTAGE (nV/\/Hz, MAX.) or (NF, dB, MAX.)	Gate	Chol	GEOMETRY (Section 5)	DEVICE	Product Specifications (cont'd)
	2N3821 2N3822 2N3909 2N4220 2N4221 2N4222 2N4222 2N5457	N N P N N N	72 72 72 72 72 72 72 92	0.1 0.1 10 0.1 0.1 0.1 0.1 1.0		4.0 6.0 8.0 4.0 6.0 8.0 6.0	50 50 20 30 30 30 25	0.5 2.0 0.3 0.5 2.0 5.0 1.0	2.5 10 15 3.0 6.0 15 5.0	1500 3000 1000 2000 2500 1000	4500 6500 5000 4000 5000 6000 5000	6 6 32 6 6 6 7	200 200 - - 3.0	- - - 1M		NRL NRL PC NRL NRL NRL NRL		tions (cont'e
2	2N5458 2N5459 J201 J201-18 J202 J202-18 J203		92 92 92 92 92 92 92 92 92	1.0 1.0 0.1 0.1 0.1 0.1 0.1 0.1	 	7.0 8.0 1.5 1.5 4.0 4.0 10	25 25 40 40 40 40 40 40	2.0 4.0 0.2 0.2 0.9 0.9 4.0	9.0 16 1.0 1.00 4.5 4.5 20	1500 2000 500 500 1000 1000 1500	5500 6000 	7 5.0 5.0 5.0 5.0 5.0 5.0	3.0 3.0 	1M 100M 		NRL NRL NP NP NP NP NP	G	
• • • •	J203-18 J204 J204-18 J271-18 PN4302 PN4302-18	N N P N N	92 92 92 92 92 92 92	0.1 0.1 0.2 1.0 1.0		10 2.0 2.0 4.5 4.0 4.0	40 25 25 30 30 30	4.0 6.0 0.5 0.5	20 	1500 8000 1000 1000	 18000 	5.0 5.0 5.0 6 6.0	 - - 2.0 2.0			NP NP PS NP NP	GENERAL PU	
1 1 1 1	PN43C3 PN4303-18 PN4304 PN4304-18 PN5163 MPF109 MPF111		92 92 92 92 92 92 92 92 92	1.0 1.0 1.0 1.0 10 10 100		6.0 6.0 10.0 10 8.0 8.0 10	30 30 30 25 25 25 20	4.0 4.0 0.5 1.0 0.5 0.5 0.5	10 10 15 15 40.0 24 20	2000 2000 1000 2000 800 500	- - 9000 6000	6 6.0 6.0 20 7.0 –	2.0 2.0 3.0 2.0 50.0 2.5	1M 1M 1M 1M 1M 		NP NP NP – NRL NRL	PURPOSE	
© 1979 Siliconix incorporated																		Siliconix

xinopili2

2-11

Product Specifications(cont'd)

B Sil<u>iconix</u>

			1																						1									
	DEVI	CE									L	٥v	VL	E/	٩K	A	ΞE											LO	w	N	SIS	SE		
	GEOMET (Section 5		ź.	2 2	NNPOT NPUD	NNPor NP-D	۶ł	NNPOR NP-D	NT	NT	NT	L Z	NT T	NT	NNR	ŭ Z Z			NNR	NOT	NQT	NOT	NOT	NOT	NS	NS	NS Me	SN SN	SN	SN	SN	NS	NNR	NNR
	OUTPUT CONDUCTANC gos (µmhos, MA		20	នទ	ទន	28	8	85	2 0	10	10	<u>;</u>	20	01	20	20	20	0.2	20	05	05	05	29	<u>;</u> 6	10	10	<u>5</u> 5	2 0	0	10	0	<u></u>	20 20	20
		Temp Tracki n ⊿V/ C	5.0	5 5	40	10	20	40 ۳	01	20	40	5.0 2	0 ¢	20	10	10	25 21	67 90	208	10	25	40	10 75	40	50	10	20	0 1	5.0	10	20	40 80	10	10 25
	THRESHOLD	Static Match (mV, Max.)	5.0	0.0 3 a	ត ខ	5.0	ទ	u u U	5.0	01	51	5.0 1	5.U	15	5.0	10	2 ;	15	9 6	10	15	25	10 15	25	a.c	5.0	10 10	15	a.6	5.0	0 1	15 15	9 0	0 0
JF	NOISE VOLTAG (nV/√Hz, MAX. INF. dB. MAX.)	iE) or	20	202	20	200	200	200	02	02	02	53	55	5 6	20	20	88	07 2	20	5	10	10	25	2 8	30	30	8 8	8 8	15	15	15	រូរ	20	20
va I.	INPUT CAPACITAN (pF, MAX.)	ICE	6.0	0,0	6.0	6.0	6.0 2	9 0 9 0	3.0	3.0	3.0	0,0 0,0	0 ° °	3.0	8.0	8.0	0.0	ο.α α	8.0	3.0	3.0	3.0	0.0	3.0	25	25	25 25	25 25	25	25	25 25	25 25		0. «
annel	TRANS-	Хну 2	l ı			1	I		ł	I	I	I	1	I	I	I	I		ł	I	Ι	I	ļ	i	1	1	I	ł	I	Ι	I	1	ł	LI
0-0-N	CONDUCTANCE gfs (µmhos)	W	1000		1000	1500	1530	1530	202	70	70	02 92		02	2000	2000	2000		2000	80	00E	8		88	1000	1000	1000	1000	1000	1000	1000	1000	2000	2000
	SATURATION	ž	0.7	0.7	0.7	8.0	0.0	0 G 0 G	0.5	0.5	0.5	ις Ο C	ο Ο C	0.0	5	₽ :	2 9	2 5	2 2	1.0	1.0	0	χα	. L	7.5	7.5	7.5	, r , r	7.5	7.5	7.5	2 4	<u></u>	₽ ₽
	CURRENT (mA)	Mii	6	5 6	òò	:0	;0 ;	03	0.03	0.)3	0.)3	0,33	500	013	<u>.</u> 0	0.	3	36	0	0.06	0.16	0.0	909	0.16										0.5
	BREAKDO VOLTACE (V, MAX.) THRESHO		55	26	3 8	50	3	2 Q	2 Q	64	ę ;	4 4 4		40	50	6	36	8 6	20	40	40	8 :	0 Q	40	40	4 :	6 6	9 0	40	4	4	99	2 3	20
	VOLTAGE (V.MAX.)	-		4 7 0		4.5	4	4 4 0 0	4.5	4.5	44 10,1	4 ≮ 10,∙1	4 4 0	4.5	2.5	2.5	Ω N C	2 K	2.5				200	3.0	40	4	4 4	64	40	40	4	04	25	25 25
	LEAKAGE (nA, MAX.)	Gate	0.025	920.0	0.025	0.1	0.1	0.1	0.005	0.005	0.005	0.002	0.002	0.002	0.025	0.025	420.0	0.025	0.025	0.0002	0.0002	0.0002		0.001	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.025	0.025
	PACKAGE (TO	-)	5	7 7		۲	5	5 8	2 22	78	<u>۶</u>	<u>م</u>	e 8	8	71	7	57	~ ~	71	78	78	<u>۶</u>	20 22	78	71	7		1	12	7	7			12
	No	or P	z :	Z 2	2 Z	z	z	z z	z	z	z	z 2	zz	z	z	z:	zz	zz	z	z	z	z	zz	z	z	z	z z	z	z	z	z :	z z	z	zz
	PART NUMB	ER	2N5196	2N5197	2N5199	2N5545	2N5546	2N5547 2N5907	2N5903	2N5904	2N5905	2N5906	2N5908	2N5909	U401	U402	0403	U405	U406	U421	U422	U423	U424 13425	U426	2N5515	2N5516	2N5517			_		2N5523		0402

Siliconix

. <u></u>			_	_				N-Cł	nanne	l Dua	JFETs						
PART NUMB	Nor	PACKAGE (TO-	LEAKAGE (nA, MAX.)	THRESHO VOLTAGE (V, MAX.)	BREAKDOWN VOLTAGE (V, MAX.)	(mA)	SATURATION		TRANS- CONDUCTANCE	INPUT CAPACITANCE (pF, MAX.)	NOISE VOLTAGE (nV/\/Hz, MAX.) (NF, dB, MAX.)			OUTPUT CONDUCTANCE gos (µmhos, MAX.)	GEOMETI (Section 5	DEVIC	rroauct specifications (contra)
E E	Ŧ	ा —	Gate] "ē	Ž	Min.	Max.	Min.	Max.		ې ۳	Static Match (mV, Max.)	Temp Tracking V/° C	× "	тяү 5}	Ê	
U404 U405 U406	N N N	71 71 71	0.025 0.025 0.025	2.5 2.5 2.5	50 50 50	0.5 0.5 0.5	10 10 10	2000 2000 2000	-	8.0 8.0 8.0	20 20 20	15 20 40	25 40 80	2.0 2.0 2.0	NNR NNR NNR	LOW NOISE	
2N5564 2N5565 2N5566 2N5911 2N5912 U257 U430 U431 U440 U441		71 71 78 78 78 78 99 99 99 71 71	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.15 0.15 0.	3.0 3.0 3.0 5.0 5.0 5.0 4.0 6.0 6.0 6.0	40 40 40 25 25 25 25 25 25 25 25 25 25 25 25	5.0 5.0 5.0 7.0 7.0 5.0 12 24 6.0 6.0	30 30 30 40 40 40 30 60 30 30 30	7500 7500 7500 5000 5000 5000 10000 10000 4500 4500		12 12 12 3.0 3.0 5.0 7.5 7.5 -	50 50 50 20 20 30 12 10	5.0 10 20 15 100 - - 10 20	10 25 50 20 40 	45 45 45 100 100 150 150 150 200 200	NC NC NZF NZF NZF NZF NZA NZA NZF NZF	RF AMPLIFIER	
2N3921 2N3922 2N3954 2N3954 2N3955 2N3955A 2N3955 2N3955 2N3957 2N3958 2N4084 2N4085 2N5045 2N5045 2N5045 2N5045 2N5047 2N5452 2N5453 2N5454 U231 U232 U233 U234 U235 U410 U411 U412		71 71 71 71 71 71 71 71 71 71 71 71 71 7	1.0 1.0 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.25 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.25	$\begin{array}{c} 3.0\\ 3.0\\ 3.0\\ 4.5\\ 4.5\\ 4.5\\ 4.5\\ 4.5\\ 4.5\\ 4.5\\ 4.5$	50 50	$\begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0$	10 10 5.0 6.0 6.0	1500 1500 1000 1000 1000 1000 1000 1000		18 18 4.0 4.0 4.0 4.0 4.0 18 18 8.0 8.0 4.0 4.0 4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	2.0 2.0 0.5 0.5 0.5 0.5 0.5 0.5 2 2 200 200 200 200 200 200 2	5.0 5.0 5.0 5.0 10 10 15 20 25 15 15 5.0 10 15 5.0 10 15 5.0 10 15 20 25 10 15 20 25 10 15 20 25 10 10 20 40	10 25 10 5.0 25 15 50 75 100 10 25 67 133 200 5.0 10 25 50 75 100 25 50 75 100 25 80	35 35 35 35 35 35 35 35 35 35 35 35 25 25 1.0 1.0 1.0 35 35 35 35 35 35 35 35 32 20 20 20	NNR or NRL-D NNR or NRL-D NFA NFA NFA NFA NFA NA NA NR or NRL-D NNR or NRL-D NNFA NFA NFA NFA NA NP or NP-D NNP or NP-D	GENERAL PURPOSE	Siliconix

xinocili2

Product Specifications(cont'd)

B Siliconix

Part Number	Package (TO-)	Diode	Reverse Current	Vo	kdown Itage olts)	Forward Voltage Drop	Capacitance	
			(pA, Max.)	Min.	Max.	(pF, Max.)		
DPAD1	72	Dual	1	45	120	1,5	0.8	
DPAD2	72	Dual	2	45	120	1.5	0.8	
DPAD5	72	Dual	5	45	120	1.5	0.8	
DPAD10	72	Dual	10	35	—	1.5	2.0	
DPAD20	72	Dual	20	35	-	1.5	2.0	
DPAD50	72	Dual	50	35		1.5	2.0	
DPAD100	72	Dual	100	35	-	1.5	2.0	
JPAD50	TO-92/TO-106	Single	20	35	_	1.5	2.0	
JPAD100	TO-92/TO-106	Single	50	35	-	1.5	2.0	
JPAD200	TO-92/TO-106	Single	100	35		1.5	2.0	
JPAD500	TO-92/TO-106	Single	500	35	-	1.5	2.0	
PAD1	18	Single	1	45	120	1.5	0.8	
PAD2	18	Single	2	45	120	1.5	0.8	
PAD5	18	Single	5	45	120	1.5	0.8	
PAD10	18	Single	10	35	-	1.5	2.0	
PAD20	18	Single	20	35	-	1.5	2.0	
PAD50	18	Single	50	35	-	1.5	2.0	
PAD100	18	Single	100	35	-	1.5	2.0	

Iow Leakage Diodes

Voltage Controlled Resistors

Part	N or P	Package (TO)	Breakdown Voltage		d Voltage bits)		stance nel Ω)	Geometry
Number		(10- 7	(Volts, Min.)	Min.	Max.	Min.	Max.	
VCR2N	N	18	15	5.5	7.0	20	60	NC
VCR3P	Р	72	15	3.5	7.0	70	200	PE
VCR4N	N	18	15	3.5	7.0	200	600	NP
VCR5P	Р	72	15	3.5	7.0	300	900	PC
VČR7N	N	72	15	2.5	5,0	4000	8000	NT

P-Channel MOSFETS

Part Number	Package (TO- I	Operating Mode	Threshold Voltage (Volts, Max.)	Resistance Channel {Ω, Max.}	Chan	akage net On 1A)	Leakage Channel Off (nA, Max.)	Breakdown Voltage (Volts, Max.)	Input Capacitance (pF, Max.)	Reverse Capacitance (pF, Max.)	Geometry	
3N163 3N164 MFE823	72 72 18	ENH ENH ENH	5.0 5.0 6.0	250 3W	5.0 3.0 3.0	Max 30 30 -	_ _ 20	40 30 25	2.5 2.5 6.0	0.7 0.7 1.5	MRA MRA MRA	

Product Specifications(cont'd)

Ø Siliconix

Part Number	Package (TO-)	Forward Current (mA)	Forward Current Tolerance (%)	Limiting Voltage (Volts, Max.)	Peak operating Voltage (Volts, Max.)	Dynamic Impedance (MΩ, Max.)	Forward Capacitance {pF, typ}	Geometry
CR022	18	0.22	10	1.00	100	13		NKL
CR024	18	0.24	10	1.00	100	10		NKL
CR027	18	0.27	10	1.00	100	9.0	_	NKL
CR030	18	0.30	10	1.00	100	8.0	-	NKL
CR033	18	0.33	10	1.00	100	6.6	-	NKL
CR039	18	0.39	10	1.05	100	4.1	-	NKL
CR043	18	0.43	10	1.05	100	3.3	-	NKL
CR047	18	0.47	10	1.10	100	2.7		NKL
CR056	18	0.56	10	1.20	100	1.9		NKL
CR062	18	0.62	10	1.30	100	1.55	-	NKL
CR068	18	0.68	10	1.15	100	1.35	-	NKM
CR075	18	0.75	10	1,20	100	1.15	-	NKM
CR082	18	0.82	10	1.25	100	1.00	-	NKM
CR091	18	0,91	10	1.29	100	0.88	—	NKM
CR100	18	1.00	10	1.35	100	0.80	-	NKM
CR110	18	1,10	10	1.40	100	0.70	_	NKM
CR120	18	1.20	10	1.45	100	0.64	-	NKM
CR130	18	1.30	10	1.50	100	0.58		NKM
CR140	18	1.40	10	1.55	100	0.54	-	NKM
CR150	18	1.50	10	1.60	100	0.51	-	NKM
CR160	18	1.60	10	1,65	100	0.475	***	NKO
CR180	18	1.80	10	1.75	100	0.42	-	NKO
CR200	18	2.00	10	1.85	100	0.395	I – I	NKO
CR220	18	2.20	10	1.95	100	0.37	-	NKO
CR240	18	2.40	10	2,00	100	0.345	- 1	NKO
CR270	18	2.70	10	2.15	100	0.32	-	NKO
CR300	18	3.00	10	2.25	100	0.30	-	NKO
CR330	18	3.30	10	2.35	100	0.28	i	NKO
CR360	18	3.60	10	2.50	100	0.265	-	NKO
CR390	18	3.90	10	2.60	100	0.255	-	1
CR430	18	4.30	10	2.75	100	0.245	-	NKO
CR470	18	4.70	10	2.90	100	0.235	-	NKO
J500	92	0.24	20	1.20	50	5.0	2	NCL
J501	92	0.33	20	1.30	50	3.0	2	NCL
J502	92	0.43	20	1.50	50	2.0	2	NCL
J503	92	0.56	20	1.70	50	1.4	2	NCL
J504	92	0.75	20	1.90	50	1.0	2	NCL
J505	92	1.00	20	2,10	50	0.6	2	NCL
J506	92	1.40	20	2.50	50	0.4	2	NCL
J507	92	1.80	20	2.80	50	0.25	2	NCL
J508	92	2.40	20	3.10	50	0.25	2	NCL
J509	92	3.00	20	3.50	50	0.20	2	NCL
J510	92	3.60	20	3.90	50	0.20	2	NCL
J511	92	4.70	20	4.20	50	0.15		NCL

Current Regulator Diodes

2

Product Specifications

VMOS Power FETs

DS(on)			r			WN VOLTAGE					
USION)	ZENER	NON-ZENER	ZENER	NON-ZENER	ZENER	NON-ZENER	ZENER	NON-ZENER		NON-ZENER	PACKAGE
	ZENER	NUN-ZENER	ZENER	NUN-ZENER	ZENER		ZENER	NON-ZENER	ZENER	NUN-ZENER	<u> </u>
0.4 1,8 2.5 3.0 3.5 4.0 4.5	2N6656 VN35AA	LAEENV LAEENV			2N6657 VN67AA	VN64GA VN66AJ VN67AJ	VN89 AA		2N6658	LA8env LA8env	10.3
5.0	VN30AA				۱ 				VN90AA		10-3
1.8 2.6 3.0 3.5 4.0 4.5 5.0	2N6659 VN35AB VN30AB	VN33AK VN35AK			2N6660 VN67AB	VN66AK VN67AK	VN89AB		2N6661 VN90AB	VN98AK VN99AK	ТО-39
3.0 3.5 4.0 4.5 5.0			VN46AF VN40AF		VN66AF VN67AF		VN88AF VN89AF		9		ТО-202АА
5.0					VN10KM						TO-237
3.0						VMP4					

Detailed Technical Specifications for the VMOS Power FETs listed above are *not* included in this data book. Please contact your nearest Silicanix Sales Office for a VMOS Design Catalog.

Die Process Information

Silicanix is a large volume supplier of die to the hybrid industry. Both military and industrial grader are available. Screen. ing includes 100% DC electrical probe and 100% visual inspection of each die.

Physical Data

Physical layout and dimensions are presented in the die topography section.

- Each die is passivated with approximately 8.000 angstroms of non-crystalline glass.
- All die are gold backed. Gold backing is approximately 1.500 angrtromr thick.
- Die metallization is deposited aluminum approximately 12.000 angstroms thick.

Die Screening Criteria

Electrical Probe – Die are 100% probed in wafer form at 25°C to DC criteria.

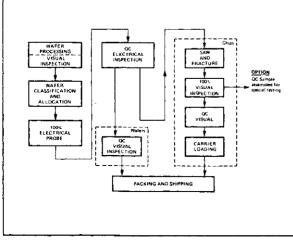
Visual Criteria - Die are supplied with 100% visual sort to the criteria of MIL-Std.750 method 2072.

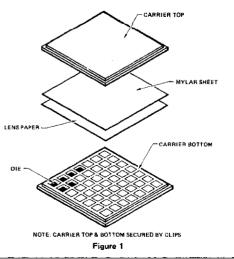
Packaging

Die are supplied in dust proof, anti-static waffle packs. (see illustration)

Assembly

- Chips supplied in waffle packs normally do not require cleaning. Wafers should be cleaned after sawing or scribing. and fracturing.
- Chips should be handled with a vacuum pick-up with protected tip or with tweezers gripping the chip on its rider.
- When handling MOSFET chipr, particularly non-gate protected types, steps must be taken to prevent damage by static discharge. In some extreme carer, handling precautions may be necessary for junction FET chips.
- Chips can be die attached either eutectically or by conductive epoxy when lower temperatures are necessary. Gold silicon eutectic occurs at temperatures between 385°C and 425°C.
- Banding of wirer from chip pads to posts can be achieved by thermocompression gold wire or ultrasonic aluminum wire bonded.


Options


- SEM Scanning electron microscope examination and control in accordance with MIL-Std-883 Method 2018 can be ordered on chipr and wafers.
- Wafer qualification to unprobed parameters sample testing of purchased chips to demonstrate capability to perform at data sheet temperature extremes by use of LTPD techniques can be provided.
- Hot probe Siliconix has a chip processor/distributor with hot probe capability available.

Chip Packaging

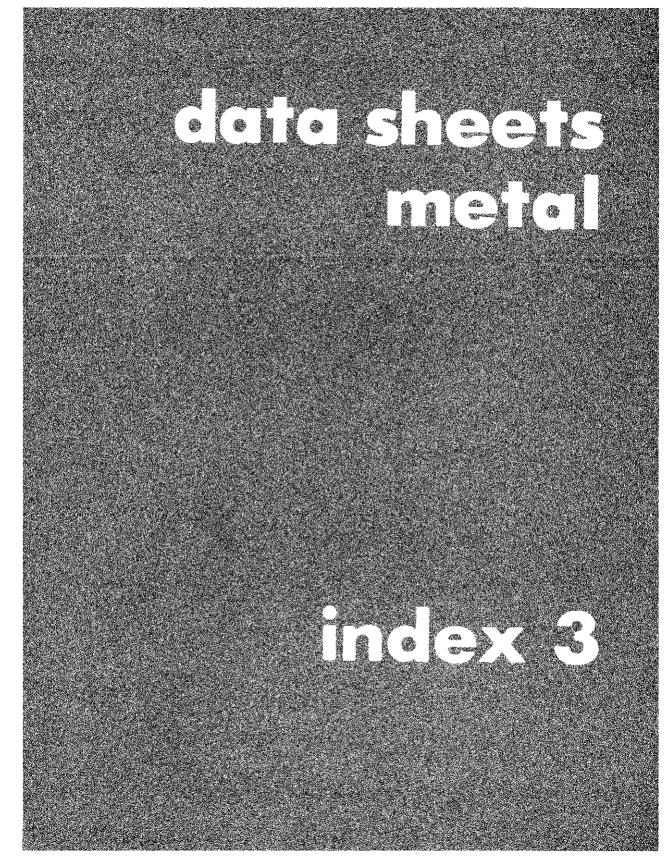
Chips are packaged as individual die in the flat waffle carrier illustrated in Figure 1. The carrier has a cavity size adequate to allow ease of loading/unloading and also prevents die from rotating within the cavity.

Chip and Wafer Processing

2

pc board layout and construction for low leakage applications

In order to realize the full capability of these devices in circuits that are sensitive to very low currents, considerable care should be exercised in PC board layout and construction techniques. If proper care is not taken, board leakage currents can easily become much larger than the leakage currents of the devices themselves, especially under conditions of high temperature and humidity. Excessive leakage currents can be produced by poor quality boards, socket leakage, poor board layout, imperfectly cleaned boardr, or improperly applied or cured protective coatings.


It is important to start with quality PC boardr which have high resistivity and low susceptance to moisture. Boards of teflon or polycarbonate composition exhibit these attributes and are preferred. Glass-epoxy boards are less desirable because they will absorb moisture, and if used must be protected with a conformal coating.

The use of sockets should be avoided wherever possible since the pin-to-pin isolation is often not great enough to prevent small leakage currents from occurring. These currents can significantly degrade device performance in low leakage applications. If sockets cannot be avoided use the highest quality available, preferably teflon.

In laying out PC boardr. care should be taken to keep pinr and runs which are sensitive to very low currents away from pins and runs which will be at significantly higher or lower voltages. The most common leakage current problems occur between pins sensitive to low current levels and nearby pins at α near one of the supply voltages. Thus, if the isolation between critical pins and nearby high or low voltage pins is increased, *leakage is* minimized, In order to reduce leakage currents, it is very important that all PC boards and experimental breadboards be thoroughly cleaned with a solvent after construction. A recommended procedure is to wash each board in an ultrasonic cleaning bath of alcohol, trichloroethylene, or some other commercial solvent, and to blow dry with compressed air. The purpose of this is to remove all skin oils (the greatest cause of leakage in improperly cleaned boards), solder fluxes, and other films and residues left over from the construction process which can cause gross leakage problems and erratic device behavior. especially at temperatures above 85°C.

For best results, the thoroughly cleaned boards should be protected against dirt, conductive films, and humidity by the application of a conformal coating. Urethane and Dow Corning's R-4-3117 Silicone are easy to use and offer sufficient protection under most operating conditions. Epoxy results in a more durable coating but care must be taken to insure that it is cured properly; an improperly cured layer of epoxy will make the high temperature leakage problem worse. Union Carbide's Parylene also results in a relatively durable coating.

The ultimate leakage protection method consists of printed circuit metalization guard rings driven from a low impedance buffer amplifier whose output is at the same potential as the pin being protected. This completely eliminates board surface leakage at critical pinr by removing any difference in potential, but it is difficult to implement due to the extra buffer amplifier required and the tight PC board metalization spacings encountered.

.

3-1

NZ

00

2N2609

'ABSOLUTE MAXIMUM RATINGS (25°C)

'ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

	0		2N2	608	2N2	609		Test Conditions	
	Uni	aracteristic	Min Max Min		Max	Unit	lest conditions		
1		Gate Reverse Current		10		30	nA	V _{GS} = 30 V, V _{DS} = 0 V	
2	GSS	(Note 2)		10		30	μA	$V_{GS} = 5 V, V_{DS} = 0, T_A = 150^{\circ}C$	
- S 3 T 4	BVGSS	Gate-Source Breakdown Voltage	30		30		v	I _G = 1 μΑ, V _{DS} = 0 V	
4 I C	V _{GS(off)}	Gate-Source Cutoff Voltage	1	4	t	4	v	V _{DS} = -5 V, I _D = 1 μA	
5	DSS	Saturation Drain Current	-0.90	-4,50	-2	-10	mA	V _{DS} = -5 V, V _{GS} = 0 V	
-h		Common-Source Forward Transconductance	1000		2500		μmho	V _{DS =} -5 V, V _{GS} = 0 V	f = 1 kHz
7	Ciss	Common-Source Input Capacitance		17		30	pF	V _{DS} = -5 V, V _{GS} = 1 V	f = 140 kH;
	NF	Noise Figure		3		3	dB	$V_{DS} = -5 V$, $V_{GS} = 0$, $R_G = 1M \Omega$	f = 1 kHz

*JEDEC Registered Data NOTES.

1. Not JEDEC Registered

2. IGSS is JEDEC Registered at VGS = 5 V

3. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged

p-channel JFETs designed for...

General Purpose Amplifiers

BENEFITS

• JAN Approved Version Available

TO-18

p-channel JFETs designed for . . .

Siliconix Performance Curves PC PD See Section 5

A

Small-Signal Amplifiers

BENEFITS

TO-18 See Section 7

 Low Supply Voltage Operation VGS(off) Typically 1.2 V

'ABSOLUTE MAXIMUM RATINGS (25°C)

*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

				2N2	843	2N2	844	Unit	Test Quaditions	
		Chi	aracteristic	Min	Max	Min	Max		Test Conditions	
1			Gate Reverse Current		10		30	nA	V _{GS} - 30 V, V _{DS} - 0	_
2		lGSS	(Note 2)		10		30	μA	V _{GS} = 5 V, V _{DS} = 0, T _A = 150°C	
3	S T A	BVGSS	Gate-Source Breakdown Voltage	30		30		v	I _G = 1 μΑ, V _{DS} = 0	
4	T I C	VGS(off)	Gate-Source Cutoff Voltage		1.7		1.7	v	V _{DS} = -5 V, I _D = -1 μA	
5		IDSS	Saturation Drain Current	-200	-1000	-440	-2200	μΑ	V _{DS} = -5 V, V _{GS} = 0	
6	DYN	9fs	Common-Source Forward Transconductance	540		1400		µmho	V _{DS} = -5 V, V _{GS} = 0	f≃1kHz
7	M N 1	C _{iss}	Common-Source Capacitance		17		30	pF	V _{DS} = -5 V, V _{GS} = 1 V	f = 140 kHz
8	C	NF	Noise Figure		3		3	dB	$V_{DS} = -5 V$, $V_{GS} = 0$, $R_G = 1M \Omega$	f=1kHz

*JEDEC Registered Data

NOTES:

- 1. Not JEDEC Registered
- 2. IGSS is JEDEC Registered at VGS = 5 V.

3. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.

			nanne gned f					S			Pei See	rfor e Se	Sili e E nix mance Curves P C ection 5
	I	Sma	I <mark>ll-Signal</mark> A	m	olifi	ers	5				BEN	IEFI	TS
			alog Multi dulators	plie	ers						• E		of Amplifier Design S & G _{fs} Closely Specified
G T S	ate ota 2 tor ea	e Curre al Devic 5°C Fre age Ter d Temp	and Gate-Source nt ce Dissipation at (ee-Air Temperatu mperature Range. verature rom case for 10 so	or be re (N	low) ote 2)	. –6	, 3 5 to +	10 m 00 m ⊦ 200 °	A W C		G 0 →	
*	EL	ECTRI	CAL CHARACTE	RIST	rics	(25°C) unle	ess ot	herwi	se no	ted)		
*	EL.			2N	3329	2N3	330	2N3	3931	2N3	1332	Unit	Test Conditions
*	EL.				3329 Max		330 Max		3331 Max		9332 Max	Unit	
*	E L			2N	3329	2N3	330	2N3	3931	2N3	1332	Unit #A	Test Conditions V _{GS} = 10 V, V _{DS} = 0 V _{GS} = 10 V, V _{DS} = 0, T _A - 150°C
* 1 2 3	s	(Characteristic	2N	3329 Max 0.01	2N3	330 Max 0.01	2N3	8931 Max 0.01	2N3	332 Max 0.01	μA	V _{GS} = 10 V, V _{DS} = 0
1		l _{GSS}	Characteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff	2N3 Min	3329 Max 0.01	2N3 Min	330 Max 0.01	2N3 Min	8931 Max 0.01	2N3 Min	332 Max 0.01		V _{GS} = 10 V, V _{DS} = 0 V _{GS} = 10 V, V _{DS} = 0, T _A ~ 150°C
1	STA	^I GSS BVGSS	Characteristic Gate Reverse Current Gate-Source Breakdown Voltage	2N3 Min	3329 Max 0.01 10	2N3 Min	330 Max 0.01 10	2N3 Min	3331 Max 0.01 10	2N3 Min	9332 Max 0.01 10	μA	$V_{GS} = 10 V, V_{DS} = 0$ $V_{GS} = 10 V, V_{DS} = 0, T_A = 150^{\circ}C$ $I_G = 10 \mu A, V_{DS} = 0$
1 2 3 4	S T A T I	^I GSS BVGSS VGS(off)	Characteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Saturation Drain Corrent Drain-Source ON	2N3 Min 20	3329 Max 0.01 10 5	2N3 Min 20	330 Max 0.01 10 6	2N3 Min 20	3331 Max 0.01 10 8	2N3 Min 20	3332 Max 0.01 10 6	μA V	$V_{GS} = 10 V, V_{DS} = 0$ $V_{GS} = 10 V, V_{DS} = 0, T_A = 150^{\circ}C$ $I_G = 10 \mu A, V_{DS} = 0$ $V_{DS} = -15 V, I_D = -10 \mu A$
1 2 3 4 5	S T A T I	IGSS BVGSS VGS(off) IDSS	Characteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Saturation Drain Current Drain-Source ON Resistance Common-Source Input	2N3 Min 20	3329 Max 0.01 10 5 -3	2N3 Min 20	330 Max 0.01 10 6 -6	2N3 Min 20	3331 Max 0.01 10 8 -15	2N3 Min 20	3332 Max 0.01 10 6	μA V mA	$V_{GS} = 10 V, V_{DS} = 0$ $V_{GS} = 10 V, V_{DS} = 0, T_A = 150^{\circ}C$ $I_G = 10 \mu A, V_{DS} = 0$ $V_{DS} = -15 V, I_D = -10 \mu A$ $V_{DS} = -10 V, V_{GS} = 0$
1 2 3 4 5	S T A T I C	IGSS BVGSS VGS(off) IDSS rDS(on)	Characteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Saturation Drain Current Drain-Source ON Resistance Common-Source Input Conductance Common-Source Reverse	2N3 Min 20	3329 Max 0.01 10 5 -3 1000	2N3 Min 20	330 Max 0.01 10 6 -6 800	2N3 Min 20	8331 Max 0.01 10 8 -15 600	2N3 Min 20	Max 0.01 10 6 6	μA V mA	$V_{GS} = 10 V, V_{DS} = 0$ $V_{GS} = 10 V, V_{DS} = 0, T_A = 150°C$ $I_G = 10 \mu A, V_{DS} = 0$ $V_{DS} = -15 V, I_D = -10 \mu A$ $V_{DS} = -10 V, V_{GS} = 0$ $I_D = -100 \mu A, V_{GS} = 0$ $2N3329; I_D = -1 mA$
1 2 3 4 5 6 7	S T A T I C	IGSS BVGSS VGS(off) IDSS IDS(on) Bis	Characteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Saturation Drain Current Drain-Source ON Resistance Common-Source Input Conductance Common-Source Reverse Transfer Conductance Common-Source Output	2N3 Min 20	3329 Max 0.01 10 5 -3 1000 0.2	2N3 Min 20	330 Max 0.01 10 6 -6 800 0.2	2N3 Min 20	83331 Max 0.01 10 8 -15 600 0.2	2N3 Min 20	6 6 0.2	μA V mA	$\begin{split} & V_{GS} = 10 \text{ V}, V_{DS} = 0 \\ & V_{GS} = 10 \text{ V}, V_{DS} = 0, T_{A} = 150^{\circ}\text{C} \\ & I_{G} = 10 \mu V_{DS} = 0 \\ & V_{DS} = -15 $
1 2 3 4 5 6 7 8 9	STATIC	IGSS BVGSS VGS(off) IDSS IDS(an) B ₁₅ B ₇₅ B ₇₅	Characteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Saturation Drain Current Drain-Source ON Resistance Common-Source Input Conductance Common-Source Reverse Transfer Conductance Common-Source Output Conductance Common-Source Forward	2N3 Min 20 1 1	3329 Max 0.01 10 5 -3 1000 0.2 0.1	2N3 Min 20 -2	330 Max 0.01 10 6 -6 800 0.2 0.1	2N3 Min 20 5	3331 Max 0.01 10 8 -15 600 0.2 0.1	2N: Min 20 -1	6 3332 Max 0.01 10 6 -6 -6 0.2 0.1	μA V mA	$\begin{split} & V_{GS} = 10 \text{ V}, V_{DS} = 0 \\ & V_{GS} = 10 \text{ V}, V_{DS} = 0, T_{A} = 150^{\circ}\text{C} \\ & I_{G} = 10 \mu V_{DS} = 0 \\ & V_{DS} = -15 $
1 2 3 4 5 6 7 8 9 100	STATIC DYNAM	IGSS BVGSS VGS(off) IDSS rDS(on) Bis 9rs 9os Bfs	Characteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Saturation Drain Current Drain-Source ON Resistance Common-Source Input Conductance Common-Source Reverse Transfer Conductance Common-Source Dutput Conductance Common-Source Forward Transconductance	2N3	3329 Max 0.01 10 5 -3 1000 0.2 0.1 2000	2N3 Min 20	330 Max 0.01 10 6 -6 8000 0.2 0.1 40 3000	2N; Min 20 5	3331 Max 0.01 10 8 -15 600 0.2 0.1 100 4000	2N: Min 20 -1	3332 Max 0.01 10 6 6 6 0.1 20 2200	μA V MA	$V_{GS} = 10 V, V_{DS} = 0$ $V_{GS} = 10 V, V_{DS} = 0, T_A = 150^{\circ}C$ $I_G = 10 \mu A, V_{DS} = 0$ $V_{DS} = -15 V, I_D = -10 \mu A$ $V_{DS} = -10 V, V_{GS} = 0$ $I_D = -100 \mu A, V_{GS} = 0$ $V_{DS} = -10 V$ $\frac{2N3329: I_D = -1 mA}{2N3332: I_D = -1 mA}$ $f = 1 \text{ kHz}$ $f = 1 \text{ mHz}$
1 2 3 4 5 6 7 8 9 10 11 12	STATIC	IGSS BVGSS VGS(off) IDSS FDS(on) 9rs 9os 9fs Ciss	Characteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Saturation Drain Current Drain-Source ON Resistance Common-Source Input Conductance Common-Source Reverse Transfer Conductance Common-Source Output Conductance Common-Source Forward	2N3 Min 20 1 1	3329 Max 0.01 10 5 -3 1000 0.2 0.1 20	2N3 Min 20 -2	330 Max 0.01 00 6 6 -6 8000 0.2 0.1 3000 3000	2N3 Min 20 5	3331 Max 0.01 10 8 -15 600 0.2 0.1 100	2N: Min 20 -1	3332 Max 0.01 10 6 6 0.2 0.1 20	μA V mA	$ \begin{array}{c} V_{GS} = 10 \ V, \ V_{DS} = 0 \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 0, \ T_A = 150^{\circ} C \\ I_G = 10 \ \mu A, \ V_{DS} = 0 \\ \hline V_{DS} = -15 \ V, \ I_D = -10 \ \mu A \\ \hline V_{DS} = -10 \ V, \ V_{GS} = 0 \\ \hline I_D = -100 \ \mu A, \ V_{GS} = 0 \\ \hline V_{DS} = -10 \ V, \ V_{GS} = 0 \\ \hline \\ V_{DS} = -10 \ V, \ V_{GS} = 1 \ V \\ \hline \\ V_{DS} = -10 \ V, \ V_{GS} = 1 \ V \\ \hline \end{array} \left. \begin{array}{c} f = 1 \ HHz \\ f = 1 \ HHz \\ \hline \end{array} \right. $
1 2 3 4 5 6 7 8 9 100	STATIC DYNAM	IGSS BVGSS VGS(off) IDSS rDS(on) Bis 9rs 9os Bfs	Characteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Saturation Drain Corrent Drain-Source ON Resistance Common-Source Input Conductance Common-Source Reverse Transfer Conductance Common-Source Dutput Conductance Common-Source Forward Transconductance Common-Source Input Common-Source Input	2N3 Min 20 1 1	3329 Max 0.01 10 5 -3 1000 0.2 0.1 2000	2N3 Min 20 -2	330 Max 0.01 10 6 -6 8000 0.2 0.1 40 3000	2N3 Min 20 5	3331 Max 0.01 10 8 -15 600 0.2 0.1 100 4000	2N: Min 20 -1	3332 Max 0.01 10 6 6 6 0.1 20 2200	μA V MA	$V_{GS} = 10 V, V_{DS} = 0$ $V_{GS} = 10 V, V_{DS} = 0, T_A = 150^{\circ}C$ $I_G = 10 \mu A, V_{DS} = 0$ $V_{DS} = -15 V, I_D = -10 \mu A$ $V_{DS} = -10 V, V_{GS} = 0$ $I_D = -100 \mu A, V_{GS} = 0$ $V_{DS} = -10 V$ $\frac{2N3329: I_D = -1 mA}{2N3332: I_D = -1 mA}$ $f = 1 \text{ kHz}$ $f = 1 \text{ mHz}$

JEDEC registered data

NOTES:

1. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.

2. Derate linearly to 175°C free-air temperature at rate of 2.0 mW/°C

N 1329 2N3330 2N3331 2N3332

Siliconix

PC

n-channel JFETs designed for...

Performance Curves NP See Section 5

> TO-18 See Section 7

Small-Signal Low Power Applications

1	*ABSOLUTE MAXIMUM RATINGS (25°C)
	Gate-Drain or Gate-Source Voltage (Note 1)40 V
ļ	Gate Current
	Total Device Dissipation at (or below) 25°C
	Free-Air Temperature (Note 2) , , , , , , , 300 mW
1	Storage Temperature Range65 to +175°C
	Maximum Operating Temperature 150°C

*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

		C 1		2N:	3368	2N3	369	2N3	370	Unit	Test Conditions	
		Char	acteristic	Min Max			ax Min Max		Max	Unit	lest Conditions	
1					-5		-5		-5	пΑ	N 0027 N0	
2		GSS	Gate Reverse Current		-1.5		-1.5		-1.5	μA	VGS = -30 V, VDS = 0	100°C
3	S T	BVGSS	Gate-Source Breakdown Voltage	-40		-40		-40			lG = −1 μA, V _{DS} = 0	
4	Å	VGS(off)	Gate-Source Cutoff Voltage		-11.5		-6.5		-3.2	v	V _{DS} = 20 V, t _D = 1 μA	
5	ċ	ID(off)	Drain Cutoff Current		5 (-12.0)		5 (-7.0)		5 (-3.5)	nA (V)	V _{DS} = 20 V, V _{GS} = ()	
6		DSS	Saturation Drain Current	2.0	12.0	0.5	2.5	0.1	0,6	mA	V _{DS} = 30 V (Note 3), V _{GS} = 0	
7		9(5	Common-Source Forward Transconductance	1000	4000	600	2500	300	2500	umho	V _{DS} = 30 V (Note 3), V _{GS} = 0	f = 1 kH
8	D	9 ₀₅₅	Common-Source Output Conductance		80		30		15	μ		
9 9	Ň	C _{oss}	Common-Source Output Capacitance		3		3		3	_	V _{DS} = 30 V. V _{GS} = 0	f≂1M⊩
0	c	Ciss	Common-Source Input Capacitance		20		20		20	рF	V _{DS} = 8 V, V _{GS} = 0]

*JEDEC registered data.

NOTES

Siliconix

1. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.

2. Derate linearly to 150°C free-air temperature at rate of 2.1 mW/°C.

3 To minimize heating on high 1DSS units, this parameter is measured during a 2 ms interval 100 ms after power is applied. (Not a JEDEC condition.)

Silianix

NP

		Per See	forma Sect	ance ion 5	Sili B hix Curves PE
		BEN	EFITS		
		• Lo	ow Inser R <mark>DS(o</mark> r		ss 0 Ω (2N3386)
• -+ 3	. 30 V . 30 V 50 mA 200°C 00 mW	noted)	TO-72 See Sectio		D D D D D D D D D D D D D D D D D D D
	therwise	noted)			
13	384 Max	2N3 Min	386 Max	Unit	Test Conditions
	- Max	NIN	IVIAX		

2N3382 2N3384 2N3386

*ABSOLUTE MAXIMUM RATINGS (25°C)

p-channel JFETs

designed for.

Analog Switches

Choppers

Amplifiers

Commutators

Gate-Drain Voltage (Note 1)	30 V
Gate-Source Voltage (Note 1)	30 V
Gate Current	
Storage Temperature Range	
Total Dissipation at 25°C TA (Note 2)	300 mW

'ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			2N:	3382	2N3	3384	2N3	3386	Unit	Test Con		
Characteristic			Min Max		Міл	Max	Min	Max		Test conditions		
1		IGSS	Gate Reverse Current		15		15		15	nA	V _{GS} = 30 V V _{DS} = 0	
2	1	IGSS	Gate Reverse Current		15		15		15	μA	V _{GS} = 5 V V _{DS} = 0	τ _A = 150°C
3	A	BVGSS	Gate-Source Breakdown Voltage	30		30		30		v	¹ G = 1 μA V _{DS} = 0	**************************************
4		VGS(off)	Gate-Source Cutoff Voltage (Note 3)	1.0	5.0	4.0	5.0	4.0	9.5		V _{DS} = −5 V I _D = −1 µA	
5		IDSS	Saturation Drain Current (Note 3)	3.0	-30.0	-15.0	-30.0	-15.0	~50.0	mA	V _{DS} = -10 V V _{GS} = 0	
6		ID(off)	Drain Cutoff Current		2 (6)		2 (6)		-2.5 (10)	nA (V)	V _{DS} = -5 V V _{GS} = ()	
7		rds(on)	Drain-Source ON Resistance		300	1	180		150	Ω	V _{GS} = 0 V _{DS} = 0	f = 1 kHz
8	D Y N	9fs	Common-Source Forward Transconductance (Note 3)	4500	12,500	7500	12,500	7500	15,000	µmho	V _{DS} =-10 V V _{GS} =0	f = TKMZ
9	A M I C	C _{sgs} + C _{dgs}	Source-Gate Capacitance Plus Drain-Gate Capacitance		6.0		6.0		6.0	pF	V _{DS} = 0 V _{GS} = 10 V	f = 140 kHz
0	1	Ciss	Common-Source Input Capacitance			16	Түр		•		V _{DS} = -5 V V _{GS} = 1 V	1

*JEDEC registered data.

NOTE:

1. Due to symmetrical geometry, units may be operated with source and drain leads interchanged.

2. Derate linearly to +175°C at 2 mW/°C

3. Pulsewidth = 2 ms, duty cycle \leqslant 3%

PE

Siconix

n-channel JFETs designed for...

Small-Signal Amplifiers

Switches

BENEFITS

 Operates from High Supply Voltages
 BV_{GSS} > 50 V

> TO-18 See Section 7

*	ABSOLUTE MAXIMUM RATINGS (25°C)
0	Gate-Drain or Gate-Source Voltage (Note 1) –50 V Gate Current
	Free-Air Temperature (Note 2)

*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

				2N	3436	2N	3437	2N	3438	Unit	T i O i i i i i i i i			
		Una	aracteristic	Min	Max	Min	Max	Min	Max		Test Conditions			
1			Gate Reverse Current		-0.5		-0.5		-0.5	пА	V _{GS} = -30 V, V _{DS} = 0			
2		IGSS	Gate Reverse Current		-1.0		-1.0		-1.0	μA	vGS30 v, vDS - 0	150°C		
3	S T	BVGSS	Gate-Source Breakdown Voltage	-50		-50		-50		v	$I_G \approx -1 \ \mu A, \ V_{DS} = 0$			
	A				1.0		1.0		1.0	nA				
4	11	D(off)	Drain Cutoff Current		(-10.0)		(-5.0) -4.8		(-2.5)	(V)	$V_{DS} = 20 V, V_{GS} = ()$			
5	С	VGS(off)	Gate-Source Cutoff Voltage		-9.8				-2.3	V	V _{DS} = 20 V, I _D ≈ 1 µA			
6		IDSS	Saturation Drain Current	3.0	15.0	0.8	4.0	0.2	1.0	mA	V _{DS} = 20 V, V _{GS} = 0			
7			Common-Source Forward Transconductance	2500	10.000	1500	6000	800	4500		V _{DS} = 20 V, V _{GS} = 0	f≂1kH		
8			Common-Source Output Conductance		35		20		5	µmho	Vps = 30 V, Vgs = 0			
э	N A M	Coss	Common-Source Output Capacitance		6		6	:	6	рF	VDS - 30 V, VGS - 5	f ≂ 1 MH;		
0	ċ	Ciss	Common-Source Input Capacitance		18 (10)		18 (6)		18 (4)	рҒ (V)	V _{GS} = 0 V, V _{DS} = ()			
1		NF	Noise Figure		2		2		2	dB	V _{DS} = 10 V, V _{GS} = 0 , R ₉₆₀ = 1 meg, BW = 6 Hz	f≃1ki		

Silicorix

*JEDEC Registered Dora.

NOTES:

1. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.

2. Denote linearly to 200 $^{\circ}C$ free-air temperature at rate of 1.7 mW/ $^{\circ}C$

NP

n-channel JFETs designed for...

Small-Signal Low Noise Amplifiers

Performance Curves NP See Section 5

BENEFITS

TO-18 See Section 7

 Operates from High Supply Voltages BV_{GSS} > 50 V

"ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage (Note 1)50 V
Gate Current 10 mA
Total Device Dissipation at (or below) 25°C
Free-Air Temperature (Note 2)
Storage Temperature Range

		Char	acteristic	2N	3458	2N	3459	2N	3460	Unit	Test Conditions		
		Cital	ectoristic	Min	Max	Min	Max	Min	Mar	0111			
1.		IGSS	Gate Reverse Current		-0,25		-0.25		-0.25	nA	VGS = -30 V, VDS = 0		
2		1055	Gale Reverse Content		-0.5		-0.5		-0.5	μΑ	vGS = -30 v, vDS = 0	150°C	
Э	S T	BVG\$S	Gate-Source Breakdown Voltage	-50		-50		-50		v	I _G = ~1 μΑ, V _{DS} = 0		
	Å				1		1		1	nA			
4	Ŧ	^I D(off)	Drain Cutoff Current		(-8)		1-41		(-2)	(V)	(V)	V _{DS} = 20 V, V _{GS} = ()	
5	C	VGS(off)	Gate-Source Cutoff Voltage		-7.8		-3.4		-1.8	v	V _{DS} = 20 V, I _D = 1 μA		
6		IDSS	Drain Current at Zero Gate Voltage	3.0	15.0	0.8	4.0	0.2	1.0	mΑ	V _{DS} = 20 V, V _{GS} = 0		
7		9ts	Common-Source Forward Transconductance	2500	10,000	1500	6000	800	4500		V _{DS} = 20 V, V _{GS} = 0	f = 1 kHz	
8	D	g _{OSS}	Common-Source Output Conductance		35		20		5	µmho	VDS = 30 V, VGS = 0	f = 1 MHz	
9	× ≈ ⊲ ≊	Coss	Common-Source Output Capacitance		5		5		5	pF	•DS = 30 •, •GS = 0		
	I C		Common-Source Input		18		18		18	pF			
10		Ciss	Capacitance		(10)		(6)		(4)	(V)	V _{GS} = 0 V, V _{DS} = (),	f≈1MHz	
11		NF	Noise Figure		6	······	4		4	dß	V _{DS} = 10 V, V _{GS} = 0 , R _{gen} = 1 meg, 8W = 6 Hz	f = 20 Hz	

* JEDEC registered data.

NOTES:

1. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged

2. Derate linearly to 200°C free-air temperature at rate of 1.7 mW/°C.

NP

In-channel JFETs designed for...

Silicenix Performance Curves NFA See Section 5

Low Noise Amplifiers

BENEFITS

 Operates from High Supply Voltages
 BVGSS > 50 V

> TO-72 See Section 7

Choppers

Switches

*ABSOLUTE MAXIMUM RATINGS (25°C)	
Gate-Drain or Gate-Source Voltage (Note 2)	-50 V
Gate Current or Drain Current	50 mA
Total Device Dissipation	
(Derate 2 mW/°C to 175°C)	350 mW
Storage Temperature Range , , , , ,65 to) +200° C

"ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

	Characteristic				3684	2N3	685	2N3	686	2N	3687		Test Conditions			
			Unaracteristic	Min	Мах	Min	Max	Min	Max	Min	Max	Unit	Test Conditions			
1		IGSS	Gate Reverse Current		-0.1		-0.1		-0.1		-0.1	nΑ	V _{GS} = -30 V, V _{DS} = 0			
2	•				-0.5		-0.5		-0.5		0.5	μA	VGS30 V, VDS - 0	150°C		
3	Т	®∨GSS	Gate-Source Breakdown Voltage	-50		-50		-50		-50		v	IG = -1 µA, V _{DS} = 0			
4	A T I	VGS(off)	Gate-Source Cutoff Voltage	-2	-5	-1	-3.5	-0.6	-2	-0.3	-1.2		V _{DS} = 20 V, I _D = 1 nA			
5	С	DSS	Saturation Drain Current	2.5	7.5	1	3	0.4	1.2	0.1	0.5	mA	V _{DS} = 20 V, V _{GS} = 0			
6		^r DS(on)	Drain-Source ON Resistance (Note 1)		600		800		1200		2400	ohm	V _{DS} = 0 V, V _{GS} = 0			
7		9fs	Common-Source Forward Transconductance	2000	3000	1500	2500	1000	2000	500	1500					
8	D	9 _{OS}	Common Source Output Conductance		50		25		10		5	µmho		f≈1kHz		
9	Y N	Crss	Common Source Reverse Transfer Capacitance		1.2		1.2		1.2		1.2	-	V _{DS} = 20 V, V _{GS} = 0	T= 1 KH2		
10	A M	C _{iss}	Common Source Input Capacitance		4		4		4		4	pF				
11	C	ē,	Equivalent Short Circuit Input Spot Noise Voltage		0.15		0.15	i	0.15		0.15	μ⊻ γΉz	V _{DS} = 10 V, V _{GS} = 0	f = 20 Hz		
12		NF	Noise Figure		0.5		0.5		0.5	:	0.5	dB	V _{DS} = 10 V, V _{GS} ≠ 0 R _{gen} = 10 meg, BW = 6 Hz	f = 100 H		

*JEDEC registered data

NOTES

1, Not JEDEC registered data

2. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.

Siliconix

NFA

 n-channel JFETs designed for Small-Signal Amplifiers Oscillators 							ENEFITS • Operates from High Supply Voltages BV _{GSS} > 50 V				
Gate Gate Tota F Stora	e-Drain o e Curren al Device ree-Air T age Tem d Tempe	MAXIMUM RATINGS (r Gate-Source Voltage (Not t Dissipation at (or below) emperature (Note 2) . perature Range rature om case for 10 seconds)	ote 1) 25°C	 -65 to	10 m/ 300 mV +200° (A V C	See G (TO-72 P Section 7			
		AL CHARACTERISTICS			300° (otherwis	-	d)	ŎS			
		AL CHARACTERISTICS		unless c	otherwis	-	, 	ÓS			
		,	(25°C	unless c 821 Max	otherwis	e note 822 Max	Unit	Ó S Tast Conditions			
		AL CHARACTERISTICS	(25°C	unless c	otherwis	e note 822	, 	Ós Test Conditions VGS = -30 V, VDS = 0	150°C		
=LE 		AL CHARACTERISTICS	(25°C	unless c 821 Max -0 I	otherwis	e noted 822 <u>Max</u> ~0.1	Unit nA	·	150°C		
		AL CHARACTERISTICS Characterístic Gate Reverse Current	(25°C	unless c 821 Max -0 I	2N3 Min	e noted 822 <u>Max</u> ~0.1	Unit nA µA	VGS = -30 V, VDS = 0	150°C		
		AL CHARACTERISTICS Characterístic Gate Reverse Current Gate Source Breakdown Voltage Gate-Source Cutoff Voltage	(25°C	unless c 821 -0 1 -0.1	2N3 Min	e note: 822 -0.1 -0.1	Unit nA	V _{GS} = -30 V, V _{DS} = 0 I _G = -1 μA, V _{DS} = 0	150°C		
1 3 4 4 5 5		AL CHARACTERISTICS Characteristic Gate Reverse Current Gate Source Breakdown Voltage	(25°C	UNIESS C 821 -0 I -0.1	2N3 Min	e note: 822 -0.1 -0.1	Unit nA µA	$V_{GS} = -30 V, V_{DS} = 0$ $I_G = -1 \mu A, V_{DS} = 0$ $V_{DS} = 15 V, I_D = 0.5 nA$	150°C		
1 3 4 4 5 5		AL CHARACTERISTICS Characterístic Gate Reverse Current Gate Source Breakdown Voltage Gate-Source Cutoff Voltage	(25°C	UNIESS C 821 -0 I -0.1	2N3 2N3 Min -50	e note(822 <u>Max</u> -0.1 -0.1 -6	Unit nA µA	$V_{GS} = -30 V, V_{DS} = 0$ $I_G = -1 \mu A, V_{DS} = 0$ $V_{DS} = 15 V, I_D = 0.5 nA$ $V_{DS} = 15 V, I_D = 50 \mu A$	150°C		
1 3 4 4 5 6	CTRICA I _{GSS} BVGSS VGS(off) VGS	AL CHARACTERISTICS Charecterístic Gate Reverse Current Gate Source Breakdown Voltage Gate-Source Cutoff Voltage Gate-Source Voltage	(25°C 2N3 Min 50 -0.5	unless c 821 Max -01 -0.1 -4 -2	2N3 2N3 Min -50 -1	e noted 822 <u>Max</u> -0.1 -0.1 -6	Unit nA µA V	$V_{GS} = -30 V, V_{DS} = 0$ $I_{G} = -1 \mu A, V_{DS} = 0$ $V_{DS} = 15 V, I_{D} = 0.5 nA$ $V_{DS} = 15 V, I_{D} = 50 \mu A$ $V_{DS} = 15 V, I_{D} = 200 \mu A$	150°C		
2 2 2 3 4 5 6 7 	CTRICA I _{GSS} BVGSS VGS(off) VGS IDSS	AL CHARACTERISTICS Characteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Gate-Source Voltage Saturation Drain Current (Note 3) Common-Source Forward Transconductance (Note 3) Common-Source Forward Transconductance	(25°C 2N3 Min -50 -0.5 0.5	unless c 821 Max -0 1 -0.1 -0.1 -2 2.5	2N3 Min -50 -1 2	e note 822 <u>Max</u> -0.1	Unit nA µA V	$V_{GS} = -30 V, V_{DS} = 0$ $I_{G} = -1 \mu A, V_{DS} = 0$ $V_{DS} = 15 V, I_{D} = 0.5 nA$ $V_{DS} = 15 V, I_{D} = 50 \mu A$ $V_{DS} = 15 V, I_{D} = 200 \mu A$			
ELE 1 3 4 4 5 6 7 8 9 9 7	CTRICA IGSS BVGSS VGS(off) VGS IDSS 9fs iVfsI 90s	AL CHARACTERISTICS Characteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Gate-Source Voltage Saturation Drain Current (Note 3) Common-Source Forward Transconductance (Note 3) Common-Source Forward Transadmittance Common-Source Output Conductance (Note 3)	(25°C 2N3 Min -50 -0.5 0.5 1500	unless c 821 Max -0 1 -0.1 -0.1 -2 2.5	2N3 Min -50 -1 2 3000	e note 822 <u>Max</u> -0.1	Unit nA µA V mA	$V_{GS} = -30 V, V_{DS} = 0$ $I_{G} = -1 \mu A, V_{DS} = 0$ $V_{DS} = 15 V, I_{D} = 0.5 nA$ $V_{DS} = 15 V, I_{D} = 50 \mu A$ $V_{DS} = 15 V, I_{D} = 200 \mu A$	f = 1 kHz		
ELE 1 STATIC 5 6 7 8 9 0 NAM	CTRICA IGSS BVGSS VGS(off) VGS IDSS 9f5 iyf5 QGS Ciss	AL CHARACTERISTICS Characteristic Gate Reverse Current Gate Source Breakdown Voltage Gate-Source Cutoff Voltage Gate-Source Voltage Saturation Drain Current (Note 3) Common-Source Forward Transconductance (Note 3) Common-Source Forward Transadmittance Common-Source Output CommOn-Source Output CommOn-Source Output CommOn-Source Input Capacitance	(25°C 2N3 Min -50 -0.5 0.5 1500	unless c 821 Max -01 -0.1 -0.1 -4 -2 -2 -2 -2.5 4500	2N3 Min -50 -1 2 3000	e notec 822 <u>Max</u> -0.1 -0.1 -6 -6 -4 10 6500	Unit nA µA V mA	$V_{GS} = -30 V, V_{DS} = 0$ $I_{G} = -1 \mu A, V_{DS} = 0$ $V_{DS} = 15 V, I_{D} = 0.5 nA$ $V_{DS} = 15 V, I_{D} = 50 \mu A$ $V_{DS} = 15 V, I_{D} = 200 \mu A$ $V_{DS} = 15 V, V_{GS} = 0$	f = 1 kHz f = 100 MHz		
ELE 1 STATIC 9 DYNAM	GSS BVGSS VGS(off) VGS IDSS 9fs iVfs QGS Ciss	AL CHARACTERISTICS Characteristic Gate Reverse Current Gate Source Breakdown Voltage Gate-Source Cutoff Voltage Gate-Source Voltage Saturation Drain Current (Note 3) Common-Source Forward Transconductance (Note 3) Common-Source Forward Transadmittance Common-Source Output CommOn-Source Output CommOn-Source Output	(25°C 2N3 Min -50 -0.5 0.5 1500	unless c 821 Max -0 I -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1	2N3 Min -50 -1 2 3000	e noted 822 Max -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1	Unit nA µA V mA	$V_{GS} = -30 V, V_{DS} = 0$ $I_{G} = -1 \mu A, V_{DS} = 0$ $V_{DS} = 15 V, I_{D} = 0.5 nA$ $V_{DS} = 15 V, I_{D} = 50 \mu A$ $V_{DS} = 15 V, I_{D} = 200 \mu A$ $V_{DS} = 15 V, V_{GS} = 0$ $V_{DS} = 15 V, V_{GS} = 0$	f = 1 kHz f = 1 kHz f = 1 kHz		
ELE 1 STATIC STATIC 9 DYNAM	GSS BVGSS VGS(off) VGS IDSS 9fs iVfs QGS Ciss	AL CHARACTERISTICS Characteristic Gate Reverse Current Gate Source Breakdown Voltage Gate-Source Utoff Voltage Gate-Source Cutoff Voltage Saturation Drain Current (Note 3) Common-Source Forward Transconductance (Note 3) Common-Source Forward Transadmittance Common-Source Output Conductance (Note 3) Common-Source Output Conductance (Note 3) Common-Source Output Conductance (Note 3) Common-Source Output Conductance (Note 3) Common-Source Perward Transadmittance Common-Source Output Capacitance Common-Source Reverse Transfer	(25°C 2N3 Min -50 -0.5 0.5 1500	unless c 821 Max -0 1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.	2N3 Min -50 -1 2 3000	e noted 822 Max -0.1 -0.1 -0.1 -0.1 -6 -6 -6 -4 10 6500 20 6	Unit nA µA V mA	$V_{GS} = -30 V, V_{DS} = 0$ $I_{G} = -1 \mu A, V_{DS} = 0$ $V_{DS} = 15 V, I_{D} = 0.5 nA$ $V_{DS} = 15 V, I_{D} = 50 \mu A$ $V_{DS} = 15 V, I_{D} = 200 \mu A$ $V_{DS} = 15 V, V_{GS} = 0$	f = 1 kHz f = 1 kHz f = 1 kHz		

*JEDEC Registered Data.

NOTES:

1. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.

2. Derate linearly to 175°C free-air temperature at rate of 2 mW/°C.

3 . These parameters are measured during a 2 msec interval 100 msec after d-c power is applied.

NRL

3

N

n-channel JFET designed for . . .

Silizenix Performance Curves NRL See Section 5

VHF Amplifiers Oscillators Mixers

BENEFITS

 Low Noise NF < 2.5 dB @ 100 MHz

> TO-72 See Section 7

1	*ABSOLUTE MAXIMUM RATINGS (25°C)
	Gate-Drain or Gate-Source Voltage (Note 1)30 V Gate Current 10 mA
	Total Device Dissipation at Ior below) 25°C Free-Air Temperature (Note 2)
	Storage Temperature Range65 to +200°C Lead Temperature (1/16" From Case for 10 Sec) 300°C

'ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic	Min	Max	Unit	Test C	onditions	
1		Loss Gate Reverse Current			-0.5	nA	VGS = -20 V, VDS = 0		
2	S	IGSS	Gate Reverse Gurrent		-0.5	μΑ	VGS = -20 V, VDS = 0	150°C	
3	A	BVGSS	Gate-Source Breakdown Voltage	-30			IG ≃ -1 µA, V _{DS} = 0		
4	т	VGS(off)	Gate-Source Cutoff Voltage		-8	v	V _{DS} = 15 V, I _D = 0,5 nA		
5		VGS	Gate-Source Voltage	-1.0	-7.5		V _{DS} = 15 V, I _D = 400 μA		
6	<u> </u>	DSS	Saturation Drain Current	4	20	mA	VDS = 15 V, VGS = 0 (Note	: 3)	
7		9fs	Common-Source Forward Transconductance	3,500	6,500			f = 1 kHz (Note 3)	
8		Vfs	Common-Source Forward Transadmittance	3,200					f = 200 MHz
9	D	9 ₀₅	Common-Source Output Conductance		35	µmho		f = 1 kHz (Note 3)	
0	N	giss	Common-Source Input Conductance		800		$V_{DS} \approx 15 V$, $V_{GS} \approx 0$	f ≖ 200 MHz	
1	M	9oss	Common-Source Output Conductance		200				
12	ċ	Ciss	Common-Source Input Capacitance		ĥ			f = 1 MHz	
13		Crss	Common-Source Reverse Transfer Capacitance		2	PF			
14		NF	Noise Figure		2.5	dB	$V_{DS} = 15 V, V_{GS} = 0$ RG = 1 kΩ	f = 100 MHz	

*JEDEC Registered Data

NOTES:

X

Silico

1. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged,

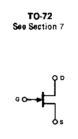
2. Derate linearly to 175 $^{\circ}C$ tree-a,, temperature at rate "I 2 mW/ $^{\circ}C$

3. These parameters are measured during a 2 msec interval 100 msec after d-c power is applied.

NRL

n-channel JFET designed for . . .

High Speed Commutators Choppers


Silienix Performance Curves **NRL** See Section 5

BENEFITS

- Low Insertion Loss
- r_{ds(on)} < 250 Ω High Off-Isolation $I_{D(off)} < 0.1 nA$

'ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage (Note 1)50 V
Gate Current
Total Device Dissipation at (or below) 25°C
Free-Air Temperature (Note 2)
Storage Temperature Range65 to +200°C
Lead Temperature
(1/16" from case for 10 seconds)

21824

"ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic	Min Mu Unit			T ∉st Condition.		
1		IGSS	Gate Reverse current		-0.1	nA			
2	S T	-665	CHE REARIZE COLLENT		-0.1	μA	VGS = -30 V. V DS = 0	150°C	
3		BVGSS	Gate-Soure Breakdown Voltage	-50		v	$I_{\mathbf{G}} = -1 \ \mu \mathbf{A}, \mathbf{V}_{\mathbf{DS}} = 0$		
4	Ċ	ID(off)	Drain Cutoff Current		0.1	nА	V _{DS} = 15 V, V _{GS} = -8 V		
-					0.1	μA		150°C	
5	D Y	rds(on)	Drain-Source ON Resistance		250	Ω	VGS = 0 V, ID = 0	f = 1 kHz	
6	N A M	C _{iss}	Common-Source Input Capacitance		6	ρF	V _{DS} = 15 V, V _{GS} = 0	6 - 1 58L1v	
7	c c	C _{rss}	Common-Source Reverse Transfer Capacitance		3	pF	V _{GS} = -8 V, V _{DS} = 0	f=1MHz	

*JEDEC registered data.

NOTES:

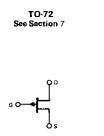
1. Due to symmetrical geometry, these units may be operated with source and drainleads interchanged

2 Derate linearly to 175°C free-air temperature at rate of 2 mW/°C.

NRL

Siliconix

3


% p-channel JFET % designed for ...

Silizanix Performance Curves PC See Section 5

General Purpose Amplifiers

*ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage (Note 1) .,, 20 V Drain-Source Voltage
Gate Current 10 mA
Total Device Dissipation at (or below) 25°C Free-Air Temperature (Note 2)
Storage Temperature Range
Lead Temperature 1/16" From Case For 10 Sec 300°C

l

Characteristic				2N:	3909	Unit	Test Conditions		
				Min	Max				
1		IGSS	Gate Reverse Current		10	nA	VGS = 10 V, VDS = 0		
2 s	s	1655			1	μA	•65= .0 •, •05=0	$T = 100^{\circ}C$	
3		₿VGSS	Gate-Source Breakdown Voltage	20			$I_{G} = 10 \mu A, V_{DS} = 0$		
4	T	VGS(off)	Gate-Source Cutoff Voltage		8.0	v	V _{DS} = -10 V, I _D = -10 µA		
5	1~ 1	VGS	Gate-Source Voltage	0.3	7.9	1	V _{DS} = -10 V, I _D = -30 µA	1	
6	1	IDSS	Saturation Drain Current	-0.3	-15	mA		1	
7		9fs	Common-Source Forward Transconductance	1,000	5,000	μmho	-		
8	P Y	gos	Common-Source Output Conductance		100		V _{DS} = -10 V, V _{GS} = 0	f=1kHz	
9		¥fs	Common-Source Forward Transadmittance	900			105 101, 465-0	f ≂ 10 MHz	
0	M	Ciss	Common-Source Input Capacitance		32		1		
1	ľ	C _{rss}	Common-Source Reverse Transfer Capacitance		16	рF		f = 1 MHz	

*JEDEC registered data

Notes

1 Due to symmetrical geometry, these units may be operated with source and drain leads interchanged

2 Derate linearly to 175°C free-air temperature at rate of 2 mW/°C

Silianix

monolithic dual n-channel JFETs designed for. ...

Differential Amplifiers

Performance Curves NNR See Section 5

BENEFITS

NOTTOM

 Minimum System Error and Calibration

5 mV Offset Maximum (2N3921)

 Simplifies Amplifier Design Low Output Conductance

> TO-71 See Section 7

'ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage
Gate Current
Total Device Dissipation
(Derate 1.7 mW/°C to 200°C)
Storage Temperature Range

Characteristic					_		Min Max		Max		Test Conditions					
1										1	nA		$V_{GS} = -30 V, V_{DS} = 0$			
2	1	IGSS	Gate	Reverse Current					-	1	μA	⊻GS	≠ -33 V	,VDS=0	100°C	
2 3 5 BVDGO Drain-Gate Breakdown Voltage								50			-	1 _D =	1 μΑ, Is	= 0		
4 VGS(off) Gate-Source Cutoff Voltage								-	3	v	VDS	= 10 V,	lp=1nA			
5 T VGS Gate-Source Voltage 6 I						-	0.2	-2.	7		VDS	= 10 V,	i _D = 100 μA			
								-25	0	pА	VDC	= 10 V	$l_{D} = 700 \mu A$			
7	C IG Gate Operating Current								-25		nA	$V_{DG} = 10 V, I_D = 700 \mu A$		100°C		
8	IDSS Saturation Drain Current (Note 1)						1	1	0	mΑ	mA V _{DS} = 10 V, V _{GS} = 0					
9	-†	9ts	Comr	non-Source Forward Transconduct	tance (N	ote 1)	1	500	750	0	µmho					
0	D 9os Common-Source Output Conductance									5		V _{DS} = 10 V, V _{GS} = 0				
· E.	Ň	Ciss	Comr	non-Source Input Capacitance					<u> </u>	8	рF	+US	,,	103 0	f=1kHiz	
2	Ă [Crss		non-Source Reverse Transfer Capa				6								
<u> </u>	M [9fs		non-Source Forward Transconduc	tance		1	1500		20		$v_{DG} = 10 V, I_D = 700 \mu A$			f≂1kHz	
4	c	gos	Comr	non-Source Output Conductance					<u> </u>	0					f = 1 kHz.	
5		NF	Spot	Noise Figure					2		dB	VDS	V _{DS} = 10 V, V _{GS} 0		τ = ικπ2, RG = 1 meg	
				······································	2N3	921	2N3	922	2N4084		2114	.085				
			(Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Test Cor	iditions	
6		VGS1-V	SS2	Differential Gate-Source Voltage		5		5		15		15	mV	1		
17	M A T	ΔN _{GS1} -1 ΔT	GS2	Gate-Source Differential Voltage Change with Temperature (Note 2)		10		25		10		25	μ ν /°C	V _{DG} = 10 V I _D = 700 μA	$T_{A} = 0^{\circ}$ $T_{B} = 100^{\circ}$	
	C H			0.95	1.0	0.95	1.0	0.95	1.0	0.95	1.0			f = 1 kHz		

NOTES:

L

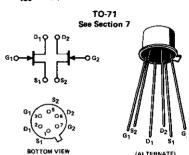
1. Pulse test duration = 2 ms.

2. Measured at end points; TA and TB. 3. Assumes smaller value in numerator.

n-channel JFETs

Low and Medium Frequency

5 2N3955A	matched dual n-channel JFETs designed for Low and Medium Frequency Differential Amplifiers High Input
548 2N395	 Low and Medium Frequency Differential Amplifiers High Input Impedance Amplifiers
2N3954 2N3954A	'ABSOLUTE MAXIMUM RATINGS (25°C) Any Case-To-Lead Voltage
	ALL FOTDION CLIADACTEDISTICS (25°C uplace otherwise


Performance Curves NFA See Section 5

BENEFITS

 High Accuracy & Stability Offset Less Than 5 mV (2N3954, 54A) Drift Less Than 5 uV/°C (2N3954A)

A Siliconix

- Wide Dynamic Range IG Specified @ VDS = 20 V
- Low Capacitance C_{iss} $<_4$ pF

*FI FCTRICAL CHARACTERISTICS (25°C unless otherwise noted)

	Character	dania	2N3	954	2N3	354A	2N3	955	2N3	955A	Unit	Test Conditions	
	Character	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Test	20110110115	
	IGSS	Gate Reverse Current		-100 -500		-100 -500		-100		-100 -500	pA nA	VGS = -30 V.	T _A = 125°C
	BVGSS	Gate-Source Breakdown Voltage	-50	-500	-50	-500	~50	-500	50	-500	nA	V _{DS} = 0 V _{DS} = 0, IG = -1 μA	14-1250
S	VGS(off)	Gate-Source Cutoff Voltage	-1.0	-4.5	-1.0	-4.5	-1.0	-4,5	-1.0	-4.5		V _{DS} = 20 V, I _D = 1 nA	
Ň	VGS(f)	Gate-Source Forward Voltage		2.0		2.0		2.0		2.0	v	V _{DS} =0, IG=1mA	. <u> </u>
ċ	VGS	Gate-Source Voltage	-0.5	-4.2 -4.0	-0.5	-4.2 -4.0	-0.5	-4.2	-0.5	-4.2 -4.0		V _{DS} = 20 V	I _D = 50 μA
	IG	Gate Operating Current	-0.5	-50	-0.5	50	-0.5	-50	-0.9	-50	ρΑ	V _{DS} = 20 V,	
	'G			-250		-250		~250		-250	nΑ	i _D = 200 μA	TA = 125°C
	IDSS	Saturation Drain Current	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	mA	V _{DS} = 20 V, V _{GS} = 0	
		Common-Source Forward	1000	3000	1000	3000	1000	3000	1000	3000			f = 1 kHz
	9fs	Transconductance	1000		1000		1000		1000		umho		f = 200 MHz
P	9 ₀₅	Common-Source Output Conductance		35		35		35		35	μιπο	V _{DS} = 20 V, V _{GS} = 0	f≐1kHz
A	C _{iss}	Common-Source Input Capacitance		4.0		4.0		4.0		4.0		0.00	
M I C	Crss	Common-Source Reverse Transfer Capacitance		1.2		1.2		1.2		1.2	pF		f≖1MHz
Ċ	C _{dgo}	Drain-Gate Capacitance		1.5		1.5		1.5		t.5		V _{DG} = 10 V, I _S = 0	
	NF	Common Source Spot Noise Figure		0.5		0.5		0.5		0.5	dB	V _{DS} = 20 V, V _{GS} = 0 , R _G = 10 MΩ	f = 100 Hz
	G1~ G2	Differential Gate Current		10		10		10		10	nA	V _{DS} = 20 V I _D = 200 μA,	T = 125°C
A	D\$S1/IDSS2	Saturation Drain Current Ratio (Note 1)	0.95	1.0	0.95	1.0	0.95	1.0	0.95	1.0	1	V _{DS} = 20 V V _{GS} = 0	
T C H	VGS1-VGS2	Differential Gate-Source Voltage		5.0		5.0		10.0		5.0			
1	AlVGS1-VGS2	Gate-Source Differential Voltage Change with		0.8		0.4		2.0		1.2	mV	V _{DS} = 20 V,	T = 25°C to
N G		Temperature		1.0		0.5		2.5		1,5		l _D = 200 μA	T = 25°C to
-	9fs 1/9ts2	Transconductance Ratio (Note 1)	0.97	1.0	0.97	1.0	0.97	1.0	0.95	1.0	-		f=1kHz

registered data NOTE:

Iconix

iā

1. Assumes smaller value in numerator.

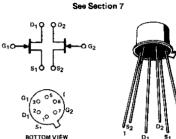
matched dual n-channel JFETs designed for.

■ Low and Medium Frequency **Differential Amplifiers**

High Input Impedance Amplifiers

*ABSOLUTE MAXIMUM RATINGS (25°C)

Any Lead-To-Case Voltage.	±100 V
Gate-Drain or Gate-Source Voltage	-50 V
Gate-To-Gate Voltage	±100 V
Gate Current	50 mA
Total Device Dissipation 85°C (Each Side) 2	
Case Temperature (Both Sides). 5	00 mW
Power Derating (Each Side) 2.86	m₩/°C
(Both Sides)	mW/°C
Storage Temperature Range	+250°C
Lead Temperature 11/16 from case for 10 seconds),	300°C


Sili **Performance Curves NFA** See Section 5

BENEFITS

- Wide Dynamic Range IG Specified @ VDS = 20 V
 - Low Capacitance Ciss <4 pF

23

0

TO-71

(AL TERNATE)

*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

				2N3	956	2N3	957	2N3	3958	Unit	Test Conditions		
		Chi	aracterístic	Min	Max	Min	Max	Min	Max	Unit			
1	Τ	IGSS	Gate Reverse Current		-100		-100		-100	pΑ	V _{GS} = -30 V, V _{DS} = 0		
2				-500		-500		-500	۸n		T _A = 150°C		
3	L	BVGSS	Gate-Source Breakdown Voltage	-50		-50		-50			V _{DS} = 0 V, I _G = -1 μA		
4 S T	[VGS(off)	Gate-Source Cutoff Voltage	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5		V _{DS} = 20 V, I _D = 1 nA		
5 A		V _{GS(f)}	Gate-Source Forward Voltage		2.0		2.0		2.0	V	V _{DS} = 0 V, I _G = 1 mA		
6 I		Vec	Gate-Source Voltage		-4,2		-4.2	_	-4.2		V _{DS} = 20 V, I _D = 50 µA		
7 C	Ľ	•us	Gate-Source Voltage	-0.5	-4.0	-0.5	-4.0	-0.5	-4.0		$V_{DS} = 20 V$, $i_{D} = 200 \mu A$		
8	ļ	IG	Gate Operating Current		-50		-50		~50	ρA	V _{DS} = 20 V, I _D = 200 μA		
9		Gate Operating current	·	-250		-250		-250	nA		T _A = 125°C		
0		IDSS	Saturation Drain Current	0.5	5.0	0,5	5.0	0.5	5.0	mA	V _{DS} = 20 V, V _{GS} = 0		
11	. 1	ly _{fs}	Common-Source Forward	1000	3000	1000	3000	1000	3000			f = 1 kHz	
2			Transconductance	1000		1000		1000	 	μmho		f = 200 MHz	
3 0		gos	Common-Source Output Conductance	ļ	35		35		35		Vns = 20 V, Vgs = 0	f=1kHz	
4 N 4 A	I.	Ciss	Common-Source Input Capacitance		4.0		4.0		4.0			f=1MHz	
15 I		C _{r33}	Common-Source Reverse Transfer Capacitance		1.2		1.2		1.2	pF		1=1MH2	
6		C _{dgo}	Drain-Gate Capacitance		1.5		1.5		1.5		V _{DG} = 10 V, I _S = 0		
7		NF	Common-Source Spot Noise Figure		0.5		0.5		0.5	d8	$V_{DS} = 20 V, V_{GS} = 0 V, R_G = 10 M\Omega$	f = 100 Hz	
8	l	IIG1-IG2i	Differential Gate Reverse Current		10	-	10		10	ъA	$V_{DS} = 20 V, I_D = 200 \mu A$	T ≑ 125°C	
9 A T	VI.	DSS1/IDSS2	Saturation Drain Current Ratio (Note 1)	0,95	1.0	0.90	1.0	0.85	1.0		V _{DS} = 20 V, V _{GS} = 0		
0 C		VGS1-VGS2	Differential Gate-Source Voltage		15		20		25	mV			
'1 N	4	م الاGS1-VGS2	Gate-Source Voltage		4.0		6.0		8.0	mν	$V_{DS} = 20 V_{c} i_{D} = 200 \mu A$ $T = 25^{\circ} C t_{c}$	T = 25°C to -	
2 G	1		Differential Change With Temperature		5.0		7.5		10.0		T=25°C t		
3		9 _{fs1} /9 _{fs2}	Transconductance Ratio (Note 1)	0.95	1.0	0.90	1.0	0.85	1.0	-		f = 1 kHz	
OTE:	:	registered data nes smalter value in										NFA	

Sliconix

Silconix

n-channel JFET designed for . . .

- Analog Switches
- ChoppersCommutators

Silicanix Performance Curves NH See Section 5

BENEFITS

- Low Insertion Loss. No Offset Voltage RDS(on) < 220 Ω
- Short Switching Aperture Times C_{rss} < 1.5 pF t(on) + t(off) < 50 ns Typical

TO-72 See Section 7

*ABSOLUTE MAXIMUM RATINGS (25°C)

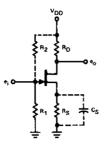
Gate-Drain or Gate-Source Voltage
(25°C Free-Air Temperature)
Power Derating
Storage Temperature Range
Operating Temperature Range
Lead Temperature
(1/16" from case for 10 seconds)

'ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic	Min	Тур	Max	Unit	Test Conditions			
1		GSS	Gate Reverse Current			-0.1	nA	$V_{GS} \approx -20 V, V_{DS} \approx 0$			
2	ſ	VGS(off)	Gate-Source Cutoff Voltage	-4		-6.0	v	V _{DS} = 10 V, I _D = 10 nA			
3	Γ	BVGSS	Gate-Source Breakdown Voltage	-30				IG = -1 μA, VDS = 0			
4 5		DSS	Saturation Drain Current (Note 1)	2.0			mA	V _{DS} = 20 V, V _{GS} = 0			
514		ID(off)				1.0	nA		Ţ.		
	<u>r</u>		Drain Cutoff Current			2.0	μA	V _{DS} = 10 V, V _{GS} = -7 V	T _A = 150°C		
7 0	ċſ	rDS(on)	Static Drain-Source ON Resistance			220	Ω	V _{DS} = ≤ 0.1 V, V _{GS} = 0			
8		VDS(on)	Drain-Source ON Voltage			0.25	ίv.	ID = 1 mA, VGS = 0			
9	ſ	IDGO	Drain Reverse Current			0.1	nA	Vng = 20 V, is = 0			
0			Drain Reverse Current			0.2	μA	VDG - 20 V, IS - 0	T _A = 150°C		
1		rds(on)	Drain-Source ON Resistance			220	Ω	VGS ≠ 0, ID = 0	f≖1kHz		
	P	Ciss	Common-Source Input Capacitance		3.1	6.0		V _{DS} = 20 V, V _{GS} = 0	f = 1 MHz		
3	N	Crss	Common-Source Reverse Transfer Capacitance		0.8	1.5	₽F	V _{DS} = 0 , V _{GS} = -7 V			
4		¹ d(on)	Turn ON Delay Time		3.0	20		V _{DD} = 1.5 V			
	st	t _r	Rise Time		10.0	100		$I_{D(on)} = 1.0 \text{ mA}$			
6	ïĬ	loff	Turn OFF Time		30.0	100	ns	VGS(on) = 0 See Cir	cuit Below		
17	Å	^t d(off)	Turn OFF Delay Time (Note 2)		10.0			VGS(off) = −6 V R _L = 1.25k Ω			
8	A t	t _f	Fall Time (Note 21		20.0						
	eď	(apply to mi	parameters unless otherwise n/max.only).		¥DD 1.25 KΩ			PULSE SAMPLING SCOPE	NH		
1. Pi 2. N	utsi on	e test duratio	n < 2 ms. (OF tered parameters:	IDEL 503A EQUIV.)	EL 503A OSCILLOSCO						

n-channel JFETs designed for	Performance Curves See Section 5	Silizanix NC
Analog Switches Choppers Amplifiers	BENEFITS ● Low Insertion Loss < 30 Ω (2N3 ● Good Off-Isolation ID(off) < 250 pA	970)
"ABSOLUTE MAXIMUM RATINGS (25°C) Reverse Gate-Drain or Gate-Source Voltage40∨	TO-18 See Section 7	
Total Device Dissipation at 25°C Case Temperature Storage Temperature Range65 to +200°C Lead Temperature		D

*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)


									•		
			Characteristic	2N3	970	2N3	971	2N3	972	Unit	Test Conditions
			Characteristic	Min	Max	Min	Max	Min	Max	Unit	lest Conditions
1		BVGSS	Gate Reverse Breakdown Voltage	-40		-40		-40		V	lg = -1 μA, V _{DS} = 0
23		1	Drain Reverse Current		250		250		250	pА	
3		DGO	Drain Reverse Current		500		500		500	nA	V _{DG} = 20 V, I _S = 0 150°C
4			Drain Cutoff Current		250		250		250	pА	VDS = 20 V, VGS = -12 V
5	S T	^I D(off)			500		500		500	nΑ	VDS-20 V, VGS12 V 150°C
6	Å	VGS(off)	Gate-Source Cutoff Voltage	-4	-10	-2	-5	-0.5	-3	v	V _{DS} = 20 V, I _D = 1 nA
7	T I C	DSS	Saturation Drain Current (Pulsewidth 300 µs, duty cycle ≤ 3%)	50	150	25	75	5	30	mA	V _{DS} = 20 V, V _{GS} = 0
8 9 5	-								2		ID = 5 mA
1	VDS.on,	Drain-Source ON Voltage				1.5			v	V _{GS} = 0 I _D = 10 mA	
0					1			L			l _D ≈ 20 mA
1		^r DS(on)	Static Drain-Source ON Resistance		30		60		100	Ω	VGS = 0, ID = 1 mA
2	D	rds(on)	Drain-Source ON Resistance		30		60		100	Ω	V _{GS} = 0, I _D = 0 f = 1 kH
3	Ŷ	Ciss	Common-Source Input Capacitance		25		25		25	٥F	V _{DS} = 20 V, V _{GS} = 0
4	N	Crss	Common-Source Reverse Transfer Capacitance		6		6		6	۹۴	V _{DS} = 0 , V _{GS} = -12 V
5		td(on)	Turn-On Delay Time		10		15		40		V _{DD} = 10 V, V _{GS(on)} = 0
6	S W	t _r	Rise Time		10		15		40	ns	ID (on) RL VGS(off) 2N3970 20 mA 450 Ω -10 V
7		toff	Turn-Off Time		30		60		100		2N3971 10 mA 850 Ω - 5 V 2N3972 5 mA 1.6KΩ - 3 V
٩C	TE:		data. at the rate of 10 mW/ ^o C,						VIN °		0 - VOSIONI NC foloni NPUT PULSE SAMPLING SCOPE UT RISE TIME 0.25 m RISE TIME 0.4 m FALL TIME 0.75 m INPUT RESISTANCE I PULSE WIDTH 200 m INPUT CAPACITANCE PULSE RATE 600 pat

3

Siliconix

© 1979 Siliconix incorporated

APPLICATIONS

Amplifier Design Chart (Cs for 3 dB Point at 50 Hz)

V _{DD} (V)	Rs (Ω)	^R 1 (MΩ)	Β ₂ (MΩ)	Сs (µF)	IDD (mA)	R _D (Ω)	e _o Max (V)	Av
			·	2N397	0			
30	560	1	90	100	11	1K	3	9
30	2.7K	3.3	10	100	6	1K	2,5	8
V _{DD} = 15	3K	1	So	urce	7	D	8.5	0.96
V _{SS} = -15	7.5K	1	Foll	ower	6	0	8.5	0.96
V _{DD} = 15 V _{SS} = -15	7.5K	1		urce ower	6	0	15	0.97
2N3971								
	2K	4.7	11	100	5	1K	1.5	8-11
20	330	1	8	100	8	820	1.5	9
	330	1	80	0	8	820	3	1.9
	2K	4.7	11	100	6	2.7K	5	18-24
30	330	1	~~	100	8	1.5K	2.5	15
	330	1	80	0	8	1.5K	5.5	3,3
V _{DD} ≈ 15 V _{SS} = -15	4.7K	1		urce ower	5	0	11	0.93
				2N397	2			
10	220	1	8	0	5	1.2K	1,5	3.
20	220	1	00	0	5	2.2K	3.5	;
30	1K	1	12	100	4	3.9K	5	34
30	1K	1	12	100	4	5.6K	3.5	40-55
V _{DD} = 15	4.7K	1	So	urce	2.5	0	13	0.9
V _{SS} = -15	7.5K	7.5K 1 Fol		ower	1.5	0	13	0.9

2N3970 2N3971 2N3972

а

Siliconix

A

n-channel JFETs designed for ...

- Analog Switches Commutators
- Choppers Integrator Reset Switch

"ABSOLUTE MAXIMUM RATINGS (25°C)

Reverse Gate-Drain or Gate-Source Voltage40V
Gate Current 10 mA
Total Device Dissipation at 25°C Case Temperature
(Derate 10 mW/°C) 1.8 W
Storage Temperature Range. , , , ,55 to +200°C
Lead Temperature
(1/16" from case for 60 seconds)

Siliconix Performance Curves NC See Section 5

BENEFITS

- Low Insertion Loss High Accuracy in Test Systems RON < 30 Ω (2N4091)
- High Off-Isolation ID(off) < 200 pA
- High Speed
 t_{rise} < 10 ns (2N4091)
- Short Sample and Hold Aperture Time C_{rss} < 5 pF

TO-18 See Section 7

*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

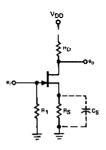
			Observation in the	2N4	091	2N4	092	2N4	093			T	
			Characteristic	Min	Max	Min	Max	Min	Мах	Unit		Test Conditions	i
1		BVGSS	Gate-Source Breakdown Voltage	-40		40		40		V	lg = -1 µA, \	/DS=0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2			Drain Reverse Currant	{	200		200		200	pА			· ····
3		IDGO	Uran Reverse Currant		400		400		400	nА	VGS = -20 V	, IS = U	, 150°C
2 3 4 5 6									200	pА		VGS = - 6 V	
5									400	nA		VGS0V	150°C
		Incom	Drain Cutoff Current				200			pΑ	V=== 20 V	VGS = - 8 V	
7	s	D(off)	Drain Coton Content				400			nA	4DS - 20 V	*GS 0 V	150°C
8	T A				200					pА	V		
9	Ţ				400	ļ				nA		VGS = -12 V	150°C
10	ċ	VGS(off)	Gate-Source Cutoff Voltage	-5	-10	-2	-7	-1	-5	v	V _{DS} = 20 V,	I <u>D</u> = 1 nA	
11		DSS	Saturation Drain Current (Note 1)	30		15		8		mA	V _{DS} = 20 V,	V _{GS} = 0	
12 13			Drain-Source ON Voltage	[0.2			ID = 2.5 mA	
		VDS(on)					0.2			V	VGS = 0	lp = 4 mA	
14				 	0.2							ID = 6.6 mA	
15		rDS(on)	Static Drain-Source ON Resistance	<u> </u>	30	L	50		80	Ω	VGS = 0, ID		
16		rds(on)	Dirain-Source ON Resistance		30	L	50		80	Ω	VGS≖0,ID		f = 1 kHz
17	D Y	Ciss	Common-Source Input Capacitance		16		16		16	pΕ	VDS = 20 V,	VG\$ = 0	f = 1 MHz
18	N	Crss	Common-Source Reverse Transfer Capacitance		5		5		5		V _{DS} ≈ 0, V _C	3S = -20 V) - 1 W(F12
19		td(on)	Turn-ON Delay Time		15		15		20		V _{DD} = 3 V, 1	VGS(on) = 0 ID(on) VGS	i(off) Ri
20	S W	ч,	Rise Time	1	10]	20		40	ns	2N4091		10111 ∩L 2 V 425 Ω
21		t _{off}	Turn-OFF Time		40		60		80]	2N4092 2N4093	48 <u>∠.5</u> 6	
N	DTE		l data. 20 µs, duty cycle≤ 3%			¥in ⊶		L Vout	FALL PULSE PULSE	HAR < 1 FIME < 1 WIDTH 1 DUTY CY	74		A ns

3-19

n-channel JFETs designed for	Silizenix Beef Stationes Curves NT
Ultra-High Input Impedance Amplifiers Electrometers pH Meters Smoke Detectors	 BENEFITS Low Power IDSS < 90 µA (2N4117) Minimum Circuit Loading IGSS < 1 pA (2N4117A Series)
'ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage (Note 1) ,40 V	TO-72 See Section 7
Gate-Current 50 mA Total Device Dissipation (Derate 2 mW/°C to 175°C) (Derate 2 mW/°C to 175°C) 300 mW Storage Temperature Range. -65 to +175°C Lead Temperature (1/16" from case for 10 seconds). 255°C	

'ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic	2N4 2N4	117 117A	2N4118 2N4118A		2N4119 2N4119A		Unit	Test Conditions		
		_		Min	Max	Min	Max	Min	Max				
1		loss	Gate Reverse Current		-10		-10		-10	pА	No 20 V No 0		
2	~	IGSS	2N4117 Series Only		-25		-25		-25	nA	$V_{GS} = -20 V, V_{DS} = 0$	150°C	
3	S T	1000	Gate Reverse Current		-1		-1		-1	pА			
	A	GSS	2N4117A Series Only		-2.5		-2.5		-2.5	nΑ	$V_{GS} = -20 V, V_{DS} = 0$	150°C	
5	į.	BVGSS	Gate-Source Breakdown Voltage	-40		-40		-40			$I_{G} = -1 \ \mu A, V_{DS} = 0$		
6]	c	VGS(off)	Gate-Source Cutoff Voltage	-0.6	-1.8	-1	-3	-2	-6	v	V _{DS} = 10 V, I _D = 1 nA		
7		IDSS	Saturation Drain Current (Note 2)	0.03	0.09	0.08	0.24	0.20	0.60	mA	V _{DS} = 10 V, V _{GS} ≈ 0		
3	D	9fs	Common-Source Forward Transconductance (Note 2)	70	210	80	250	100)	330				
9	Y N A	g _{os}	Common-Source Output Conductance		3		5		10	µmho	V	f≂1kHz	
7	M I C	Ciss	Common-Source Input Capacitance	T	3		3		3	оF	− V _{DS} = 10 V, V _{GS} ≈ 0		
	v	Crss	Common-Source Reverse Transfer Capacitance		1.5		1.5		1.5	pΓ		f = 1 MHz	

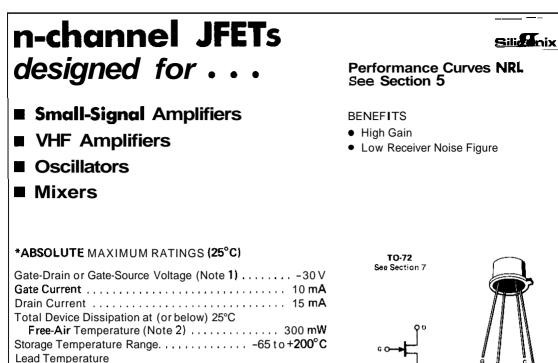

'JEOEC registered data.

NOTES:

1. Due to symmetrical geometry, thew units may be operated with source and drain leads interchanged.

2. Thir parameter is measured during a 2 ms interval 100 ms after power is applied. (Not a JEOEC condition.)

APPLICATIONS


Amplifier Design Chan

V _{DD} (V)	Rs (kΩ)	Cs	IDD	RD (kΩ)	e _o Max (pK V)	
		2N41	117			
10	10		45	120	1	5.7
20	10		45	270	1.5	12
20	,0		40	360	1	15
30	10		45	420	4	17
				620	1	22
V _{DD} = +15 V _{SS} = -15	510	Source Follower	35	0	8	0.97
		2N4	118			
10	8.2		120	36	0.6	2.2
10	8.2		(20	50	0.2	3.5
20	8.2		120	120	1	7.5
30	8.2		120	180	2	10
V _{DD} = +15 V _{SS} = -15	510	Source Follower	35	D	8	0.97
		2N4	119			
20	56	5μF*	70	150	1	10
30	56	oµ⊢ at5V	70	240	3	17
30	50	atov	10	330	1	17-23
20	6.8		300	27	1	1.8
30	6.8		300	68	2	4,5
V _{DD} = +15 V _{SS} = -15	510	Source Follower	40	0	10	0.97

*AC Amplifier

Siliconix

3

*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

		•	Characteristic	2N4 2N4		2N4 2N4	221, 221A	2N4: 2N4:		Units	Test Cond	itions
				Min	Max	Min	Max	Min	Max			
1			Gate Reverse Current		-0,1		-0,1		-0.1	nA	V _{GS} = -15 V, V _{DS} = 0	
2	į,	¹ GSS	Gate Reverse Corrent		-0.1		-0.1		-0,1	μA	VGS = -15 V, VDS = 0	150°C
3	ST	BVGSS	Gate-Source Breakdown Voltage	-30		-30		-30			IG = -10 μA, VDS = 0	
4	A	VGS(off)	Gate-Source Cutoff Voltage		-4		-6		-8	Ľ	V_{DS} = 15 V, I _D = 0.1 nA	
5	i.	VGS	Gate-Source Voltage	-0.5	-2.5	-1	-5	-2	-6	V	V _{DS} = 15 V, I _D = { }	
	С	*65		(50)	(50)	(200)	(200)	(500)	(500)	(µA)		
6		IDSS	Saturation Drain Current (Note 3)	0.5	3	2	6	5	15	mA	V _{DS} = 15 V, V _{GS} = 0	
7		9fs	Common-Source Forward Transconductance (Note 3)	1000	4000	2000	5000	2500	6000			f≖1kHz
8	D	ly _{fs} i	Common-Source Forward Transadmittance	750		750		750		μть		f = 100 MHz
9	Y N A	g _{os}	Common-Source Output Conductance (Note 3)		10		20		40		V _{DS} = 15 V, V _{GS} = 0	f = 1 kHz
10	M I	Ciss	Common-Source Input Capacitance		6		6		6	рF		f = 1 MHz
11	-ċ	Crss	Common-Source Reverse Transfer Capacitance		2		2		2	рг 		1 - 1 Miraz
12		NF	Noise Figure, Only 2N4220A, 2N4221A, 2N4222A		2.5		2.5		2.5	dB	$V_{DS} = 15 V, V_{GS} = 0$ R _{gen} = 1 meg	f = 100 Hz

.X

٥

<u>.</u>

ľ

*JEDEC registered data.

NOTES:

NRL

1. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.

2. Derate linearly to 175°C free-air temperature at rate of 2 mW/°C.

3. These parameters are measured during a 2 msec interval 100 msec after d-c power is applied.

			annel J Ined for .	FE'	Ts		Pe Se	rforn e Se i	Sil nance Curves NF ction 5	li đenix RL
	١	VHF /	Amplifiers				BE	NEFIT	S	
	ſ	Mixer	ſS					asy Tu	3 dB Typical @ 200 M	ИНz
*/	B	SOLUTE	MAXIMUM RATINGS (2	25°C)				то	-72	
D To S1	raii Dta Fr ora ead (1	n Curren I Device ee-Air Tr age Temp I Temper /16'' froi	t Dissipation at (or below) 2 emperature (Note 2) perature Range, rature m case for 10 seconds) AL CHARACTERISTICS	25°C	3 -65 to +	00 mW -200°C 300°C	noted)	G O →		c
			Characteristic		223	2N4		Unit	Test Conditions	
	.			Min	Max -0.25	Min	Max -0.5	nA		
$ -\frac{1}{2}$	1	IGSS	Gate Reverse Current		-0.25		-0.5	μA	V _{GS} = -20 V, V _{DS} = 0	150°C
3	s	BVGSS	Gate-Source Breakdown Voltage	-30		-30	- 0.5	V	$I_{G} = -10 \mu A, V_{DS} = 0$	150 0
4	Ť	V _{GS(off)}	Gate-Source Cutoff Voltage	-0,1	8	-0.1	-8	v		
	Γ,	*GS(off)	Gate-Source Cotorn vortage	(0.25)	(0.25)	(0.5)	(0.5)	(nA)	Vps = 15 V, Ip = { }	
5	c'	VGS	Gate-Source Voltage	-1.0	-7.0	-1.0	-7.5	V	VDS~10V,1D=1 }	
				(0.3)	(0.3)	(0.2)	(0.2)	(mA)		
6	<u> </u>	DSS	Saturation Drain Current (Note 3)	3	18	2	20	mA	V _{DS} = 15 V, V _{GS} = 0	
7		9 _{fs}	Common-Source Forward Transconductance (Note 3)	3000	7000	2000	7500	µmho		f=1kHz
8	D Y N	Ciss	Common Source Input	1			6		Vps = 15 V, Vgs = 0	
9			Capacitance (Output Shorted)		6) _F	103 101,103 0	
		Crss	Capacitance (Output Shorted) Common-Source Reverse Transfer Capacitance		2		2	pF		f=1MHz
10	н	C _{rss}	Common-Source Reverse	2700		1700		pF		
10 11 11	н G H		Common-Source Reverse Transfer Capacitance Common-Source Forward	2700		1700		ρF μmho	V _{DS} = 15 V, V _{GS} = 0	

*JEDEC registered data,

NOTES:

13 E Gps

14

NF

Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.
 Derate linearly to 175°C free-air temperature at rat. of 2 mW/°C.

Small Signal Power Gain

Noise Figure

3. These parameters are measured during a 2 msec interval 100 msec after d-c power is applied.

NRL

3

5

10

V_{DS} = 15 V, V_{GS} = 0 , R_{gen} = 1 K

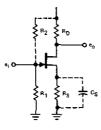
n-channel JFETs designed for . . . **Beef Checkings** Curves NP Small-Signal Amplifiers BENEFITS Low Noise NF < 1 dB at 1 kHz Choppers Operation from Low Power Supply Voltages **Voltage-Controlled** Resistors V_{GS(off)} < 1 V (2N4338) • Simple Biasing Design with Tightly **Specified Parameter Tolerances** 3:1 I_{DSS}, V_P, g_{fs} Ranges High Off-Isolation as a Switch *ABSOLUTE MAXIMUM RATINGS (25°C) $I_{D(off)} < 50 PA$ Gate-Drain or Gate-Source Voltage (Note 1) -50 V TO-18 See Section 7 Total Device Dissipation (Note 2) 300 mW Storage Temperature Range. -65 to +200°C Maximum Operating Temperature 175°C Lead Temperature (1/16" from case for 10 seconds) .300°C 1

		N	2N4	338	2N4	1339 2N4		1340 2N4		341			
	4	Characteristic	Min	Max	Міп	Max	Min	Мах	Min	Max	Unit	Test Conditions	
	IGSS	Gate Reverse Current		-0.1		-0.1		-0.1		-0.1 nA -0.1 μA V _{GS} = -30 V, V _{DS} = 0		$V_{00} = -30 V$ $V_{00} = 0$	
	1655	date Reverse Current	_	-0.1		-0.1		-0.1		-0.1	μA	VGS30 V, VDS - 0	150°C
S T	BVGSS	Gate-Source Breakdown Voltage	-50		-50		-50		-50			lG = -1 μΑ, V _{DS} = 0	
A		Gate-Source Cutoff Voltage	~0.3	-1	-0.6	-1.8	-1	-3	-2	-6		V _{DS} = 15 V, I _D = 0.1 μA	
ċ	1-1-44	Drain Cutoff Current		0.05		0.05		0.05		0.07	nA	V _{DS} = 15 V	
	ID(off)	Brain Catori Carrent		(~5)		(-5)		(5)		(-10)	(V)	V _{GS} = ()	
	IDSS	Saturation Drain Current (Note 3)	0.2	0.6	0.5	1.5	1.2	3.6	3	9	mA	V _{DS} = 15 V, V _{GS} = 0	
Γ	9fs	Common-Source Forward Transconductance (Note 3)	600	1800	800	2400	1300	3000	2000	4000	umba	Vns = 15 V, Vgs = 0	
	g _{OS}	Common-Source Output Conductance		5		15		30		60	μmno	vDS = 15 v, vGS + 0	f=1k⊢
Y	rds(on) ¹	Drain-Source ON Resistance		2500		1700		1500		800	ohm	V _{DS} = 0, V _{GS} = 0	
N A M		Common-Source Input Capacitance		7		7		7		7	pF	V	4 - 1 M
i c	C _{rss}	Common-Source Reverse Transfer Capacitance		3		3		3		3		V _{DS} = 15 V, V _{GS} = 0	f = 1 MHz
	NF	Noise Figure		1		1		1		1	dB	V _{DS} = 15 V, V _{GS} = 0 R _{gen} = 1 meg, BW = 200 Hz	f=1 k

*JEDEC registered data

NOTES:

1. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.


2. Derate linearly to 175°C free-air temperature at rate of 2 mW/°C.

3. These parameters are measured during a 2 msec interval 125 msec (IDSS) and 625 msec ID-+ after d-c power is applied. (Not a JEDEC condition.)

© 1979 Siliconix incorporated

NP

APPLICATIONS

Amplifier Design Chart

VDD (V)	Rs (Ω)	Ħ1 (Ω)	R2 (Ω)	Cs (μF)	IDD (mA)	RD (KΩ)	e _o Max (pk V)	Av
				2N4331	3			
				0		36	2.5	9-12
	1500	1M	~		0.25	36	1.5	16-24
15				30		47	2,0	20-30
.5	5100	1M	~	0	0.12	82	3.0	10-10.5
				25		82	1.5	24-37
	36K	1M	2M	30	0.15	27	1.0	13- <u>18</u> .5
				0		82	4.0	21.5-27
	1500	tM	~	30	0.25	82	2.5	32-49
30		-				100	3.0	43.64
30	5100	1M	~	0	0.12	150 150	4.5	14.5-16 38-54
	5100	1.041	~	25	0.12	200	1.5	40-50
	36K	1M	5M	30	0.15	82	5.0	37-52
				0		120	6.5	27-33
	1500	1M	90	30	0.25	120	4.0	45-68
				0		270	10	28-31
45	5100	1M	70	25	0.12	270	5,0	76 105
	0.014			0		120	14	2.8
	36K	1M	8.2M	30	0.15	120	7.0	54-76
V _{DD} = +15 V _{SS} = -15	1 0 0K	1М	90	0	0.15	D	9.0	0.98
			<u> </u>	2N433	9			
				0		20	3.0	7.7.5
	1900	1M	- 20		0.42	20	2.0	17-22
-				40		27	2.0	23-27
15	9100	tM	6.8M	35	0.32	18	2.0	17-19
	0.00		0.0141	30	0.52	30	2.5	26-28
	27K	1M	3M	AF.	0.0	22	1.0	16-18
	211	· · · ·		25	0.2	43	2.0	28-30
				0		47	6.5	15-17
	1800	1M	- 200	-	0.42	47	4.0	38-47
				40		51	4.5	40-50
30				0		43	8.0	4.5
30	9100	1M	13M		0.32	43	5.0	40-43
	L			35		68	4.5	53-60
	27K	1M				68	4.0	49-52
	2/1		7.5M	25	0.2	100	7.0	66-70
		[<u> </u>	0	1	75	-7.5	23-25
	1800	1M			0.42	75	5.0	58-70
				40		100	7.0	73-77
45			┣━━	0	<u> </u>	68	7.0	7.0
45	9100	1M	22M		0.32	68	6.5	59-64
		1	1	25		120	7.0	80-85
			t—	0		100	12	3.3
ļ	27K	1M	12M	-	0.2	100	5.0	65-68
				25	1	180	8.0	100-115
V _{DD} = +15 V _{SS} = ~15	75K	1M		0	0.22	0	10	0.98

VDD	RS	R ₁	R ₂	Cs	IDD	RD	e _o Max	
(V)	ΩĴ	(Ω)	ເດັ່ງ	(μF)	(mA)	(KΩ)	(pk V)	AV
			_	ZN434	. ,			
				214434	,			· · · · ·
				0		5.1	3.0	3.5-4
	680	1M	~	65	1.5	5.1	1.5	7.8.5
				0		6.8	2.0	9.10.5
15	1200	1M	~		1.1	7.5	2.5	3.5-4 9-11
1	1200	1 100		67		10	2.0	11-13
1			-	0		18	4.0	3.5-4
	3900	1M	~	40	0.4	18	1.5	15-18
						22	1.0	19-22
	000		00	0		12	6.0	9.5 10
	680	1M	00	65	1.5	12	3.0 1.0	17-22 24-26
				0		18	6.0	9-9.5
4-	1200	1M	- 00		1.1	18	4.0	21-26
30				60		24	2.0	29
				0		39	7.0	7.5-8
	3900	1M	~~	40	0.4	39	7.0	30-36
						62	0.5	34-45
	20K	1M	6.8M	35	0.35	30	3.0	25-27
				0		56 20	6.5 10.5	40
	680	1M .	- 00		1.5	20	8.0	27-32
	000			65	,	27	4.0	35
				0		27	12.5	16-18
45	1200	1M	~~	60	1.1	27	5.0	-30-37
40						39	2.0	39-42
				0		68	12	12-13
	3900	1M	~	40	0.4	68	7.0	52-61
						91 10	3.0 5.0	<u>56-63</u> 15
	20K	2M	3M	55	1.0	20	4.0	27-28
V _{DD} = +15 V _{SS} = -15	22K	1M	8	0	0.75	0	12	0.96
				2N434	1			
	·	····			<u> </u>	2	1.0	3-3.5
	1000	1M	~	70	2.7	2.7	2.0	4.4.5
						1.2	2.0	2.5
15	1200	1.2M	7.5M	80	3.5	2.2	3.0	3-4.5
	2000		~	0E	1.0	3	2.0	4-4.5
	2000	1M	~	65	1.8	4.7	1.5	6-6.5
				0		6.2	7,0	4.0
	1000	1M	~	70	2.7	6.2	3.5	10
	1460	1	16M	80	3.5	9.1	1.5 4.0	<u>11-13</u> 7.5-8
30	1200	1.1M	1 DIVI	0	3.9	<u>3.9</u> 9.1	4.0	3.0
	2000	1M	80		1.8	9.1	4.0	12
	2000			65		15	1.0	13-19
	15K	тM	3.3M	50	Q.7	18	3.0	16-21
	1000	1M	80	0	2.7	10	8.5	6.3
				70		10	6.0	16
45	1200	1M	22M	80	3.5	6.8	7.0	13
	2000	1M	80	0	1.8	15	8.5	5.5
	15K	1M	5.6M	65 50	0.7	15 30	5.0 9.0	20-21
V _{DD} = +15								
V _{SE} = -15	10K	1M	~	0	1.9	0	13.5	0.94

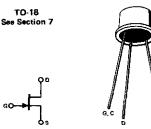
n-channel JFETs designed for . . .

- Commutators
- Choppers

Integrator Reset Switch

*ABSOLUTE MAXIMUM RATINGS (25°C)

Reverse Gate-Drain or Gate-Source Voltage40 V
Gate Current
Total Device Dissipation at 25°C Case Temperature
(Derate 10 mW/°C)
Storage Temperature Range
Lead Temperature
(1/16" from case for 60 seconds)


Performance Curves NC See Section 5

BENEFITS

 Low Insertion Loss, High Accuracy in Test Systems r_{ON} < 30 Ω (2N4391)

Ħ

- No Offset or Error Voltages Generated by Closed Switch Purely Resistive High Isolation Resistance from Driver
- High Off-Isolation ID(off) < 100 pA
- High Speed t_{ON} < 20 ns

*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic	2N4	1391	2N/	1392	2N-	4393	Unit		Test Condition		
				Min	Max	Min	Max	Min	Max	Unit		I est Conditions	5	
1		IGSS	Gate Reverse Current		-100		-100		-100	pА	N/ 20 N			
2	ł	GSS	Gate Neverse Current		-200		-200		-200	nA	VGS = -20 V	, vDS = 0	150°C	
3456789		BVGSS	Gate-Source Breakdown Voitage	-40		-40		-40		V	lg = -1 μΑ, \	/DS = 0		
4				[[I			100	pА				
5									200	nA		VG\$ = -5 V	150°C	
6		D (off)	Drain Cutoff Current		L .	l	100			ρA	V=n = 20.V	VGS = -7 V		
7	S	·U(011)	Brain Editif Carrent				200			nA	AD2 - 20 A	VGS = -7 V	150°C	
8	Å				100					pΑ		VGS = -12 V		
_	Ţ				200					nA		V6512 V	150°C	
0	c	VGS(f)	Gate-Source Forward Voltage		1)		1		lg ⇒ 1 mA, V	DS = 0		
1		VGS(off)	Gate-Source Cutoff Voltage	-4	-10	-2	-5	-0.5	-3	ľ	V _{DS} = 20 V,	ip = 1 nA		
2		DSS	Saturation Drain Current (Note 1)	50	150	25	75	5	30	mΑ	V _{DS} = 20 V,	VGS = 0		
3									0.4			I _D ≈ 3 mA		
4	1	VDS(on)	Drain Source ON Voltage				0.4			v	VGS = 0	l _D ≈ 6 mA		
5	1		·····		0.4							ID ≈ 12 mA		
6		^r DS(on)	Static Drain-Source ON Resistance		30		60		100	Ω	VGS = 0, 10			
7		^r ds(on)	Drain-Source ON Resistance		30		60		100	Ω	VGS = 0, ID	- 0	f = 1 kHz	
8	D	Ciss	Common Source Input Capacitance		14		14		14		V _{DS} = 20 V,	VGS = 0	J	
9	YN		Common Source Reverse Transfer						3.5	pF		VGS = - 5 V	f = 1 MHz	
ð		Crss	Capacitance				3.5			P1	V _{DS} = 0	V _{GS} = - 7 V V _{GS} = -12 V		
1				 .	3.5							VGS = -12 V	<u> </u>	
2	1	td(on)	Turn-ON Delay Time	<u> </u>	15		15		15		V00 = 10 V,	VGS(ori) = 0		
3	S	tr	Risk Time		5		5		5			D(on)	VGS(off)	RL
4	w	^t d(off)	Turn-OFF Delay Time		20	L	35		50	ns	2N4391 2N4392	12 mA 6	-12 V -7	800 S 1.6K S
5		1 _f	Fatl Time		15		20		30		2N4392 2N4393	3	-7 -5	3.2K
NC	TE:		l data. red, p⊎lse width ≈ 300 µs, duty cycle ≤	3%.					1000 r SE ∿ ₩ ↑ IN:	оғ 1К 32	VDD 51 Ω \$ 1000 pF K→ VC D \$ RL = (<u>9</u>) 5			IC
									/IN =—		51Ω RISE T FALL 1	IME < 0.5 ms IME < 0.5 ms IME < 0.5 ms DUTY CYCLE 1%	SAMPLING RISE TIME D.4 INPUT RESIST	l ns

Silon X

	IV	lixer	S					Wide	= 3 dB	Typical at 400 M _{ss} Ratio	MHz
Gate Gate	e-C e-C	Drain or O Drain or O	MAXIMUM RATINGS (25 Gate-Source Voltage, 2N44 Gate-Source Voltage, 2N44	16 16A		-35 V			T O-72 Section 7	F	
Fota Stor _ea (*	al aq d 1 1/1	Device D le Tempe lempera I6'' from	vissipation (Derate 1.7 mW/ erature Ranae	°C) , -(30 65 t o +:	0 mW 200°C 300°C	e note	60 d)	,	3	c
			Characteristic	· · · ·	·	Min	Max	Unit	I	Test Conditions	
1		IGSS	Gate Reverse Current				-0.1	An	Veo-	-20 V, V _{DS} = 0 V	
2	s	1922					-0.1	μA	VGS =	-20 v, vDS = 0 v	150°C
3	T A T	^{BV} G\$S	Gate-Source Breakdown Voltage			-30 -35		v	i _G = −1	μΑ, V _{DS} = 0 V	2N4410 2N4410
							-6	v	1/20-	15 V, ID = 1 nA	2N441
4	ċ	VGS(off)	Gate-Source Cutoff Voltage			2.5	-6		VDS-		2N441
4	ċ	V _{GS(off)} I _{DSS}	Gate-Source Cutoff Voltage Saturation Drain Current (Note 1)			-2.5 5	-6 15	mA	vDS-		2N441
	Ċ			uctance					vDS-		
5 6 7		DSS	Saturation Drain Current (Note 1)			5	15	mA			
5 6 7 8	DY	I _{DSS} 9 _{fs}	Saturation Drain Current (Note 1) Common-Source Forward Transcondu	2		5	15 7500	mA μmho		15 V, V _{GS} = 0 V	
5 6 7 8 9		IDSS 9fs 9 _{OS} C _{rss} C _{iss}	Saturation Drain Current (Note 1) Common-Source Forward Transcondu Common-Source Output Conductance Common-Source Reverse Transfer Cal Common-Source Input Capacitance	2		5	15 7500 50 0.8 4	mA μmho μmho pF			f = 1 kł
5 6 7 8	DYNAM	I _{DSS} 9fs 9 _{0S} C _{rss}	Saturation Drain Current (Note 1) Common-Source Forward Transcondu Common-Source Output Conductance Common-Source Reverse Transfer Ca Common-Source Input Capacitance Common-Source Output Capacitance	acitance		5 4500	15 7500 50 0.8 4 2	mA μmho μmho pF pF	V _{DS} =	15 V, V _{GS} = 0 V	f = 1 kł
5 6 7 8 9	DYNAM	IDSS 9fs 9 _{OS} C _{rss} C _{iss}	Saturation Drain Current (Note 1) Common-Source Forward Transcondu Common-Source Output Conductance Common-Source Reverse Transfer Cal Common-Source Input Capacitance	acitance	MHz Məx	5 4500	15 7500 50 0.8 4	mA μmho μmho pF pF			f = 1 kł
5 6 7 8 9	DYZAZ+C	IDSS 9fs 9 _{OS} C _{rss} C _{iss}	Saturation Drain Current (Note 1) Common-Source Forward Transcondu Common-Source Output Conductance Common-Source Reverse Transfer Ca Common-Source Input Capacitance Common-Source Output Capacitance	oacitance		5 4500 	15 7500 50 0.8 4 2 0 MHz Ma	mA µmho pF pF	V _{DS} =	15 V, V _{GS} = 0 V	f = 1 kł
5 6 7 8 9 10	DYZAZło	IDSS 9fs 9os Crss Ciss Coss	Saturation Drain Current (Note 1) Common-Source Forward Transcondu Common-Source Output Conductance Common-Source Reverse Transfer Cal Common-Source Input Capacitance Common-Source Output Capacitance Characteristic	oacitance	Max	5 4500 	15 7500 50 0.8 4 2 0 MHz Ma	mA μmho pF pF x U x00 μπ	V _{DS} =	15 V, V _{GS} = 0 V	f = 1 kł
5 6 7 8 9 10	DYZAZIC HIGH F	IDSS Ifs Igfs Igos Crss Ciss Coss Igiss	Saturation Drain Current (Note 1) Common-Source Forward Transcondu Common-Source Output Conductance Common-Source Reverse Transfer Ca Common-Source Input Capacitance Common-Source Output Capacitance Characteristic Common-Source Input Conductance	oacitance	Max 100	5 4500 	15 7500 50 0.8 4 2 0 MHz Ma 10 10,0	mA μmho pF pF X 00 μn	V _{DS} =	15 V, V _{GS} = 0 V	f = 1 kł
5 6 7 8 9 10 11 11	DYNAN'C HIGH FREQ	IDSS 9fs 9os Crss Ciss Coss 9iss biss	Saturation Drain Current (Note 1) Common-Source Forward Transcondu Common-Source Output Conductance Common-Source Reverse Transfer Cal Common-Source Input Capacitance Common-Source Output Capacitance Characteristic Common-Source Input Conductance Common-Source Input Susceptance Common-Source Output	oacitance	Max 100 2500	5 4500 	15 7500 60 0.8 4 2 0 MHz 10 10,0 10,0	mA μmho pF pF x 00 μn 00 μn	V _{DS} =	15 V, V _{GS} = 0 V Test Conditions	f = 1 kł
5 6 7 8 9 10 11 11 12 13	DYNAN'C HIGH FRE	IDSS 9f5 9g0s Crss Crss Coss Giss Coss 9iss Biss 9oss Goss	Saturation Drain Current (Note 1) Common-Source Forward Transcondu Common-Source Output Conductance Common-Source Neverse Transfer Cal Common-Source Input Capacitance Common-Source Output Capacitance Characteristic Common-Source Input Conductance Common-Source Input Susceptance Common-Source Output Conductance Common-Source Output	oacitance	Max 100 2500 75	5 4500 	15 7500 60 0.8 4 2 0 MHz 10 10,0 10,0	mA μmho pF pF 00 μπ 00 μπ 00 μπ 00 μπ	V _{DS} =	15 V, V _{GS} = 0 V Test Conditions	f = 1 kł
5 6 7 8 9 10 11 12 13 14	DYZAZIC HIGH HRUCOW	IDSS 9fs 9os Crss Ciss Coss 9iss biss 9oss	Saturation Drain Current (Note 1) Common-Source Forward Transcondu Common-Source Output Conductance Common-Source Reverse Transfer Ca Common-Source Input Capacitance Common-Source Output Capacitance Characteristic Common-Source Input Conductance Common-Source Input Susceptance Common-Source Output Conductance Common-Source Output Susceptance Common-Source Forward	oacitance	Max 100 2500 75	5 4500 40 Min	15 7500 60 0.8 4 2 0 MHz 10 10,0 10,0	mA μmho μmho pF pF 00 00 μm 00 μm 00 μm μm	V _{DS} =	15 V, V _{GS} = 0 V Test Conditions	2N41E

*JEDEC Registered data

NOTES:

1. Pulse test duration = $300 \,\mu s$.

B Siliconix

n-channel **JFETs** designed for ...

VHF Amplifiers

Performance Curves NH See Section 5

BENEFITS

Low Noise

2N4856 2N4857 2N4858 2N4859 2N4860 2N4861

© 1979 Siliconix incorporated					202			1				ſ	
NC INPUT PULSE SAMPLING SCOPE RISE TIME 0.75 m RISE TIME 0.75 m FALL TIME 0.75 m RISE TIME 0.75 m PULSE WIDTH TOOM INPUT CAPACITANCE 2.5 pF PULSE DUTY CYCLE < 10%	-	Vout		<u>*</u> ***********************************	¥ ₽ Ĵ			100 µs, duty cycle < 10%.	, uisewidth =	" JEDEC registered data NOTE: 1. Pulse test required, p	*JEDEC NOTE: 1. Puise	i s j	
	(m,A) [<]A	-4 (5) 10		[-6] 50		[-10] [-10]			Turn-OFF Time	loff		1	-
VGS(on) = 0, RL = { 953 Ω, 2N4856, 59 VGS(on) = (), RL = { 953 Ω, 2N4857, 60 VGS(off) = [] VGS(off) = []		[-4] [5] [0		4 [-6]		(20) (-10]	1		Rise Time	ŗ.		16	
	ns (mA) [V]	[1] (5)		[9-] (01) 9		[10]			Turn-ON Delay Time	td(on)		5	
VGS = 0, f = 1 MHz	Ę	8		8		œ		Transfer	Common-Source Reverse Transfer Capacitance	Crss			
	ຸກ	18 09		40 18		18		pacitance	Drain-Source ON Resistance Common-Source Input Capacitance	rdston) C _{iss}	× 0	13 12	
	5	(5)		(10)		(20)			Drain-Source ON Voltage	VDS(on)	<u> </u>	=	
V _{DS} = 15 V, V _{GS} = 0	"	80	8	100	б		8	(Note 1)	Saturation Drain Current (Note 1)	lpss	19.1	10	
V _{DS} = 15V, I _D = 0.5 nA	< 3	4 9	-0.8	9-00	-2	- 2	Ł	ge .	Gate-Source Cutoff Voltage	VGS(off)		ω	
VDS = 15 V. VCS = -10 V 150°C	1	250		250		250	Τ		Drain Cutoff Current	lD(aff)) - 4	2 J	
VGS = -15 V, VDS = 0 150°C	n P P	-500		-500		-500		2N4859-61					
V _{DS} = 0 150°C		-500		-500		-500		2144000-00	Gate Reverse Current	lGSS			
V _{GS} = -20 V,	рA	-250	5	-250		-250		JN14956-59			[w] (
IG = -1 μΑ, VDS = 0	<		-30		4 8		岩봉	2N4856-58 2N4859-61	Gate-Source Breakdown Voltage	SSDAB	~1-	N -	
Test Conditions	Unit	Max 198	2N4861 Min Max	Max 860		2N4859 Min Max	Min		Characterístic				
		2N4858	2N2	857	2N4857	4856	21		2				
		ed)	e not	erwis	ss oth	unle	25° C	ERISTICS (*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)	ECTRI	Ë	.*	
os G,C			.,	300°C	:	:	:	conds)	(1/16" from case for 10 seconds)	/16" fr	E		
	Ĩ				i				Lead Temperature	Temp	ead 3	5	
				1.8 W	-65 to +200°C				(Derate IV mw/ C)	erate I ade Ten	2 2 2 2	ŝ	
			-	20		Pratur	empe	5°C Case T	0	I Devic) ä	Ţ	
			-	50 mA	:		÷		nt	Gate Current .	ate	G	
See Section 7	See Se			-30 <			age,		2N4859-61	rse Gan 14859-	≥ Se	Ā	
TO-18	5			-40 <	÷	÷			58	4856-	Ŋ	,	
	Available		•	5			age,	Source Volt	Reverse Gate-Drain or Gate-Source Voltage	rse Gat	eve	Ŗ	
JAN, JANTX and JANTXV		• 					5°C)	ATINGS (2	*ABSOLUTE MAXIMUM RATINGS (25°C)	SOLUT	β	*	
	Śź) 1											
iD(off) < 200 pA gh Speed	^r D(off) 	• <u> </u>				-	ţ	iet Switch	Integrator Reset	Integ	_		
High Off-Isolation	е С С	• H					,		cnoppers	cnop	_		
in Test Systems rne(on) < 25 Ω (2N4856, 59)	Test	3											
Low Insertion Loss and High Accuracy	w In	•							Commistatore		_		
S	BENEFITS	BEN						les	Analog Switches	Ana	_		
See Section 5	Sec	See				•	٠	for .	designed t) ISE		0	
					C			•					
B					Л			2	-channe			₹	
												٦	

		anne gned f		E.	T:	5					ance C tion 5	Silizenix urves			
	Comi Chop	og Switch mutators pers rator Res		ch				•	 BENEFITS Low Insertion Loss and High Accurate in Test Systems rDS(on) < 25 Ω (2N4856A, 59, 100) High Off-Isolation ID(off) < 250 pA Short Sample and Hold Aperture 1 						
Rever 2N Rever 2N Gate Total (De Storag Lead (1/	rse Gate 4856A- se Gate 4859A- Curren Device erate 10 ge Temper Temper 16" fro	E MAXIMUM R/ Drain or Gate-S 58A Drain or Gate-S 61A Dissipation at 2 mW/°C) perature Range rature m case for 10 se AL CHARACTE	ge. ge. mper	ature 65 to	- 3 50 1.8 9 +20 30	80V mA 3 W 0°C 0°C		• Hig t s	h Spe	< 8 ns					
		Characteristic		2N4	856A 859A Max	2N48 2N48 Min	57A	2N48 2N48 Min	58A	Unit		Test Conditions			
1	BVGSS	Gate-Source Breakdown Voltage	2N4856A-58A 2N4859A-61A	-40		-40 30		-40 -30		v	i _G = 1 μΑ, V _[DS = 0			
3				-250 500		-250 -500		-250 -500	pA nA	V _{GS} =20 V, V _{DS} = 0	150°C				
<u>5</u> S т 6 д	IGSS	Gate Reverse Current	2N4859A-61A		-250 -500		-250 500		-250 -500	pA nA	V _{GS} = -15 V, V _{DS} = 0	150° C			
7 T 	¹ D(off)	Drain Cutoff Current		—	250 500		250 500		250 500	pA nA	V _{DS} = 15 V, V _{GS} = −10 V	150°C			
9	VGS(off)	Gate-Source Cutoff Volt	age	-4	10	-2	-6	-0.8	-4	v	V _{DS} = 15 V, I _D) = 0.5 nA			
10	IDSS	Saturation Drain Current	(Note 1)	50		20	100	8	80	mΑ	V _{US} - 15 V, V _{GS} = 0				
11	V _{DS(on)}	Drain-Source ON Voltage			0.75 (20)		0.50 (10}		0.50 (5)	V (mA)	V _G s = 0, I _D =	()			

1. Pulse test required, pulsewidth = 100 μ s, duty cycle < 10%.

12

14

15 s

16

NOTE:

D Y 13

N

w

1

Ť

c tr

н

ł

N G 17

toff

* JEDEC registered data.

rds(on)

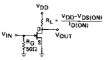
Ciss

C_{rss}

td(on)

Drain-Source ON Resistance

Capacitance


Rise Time

Turn-OFF Time

Turn-ON Delay Time

Common-Source Input Capacitance

Common-Source Reverse Transfer

40

10

3.5

6

(10)

[-6]

1101

[-6]

(10)

[~6]

40

4

INPUT PULSE RISE TIME 0.25 ns FALL TIME 0.75 ns PULSE WIDTH 100 ns PULSE DUTY CYCLE < 10%

V_{GS} = 0, I_D = 0

∨_{DS} = 0, V_{GS} = −10 V

V_{DD} = 10 V,

VGS(on) = 0, |D(on) = (),

VGS(off) = []

60 52

10

3.5

8 ns

8

(5) (mA)

80 ns

(5) (mA)

[-4] $\{\mathbf{V}\}$

[-4] [V]

(5)

[-4] [V]

ρF

(mA)

пş

f≐1kHz

f = 1 MHz

RL=

SAMPLING SCOPE RISE TIME 0.75 ms INPUT RESISTANCE 1 M INPUT CAPACITANCE 2.5 pF Siliconix

NC

464 Ω, 2N4856A, 59A 953 Ω, 2N4857A, 60A 1910 Ω, 2N4858A, 61A

© 1979 Siliconix incorporated

3-29

25

10

4

5

(20)

101

(20)

-10)

20

(20)

(- 10)

3

3

n-channel J		`	S					B Siliconix
designed for .	٠	٠						ance Curves N\$ tion 5
Audio and Sub-Audi Amplifiers	0					ē	ra Lo n = 8	S w Noise 3 nV/√Hz Typical at 10 Hz 2 nV/√Hz Typical at 1 kHz
*ABSOLUTE MAXIMUM RATINGS (2 Gate-Drain or Gate-Source Voltage (No Gate Current or Drain Current Total Device Dissipation (Derate 1.7 mW/°C) Storage Temperature Range Lead Temperature (1/16" from case for 60 seconds)	te 1)	-65	, 30 to +2	50 mA 10 mV 200° (\ / C	S	TO-7	$\int_{-\infty}^{2^{2}} \int_{-\infty}^{2^{2}} \int_{-$
*ELECTRICAL CHARACTERISTICS				erwis	e note			I
Characteristic		867A Max		B68A Max	2144 2N48 Min		Unit	Test Conditions
1 2 S GSS Gate Reverse Current		-0.25 -0.25		-0.25 -0.25		-0.25	nΑ μΑ	$V_{GS} = -30 V, V_{DS} = 0$ 150°C

			Characteristic	2N4 2N4	867 867A		868 868A	2N4 2N4	869 869A	Unit	Test Conditions				
				Min	Max	Min	Max	Min	Max	ĺ					
1		1000	Gate Reverse Current		-0.25		-0.25		-0.25	nA	V _{GS} = -30 V, V _{DS} = 0				
2	S	IGSS	Gate Reverse Current		-0.25		-0.25		-0.25	μΑ	VGS30 V. VDS - 0				
3	Å	BVGSS	Gate-Source Breakdown Voltage	-40		-40		-40		v	lg = -1 μΑ, V _{DS} = 0				
4	T	VGS(off)	Gate-Source Cutoff Voltage	-0.7	-2	-1	-3	-1.8	-5		V _{DS} = 20 V, I _D = 1 μA				
5	Ċ	IDSS	Saturation Drain Current (Note 2)	0.4	1.2	1	3	2.5	7.5	mA	V _{DS} = 20 V, V _{GS} = 0				
6		9 _{fs}	Common-Source Forward Transconductance (Note 2)	700	2000	1000	3000	1300	4000	µmho	f=1kH				
7		9 _{OS}	Common-Source Output Conductance		1.5		4		10						
8	D	Crss	Common-Source Reverse Transfer Capacitance		5		5		5		V _{DS} = 20 V, V _{GS} = 0				
9	Y N A	Ciss	Common-Source Input Capacitance		25		25		25	pF					
0	M				20		20		20		2N4867 Series f = 10 H				
1	C	-	Short Circuit Equivalent Input		10		10		10	<u></u>	V _{DS} = 10 V. 2N4887A Series				
2		ēn	Noise Voltage		10		10		10	r∕ Hz	VGS = 0 2N4867 Series f = 1 kH				
13					5		5		5		2N4867A Series				
4		NF	Spot Noise Figure		1		1		1	dB					

*JEDEC registered data.

NOTES:

1. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.

2. Pulse test duration = 2 ms.

NS

Si lico nix

p-channel JFETs designed for . . .

Analog Switches

Commutators

Choppers

"ABSOLUTE MAXIMUM RATINGS (25°C)

Reverse Gate-Drain or Gate-Source Voltage
(Note 1)
Gate Current
Total Device Dissipation, Free-Air
(Derate 3 mW/°C)
Storage Temperature Range , , , , , , -65 to +200°C
Lead Temperature
(1/16" from case for 60 seconds1

Beef cBectioce5Curves PS

BENEFITS

- Low Insertion Loss
 R_{DS(on)} <75 Ω (2N5018)
- No Offset or Error Voltages Generated by Closed Switch Purely Resistive

TO-18 See Section 7 $G \xrightarrow{OD}_{S}$

'ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Channelatio	2N5	5018	2N5	5019	Unit	Test Conditions					
		Characteristic BVGSS Gate-Source Breakdown Voltag		Min	Max	Min	Max							
1		BVGSS	Gate-Source Breakdown Voltage	30		30		V	I _G = 1 μA, V _{DS} = 0					
2		IGSS	Gate Reverse Current		2		2	nA	V _{GS} = 15 V, V _{DS} = 0					
3					-10		-10		V _{DS} = -15 V, V _{GS} = 12 V (2N5018)					
4		D(off)	Drain Cutoff Current		-10		-10	μA	V _{GS} = 7 V (2N5019) 15	50° C				
5 6	S T	IDGO	Drain Beverse Current		-2		-2	nA	Vpg =15 V, ls = 0					
	À	יטפט			-3		-3	μA	16	50° C				
7	T	V _{GS(off)}	Gate-Source Cutoff Voltage		10		5	V	V _{DS} = -15 V, I _D = -1 μA					
8	C	DSS	Saturation Drain Current	-10		5		mΑ	$V_{DS} = -20 V, V_{GS} = 0$					
9		V _{DS(on})	Drain-Source ON Voltage		-0.5		-0.5	v	V _{GS} = 0, I _D = -6 mA (2N5018), I _D = -3 mA (2N5019)					
10		⁷ DS(on)	Static Drain-Source ON Resistance		75		150	Ω	I _D = -1 mA, V _{GS} = 0					
i 1		rds(on)	Drain-Source ON Resistance		75		150	Ω	I _D = 0, V _{GS} = 0 f =	=1 kHz				
12	D Y	C _{iss}	Common-Source Input Capacitance		45		45	pF	$V_{DS} = -15 V, V_{GS} = 0$	= 1 MH				
13	N	C _{rss}	Common-Source Reverse Transfer Capacitance		10		10	pr	$V_{DS} = 0, V_{GS} = 12 V (2N5018), V_{GS} = 7 V (2N5019)$	- 1 мг				
4	\$	td(on)	Turn-ON Delay Time		15		15		$V_{DD} = -6 V, V_{GS(on)} = 0$					
5	W	t _r	Rise Time		20		75]	VGS(off) ID(on) R	L				
16	T	td(off)	Turn-OFF Delay Time		15		25	ns	2N5018 12 V -6 mA 910	Ω				
17	н	tf	Fall Time		50		100	Į	2N5019 7 V -3 mA 1.8K	Ω				
NO' 1. [TE: Due	to symmetric	ata. al geometry these units may be operate eads interchanged	d with			V _{IN α} 51 Ω	1.2 K	"OD INPUT PULSE SAMPLING RISE TIME < 1 ns	s NCE 10 M				

Sili

3

© 1979 Siliconix incorporated

'monolithic dual n-channel JFETs designed for . . .

High Gain Differential Amplifiers

Performance Curves NNR See Section 5

Sili

BENEFITS

- Minimum System Error and Calibraion
- 5 mV Offset Maximum (2N5045) • Low Drift
 - 5 mV Drift Maximum (2N5045)

TO-71 See section 7

D10 0D:

*ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage
Forward Gate Current
Total Dissipation (25°C Free Air Temp.) 400 mW
Power Derating (to 175°C) 2.67 mW/°C
Storage Temperature Range65 to +200°C
Lead Temperature
(1116" from case for 10 seconds)

*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

				2N5	6045	2N5	5046	2N5	047		T . O . 157			
Characteristic (Note 1)					Max	Min	Max	Min	Max	Unit	Test Conditio	ins		
1 s					-1		-1		-1	μA	V _{GS} = -50 V, V _{DS} = 0 V			
2	T	IGSS	Gate Reverse Current		-0.25		-0.25		~0.25	nA	V _{GS} = -30 V, V _{DS} = 0 V			
3	^				-250		-250		-250		VGS30 V, VDS - 0 V	T = 150°C		
4	il	VGS(off)	Gate-Source Cutoff Voltage	-0.5	-4.5	-0.5	-4.5	-0.5	-4.5	V	V _{DS} = 15 V, 1 _D = 0.5 nA			
5	С	IDSS	Drain Saturation Current	0.5	8.0	0.5	8.0	0.5	8.0	mΑ				
6		9 _{fs}	Common-Source Forward Transconductance	1.5	6.0	1.5	6.0	1.5	6.0	mmho		f = 1 kHz		
,		J _{yfs}	Common-Source Forward Admittance	1.5		1.5		1.5			f = †00 MHz			
3	D Y N	g _{QS}	Common-Source Output Conductance		25		25		25	µmho		f = 1 kHz		
,	AM	C	Common-Source Input Capacitarice		8.0		8,0		8.0	ρF	V _{DS} = 15 V, V _{GS} = 0 V	f≖1MHz		
,	ċ	Crss	Common-Source Reverse Transfer Capacitance		4.0		4.0		4.0	ρr		1 - 1 00112		
7	1	NF	Spot Noise Figure		5.0		5.0			dB		f = 10 Hz, RG = 1 MS		
2		ē _n	Equivalent Short-Circuit Input Noise Voltage		200		200		-	n¥ ⊮Hz		f = 10 Hz		
3		IIGSS1-IGSS2	Differential Gate Current		10		10		10	nA	VGS = -15 V, VDS = 0 V	T _A = 100°C		
ŀ	м	DSS1/IDSS2	Drain Current Ratio (Note 2)	0.95	1.0	0.9	1.0	0.8	1.0	-	V _{GS} = 0 V, V _{DS} = 15 V			
	A	VGS1-VGS2	Differential Gate-Source		5		10		15		Mar	I _D = 50 μA		
5	č	WGS1-VGS2	Voltage		5		10		15	mν	V _{DS} = 15 V	l _D = 200 μA		
'	Ĥ		Gate-Source Voltage		5		10		15] [V _{DS} = 15 V, I _D = 200 µA,	T _B = -25°C		
В	N	,∆ VGS1−VGS2	Differential Drift (Note 3)		5		10		15		Т _д = 25°С	$T_B = 100^{\circ}C$		
,	-	9fs1/9fs2	Transconductance Ratio (Note 2)	0.95	1.0	0.9	1.0	0.8	1.0	-	V 45 V 1 200 ··· A	4 - 1)		
,		Igos1-gos2	Diff. Output Conductance		1.0		2.0		3.0	umho	V _{DS} = 15 V, I _D = 200 μA	f = 1 kHz		

JEDEC registered data

NOTES:

ſ

1. Individual FET characteristics. The terminals of the FET not under test arc open-circuited for these measurements.

2. Assumes smaller "a,"... In numerator.

3. Measured at end points, TA and TB

NNR

NRL-D

2N 514 2N5115 2N5116

p-channel JFETs designed for ...

Analog Switches

- Commutators
- Choppers

Integrator Reset Switch

'ABSOLUTE MAXIMUM RATINGS (25°C)

Reverse Gate-Drain or Gate-Source Vo	olta	age	Э				
(Note11	,	,			,		. 30V
Gate Current		,					.50 mA
Total Device Dissipation, Free-Air							
(Derate 3 mW/°C)							500 mW
Storage Temperature Range			,	-	65	tc	o +200° C
Lead Temperature							
(1/16" from case for 10 seconds)	•		•	•	•	•	300°C

*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic	2N5	114	2N5	115	2N5	116	Unit	Test Conditions						
				Min	Max	Min	Max	Min	Max	Unit	lest Conditions						
1		8VGSS	Gate-Source Breakdown Voltage	30		30		30		V	IG = 1 μΑ, V _{OS} =	0					
2		IGSS	Gate Reverse Current		500		500		500	pА	VGS = 20 V, VDS	- 0					
3		1055	Cate nevelse Current		1.0		1.0		1.0	μA			150°C				
4					-500		-500		-500	pА	V _{DS} =15 V, V _C		15114)				
	ST	^I D(off)	Drain Cutoff Current		-1.0		-1.0		-1.0	μΑ	VGS = 7 V (2N51 VGS = 5 V (2N51		150°C				
	Á	VGS(off)	Gate-Source Cutoff Voltage	5	10	3	6	1	4	v	VDS = -15 V, ip = -1 nA						
	i		Saturation Drain Current (Note 2),	-30	-90	-15	-60	-5	-25	mA	V _{GS} = 0, V _{DS} = -18 V (2N5114)						
	c	USS		-30	-90	-15	-00	-5	-25	- mA	V _{DS} = -15 V (2)	5115, 2N61	16)				
8	1	VGS(f)	Forward Gate-Source Voltage		-1		-1		-1		IG = -1 mA, VDS	= 0					
9		V _{DS(on)}	Drain-Source ON Voltage		-1.3		-0.8		-0.6	v	V _{GS} = 0, I _D = -15 mA (2N5114) I _D = -7 mA (2N5115), I _D = -3 r						
0		(DS(on)	Static Drain-Source ON Resistance		75		100		150	Ω	VGS = 0, ID = -1						
1	Б	rds(on)	Drain-Source ON Resistance		75		100		150	Ω	VGS = 0, ID = 0	f = 1 kHz					
12	۲I	Ciss	Common-Source Input Capacitance		25		25		25		VDS = -15 . VGS	f=1MHz					
	N	Crss	Common-Source Reverse Transfer Capacitance		7		7		7	рF	V _{DS} = 0, V _{GS} = 1 V _{GS} = 7 V (2N51						
	s										2N51						
4	w	^t d(on)	Turn-ON Delay Time		6		10		12		VDD -10						
5	÷	t _r	Rise Time		10		20		30	ns	V _{GS(off)} 12						
6	c	td(off)	Yurn-OFF Delay Time		6		8		10		R _โ 580	Ω 743Ω 0 0	1800 Ω 0				
7	н	tf	Fall Time		15		30		50		VGS(on) ID(on) -15 m	· ·	_				
NOT I. C	TE: Due iou	e to symmet rce and drai	t data. crical geometry these units may be oper π leads interchanged. 300 $μ_s$, duty cycle $\leq 3%$.	L atect wit	1 	L	<u>L</u>	۷IN ۵۰۰۰ 51 Ω	1.21	╘╍┎┟╴	2. 2. 2. 2. 5.5K INPUT F 2. 8.15E TIME < 1	ULSE Ins RIS Ins (NF 100 m INF	PS SAMPLING SCOPE E TIME 0.4 ns 'UT RESISTANCE 10 MΩ 'UT CAPACITANCE 1.5 pf				

Sili B ix Performance Curves PS

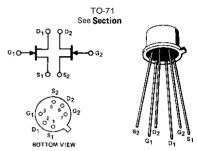
BENEFITS

See Section 5

TO-18 See Section 7

- Simplifies Series-Shunt Switching when Combined with 2N4393, its N-Channel Complement
- Low Insertion Loss in Switching Systems R_{ON} < 75 Ω (2N5114)
- Short Sample and Hold Aperture Time C_{rss} < 7 pF
- High Off-Isolation ID(off) < 500 pA

monolithic dual n-channel JFETs designed for...


Differential AmplifiersFET Input Op Amps

Silizanix

Performance Curves NNP See Section 5

BENEFITS

- Minimum System Error and Calibration 5 mV Maximum Offset (2N5196, 97)
- Low Drift 5 μV/°C Maximum (2N5196)
- Simplifies Amplifier Design Low Output Conductance

'ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage50 V
Gate Current 50 mA
Device Dissipation (Each Side), $T_A = 85^{\circ}C$
(Derate 2.56 mW/°C)
Total Device Dissipation. $T_A = 85^{\circ}C$
(Derate 4.3 mW/°C)
Storage Temperature Range65 to +200°C

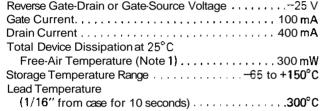
'ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic				Min	M	ax .	Unit			Test Con	ditions
1		1000	Grate Revenue Current					-	25	pА	1.			
2	ł	IGSS	Gate Reverse Current					-	50	nA	[−] ^V G	$V_{GS} = -30 V, V_{DS} = 0$		150°C
3	<u>s</u> [BVGSS	Gate-Source Breakdown Voltage				-50				'G	= -1 μA, \	VDS = 0	•••••••
4	Å	VGS(off)	Gate-Source Cutoff Voltage	-			-0.7	1	-4	v			l _D = 1 лА	
5	T [V _{GS}	Gate-Source Voltage				-0.2	-3	.8			-		
6	ċ	IG	Gate Operating Current					-	15	pА	VD	G ≠ 20 V.	I _D = 200 μA	
	٦.	<u>ں</u>	Gate Operating Corrent					-	15	nA				125°C
7		1DSS	Saturation Drain Current				0.7		7	mA	VD	s=20V,	VGS = 0	
8	7	9ts	Common-Source Forward Transconduc				000	400	000		٧D	s = 20 V,	VGS = 0	
9		9fs	Common-Source Forward Transconduc	tance			700	160	00	µmho	VD	g = 20 V,	1 _D = 200 μA	f≑1kHz
	D	9os	Common-Source Output Conductance						50	μππο	٧D	s = 20 V,	V _{GS} = 0	
11	Y N	gos	Common-Source Output Conductance						4		VD	G = 20 V,	I _D = 200 μA	1
12	A	Ciss	Common-Source Input Capacitance						6	pF	1			f≖1 MHz
13 1	M	Crss	Common-Source Reverse Transfer Capa	citance					2		1			
14	ć	NF					0	.5	dB	VD	$V_{DS} = 20 V, V_{GS} = 0$		f = 100 Hz, R _G = 10 MΩ	
5		₹ _n	Equivalent Short-Circuit Input Noise V	oltage				:	20	<u>nV</u> ⊮Hz				f = 1 kHz
				2N	196	2N	5197	2N5	198	2N5	199			3
			Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Te	est Conditions
6		G1- G2	Differential Gate Current		5		5		5		5	nA	V _{DG} = 20 V, I _D = 200 μA	125°C
7		IDSS1 IDSS2	Saturation Drain Current Ratio (Note 1)	0.95	1	0.95	1	0.95	1	0.95	1	-	V _{DS} = 20 V,	V _{GS} = 0 V
8	A	9fs1 9fs2	Transconductance Ratio (Note 1)	0.97	1	0.97	1	0.95	1	0.95	1	-		f = 1 kHz
	C H	NGS1-VG	52 Differential Gate-Source Voltage		5		5		10		15	mV		
	i N G	AlV _{GS1} -V	GS21 Gate-Source Differential Voltage		5		10		20		40		V _{DG} = 20 V, I _D = 200 μA	$T_A = 25^{\circ}C$ $T_B = 125^{\circ}C$
11		ΔT Change with Temperature ΔT (Note 2)			5	-	10		20		40	-[μν/c]]		$T_A = -55^{\circ}C$ $T_B = 25^{\circ}C$
2	Ī	gost-gas2	Differential Output Conductance	T	1		1		1		1	µmho		f=1kHz
NOT	ES			easured	at end	points,	Т _д and	т _в		·	<u> </u>	• <u> </u>		NNP NP-E

© 1979 Siliconix Incorporated

2N23 2N5433 2N5434

Silicanix


PerformanceSCurves NIP

BENEFITS

- Low Insertion Loss R_{DS(on)} < 5 Ω (2N5432)
- Small Error in Measurement Systems $V_{DS(on)} < 50 \text{ mV} (2N5432)$
- High Off-Isolation I_{D(off)} < 200 pA
- High Speed $t_{d(on)} < 4$ ns

TO-52 e Section 7

- Low Noise Audio-Frequency Amplification
 - $e_n < 2 nV / \sqrt{Hz}$ at 1 kHz Typical

n-channel JFETs designed for...

Low ON Resistance **Analog Switches**

- Commutators
- Choppers
- **Integrator Reset Capacitors** Low Noise Audio Amplifiers

*ABSOLUTE MAXIMUM RATINGS (25°C)

Reverse Gate-Drain or Gate-Source Voltage25 V
Gate Current
Drain Current
Total Device Dissipation at 25°C
Free-Air Temperature (Note 1)
Storage Temperature Range
Lead Temperature
(1/16" from case for 10 seconds)

*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			01	2N5	i432	2N!	5433	2N	5434			
			Characteristic	Min	Max	Min	Max	Min	Max	Unit	Test Conditions	
1		1000	Gate Reverse Current		-200		-200		-200	pА		
2		IGSS	Gate Reverse Content		-200		-200		-200	nA	VGS = -15 V, VDS = 0	150°C
3		BVGSS	Gate Source Breakdown Voltage	-25		-25		-25		V	IG = -1 μΑ, V _{DS} = 0	
4	S T	10 × 10	Drain Cutoff Current		200		200		200	pА	VDS = 5 V, VGS = -10 V	
5	À	ⁱ D(aff)	Drain Coton Conent		200		200		200	nA	VDS = 5 V, VGS = -10 V	150°C
6	1	VGS(off)	Gate-Source Cutoff Voltage	-4	-10	-3	-9	-1	-4	V	V _{DS} = 5 V, I _D = 3 nA	
7	C	DSS	Saturation Drain Current (Note 2)	150		100		30		mA	V _{DS} = 15 V, V _{GS} = 0	
8		rDS(on)	Static Drain-Source ON Resistance	2	5		1		10	ohm	VGS = 0 , ID = 10 mA	
9		VDS(on)	Drain-Source ON Voltage		50		70		100	mV	VGS - 0, ID - 10 mA	
0		rds(on)	Drain-Source ON Resistance		5		7		10	ohm	V _{GS} = 0, I _D = 0	f=1kHz
1	P	Ciss	Common-Source Input Capacitance		30		30		30	_		
2	N	Crss	Common-Source Reverse Transfer Capacitance		15		15		15	pF	V _{DS} = 0, V _{GS} = -10 V	f=1MHz
3		^t d(on)	Turn-ON Delay Time		4		4		4		VDD = 1.5 V, 14	
4	s	t _r	Rise Time		1		1		1		Von Vr0	5 Ω (2N5432
5	Ŵ	td(off)	Turn-OFF Delay Time		6		6	[6	ns	VGS(off) = -12 V, RL = 143	3 Ω (2N5433) Ω (2N5434
6		tę	Fall Time		30		30	·····	30		LD(on) = 10 mA 140 12 (2N	

3-35

"JEDEC registered data.

NOTES:

1. Derate linearly at the rate of 2.3 mW/°C.

2. Pulse test required pulsewidth 300 μ s, duty cycle \leq 3%.

SAMPLING SCOPE RISE TIME 0.4 ns INPUT RESISTANCE 10 M

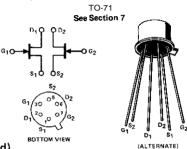
NIP

Siliconix

Siliconix

ង matched dual n-channel JFETs g designed for . . .

Low and Medium Frequency Differential Amplifiers


	'ABSOLUTE MAX	KIMUM RATINGS (25°C)	
		e Voltage.	. +100 V
		e-Source Voltage	
		age	
	Gate Current	-	. 50 mA
	Total Device Dissip	pation 85° (Each Side)	250 mW
ļ		re (Both Sides)	
ļ		Each Side)	
		(Both Sides) 4.3	
		ure Range	
	Lead Temperature	(1116" from case for 10 seconds) .	300°C

Performance Curves NFA See Section 5

BENEFITS

- Minimum System Error and Calibration
 - 5 mV Offset Maximum (2N5452)
- Simplifies Amplifier Design Output Conductance Less that 1 μmho

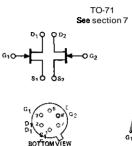
*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

—				2N5	5452	2N	5453	2N	5454		Taut Candidian	
_			acteristic	Min	Max	Min	Мах	Min	Max	Unit	Test Conditions	
1		IGSS	Gate Reverse Current		-100		-100		-100	pА	V _{GS} = -30 V, V _{DS} = 0 V	
2		GSS			-200		-200		-200	nA	VGS30 V, VDS - 0 V	T _A = 150°C
3	S T	BVGSS	Gate-Source Breakdown Voltage	-50		-50		-50			$V_{DS} = 0 V, 1_G = -1 \mu A$	
4	A T	VGS(off)	Gate-Source Cutoff Voltage	-1	-4.5	-1	-4.5	-1	-4.5	v	V _{DS} = 20 V, 1 _D = 1 nA	
5	ċ	VGS	Gate-Source Voltage	-0.2	-4.2	-0.2	-4.2	-0.2	-4.2		V _{DS} = 20 V, i _D = 50 μA	
6		VGS(f)	Gate-Source Forward Voltage		2		2		2		V _{DS} = 0 V, i _G = 1 mA	
7		IDSS	Drain Saturation Current	0.5	5.0	0.5	5.0	0.5	5.0	mΑ	V _{DS} = 20 V, V _{GS} = 0 V	-
8		9fs	Common-Source Forward	1000	3000	1000	3000	1000	3000			f – 1 kHz
9		313	Transconductance	1000		1000		1000		umho	V _{DS} = 20 V, V _{GS} = 0 V	f = 100 MHz
10		gos	Common-Source Output Conductance		3.0		3.0		3.0			f=1kHz
	D				1.0		1.0		1.0		V _{DS} = 20 V, i _D = 200 μA	
12	Y N	Ciss	Common-Source Input Capacitance		4.0		4.0		4,0		V _{DS} = 20 V, V _{GS} = 0 V	
13	A M	Crss	Common-Source Reverse Transfer Capacitance		1.2		1.2		1.2	pF		f=1MHz
14		Cdgo	Drain-Gate Capacitance		1.5		1.5		1.5		V _{DG} = 10 V, I _S = 0 V	
15		ē _n	Equivalent Short Circuit Input Noise Voltage		20		20		20	<u>nV</u> ⊮Hz	V _{DS} = 20 V, V _{GS} = 0 V	f=1kHz
16		NF	Common-Source Spot Noise Figure		0.5		0.5		0.5	dB	V _{DS} = 20 V, V _{GS} = 0 V, B _G = 10 MΩ	f = 100 Hz
17		IDSS1/IDSS2	Drain Saturation Current Ratio (Note 1)	0.95	1.0	0.95	1.0	0.95	1.0	-	V _{DS} = 20 V, V _{GS} = 0 V	
18	M	NGS1-VGS2	Differential Gate-Source Voltage		5.0		10.0		15.0			
19	т	a.h.e 1.e 1	Gate-Source Voltage		0.4		0.8		2.0	mV		T ≈ 25°C to -55°C
20	C H	∆lVGS1-VGS2	Differential Change with Temperature		0.5		1.0		2.5		$V_{DS} = 20 V, I_D = 200 \mu A$	T = 25°C to +125°C
21	I N G	gfs1/gfs2	Transconductance Ratio (Note 1)	0.97	1.0	0.97	1.0	0.95	1.0	-		f = 1 kHz
22		^{lg} os1 ^{-g} os2 ^l	Differential Output Conductance		0.25		0.25		0.25	¦µmhos∣	- 1991 - 2 4 1991	
*J	ED	EC registered data	NOTE: 1. Assumes smaller value in	numera	itor.							NFA

© 1979 Siliconix incorporated

matched dual n-channel JFETs designed for . . .

Differential Amplifiers


*ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage
Device Dissipation (Each Side). $T_A = 85^{\circ}C$
······
Total Device Dissipation, T _A = 85°C
(Derate 3.0 mW/°C)
Storage Temperature Range
Lead Temperature
(1/16" from case for 30 seconds)

Silizanix.

Performance Curves NS See Section 5

BENEFITS

- Ultra-Low Noise
 - $\overline{e}_n = 8 \text{ nV} \sqrt{\text{Hz}}$ at 10 Hz (Typical) $\overline{e}_n = 2 \text{ nV} \sqrt{\text{Hz}}$ at 1 kHz (Typical)
- Minimum System Error and Calibration 5 mV Offset Maximum CMRR > 100 dB

(ALTERNATE)

*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic						Min		Max	U	nit			Test Conditions
		IGSS	Gate Reverse Current							1-	250	p.	A	Vec -	30 V, V _{DS} = 0	
2	s									-	250	n.	Α			150°C
1	Ť	BVGSS	Gate-Source Breakdow		age			1	-40						uA, V _{DS} = 0	······
	÷.	VGS(off)	Gate-Source Cutoff Vo	oitage					-0.7		-4	۱ I	۷ (V _{DS} = 2	0 V, † <u>D</u> = 1 nA	
4		VGS	Gate Source Voltage					+	-0.2		-3.8					····
5	c	IG	Gate Operating Curren	t				-		-	100	9 n		VDG - 2	20 V, I _D = 200 μA	125°C
	1	DSS	Saturation Drain Curre	ent (No	ote 1)		••••	-	0.5	1	7.5		1A	Vos = 2	0 V, V _{GS} = 0	
3		9fs	Common-Source Forw (Note 1)	ard Tr	anscon	ducta	nce		1000	4	4000 1000			V _{DS} = 20 V, V _{GS} = 0		
9		9fs	Common-Source Forw (Note 1)	ard Tr	anscon	ducta	nce		500	1			nha	VDG = 2	20 V, ID = 200 μA	f=1 kHz
)	۲I	9os	Common-Source Output Conductance					10	1	ľ	VDS = 2	0 V, VGS = 0	7			
t	N	9os	Common-Source Outp	ut Cor	ductar	1C6				1	1	1	ľ		20 V, ID = 200 μA	1
2	M	Ciss	Common-Source Input	Capad	itance					T	25	1		Vees		4 - 1 Mile
3	Crss Common-Source Reverse Transfer Capacitance			T	5	1'	۶F	V _{DS} = 20 V. V _{GS} = 0		f = 1 MHz						
4		ē,	Equivalent Short Circuit Input 2N5				15515-1 15520-2				30 15	Ļ	<u>1V</u> Hz	Vng = 2	20 V, Ip = 200 µA	f = 10 Hz
			Noise Voltage			21	5515-2	4		1	10		Hz			f - 1 kHz
	20				15,20	2N55	516,21	2N55	517,22	2N55	18,23	2N55	519,2	4		
	Characteristic			Min	Max	-	Max		Max	Min	Max	Min	Max	Unit		Test Conditions
Ţ		1G1-1G2	Differential Gate Current		10		10		10		10		10	n۸	VDG = 20 V, 1D = 200 µA	125°C
5		DSS1 DSS2	Saturation Drain Current Ratio (Notes 1 and 2)	0.95	1	0.95	1	0.95	1	0.95	1	0.90	1	-	V _{DS} - 20 V, V _G	S = 0
·	м	VGS1-VGS2	Differential Gate- Source Voltage		5		5		10		15		15	mV		· · · · · · · · · · · · · · · · · · ·
ł	Ŷ		Gate-Source Voltage		5		10		20		40		80	1		T _A = 25°C T _B = 125°C
ł	C H I		Differential Drift (Note 3)	<u>├</u> ──	5		10		20		40		80	-μv/°c	V _{DG} = 20 V,	TA = -55°C
Ļ	N						┝─┤								ID = 200 µA	T _B ≂ 25°C
1	G	gos1-gos2'	Differential Output Conductance		0.1		0.1		0.1		0.1		0.1	µmho		f=1 kHz
		9ts1 9fs2	Transconductance Ratio (Notes 1 and 2)	0.97	1	0.97	1	0.95	1	0.95	1	0,90	۱			
		CMRR	Common Mode Rejection Ratio (Note 4)	100		100		90						dB	V _{DD} = 10 to 20 I _D = 200 µA	V.
01 P	TES 'ulse		Isewidth = $300 \mu s$, duty	cycle	≤ 3% .	3	Measu CMRF	red a R = 20	t end p Xog10	$\left(\frac{1}{\Delta V}\right)$	T _{A an} ∆V _{DD} GS1− ¹	d _{TB}). △	V _{DD =} 10		NS

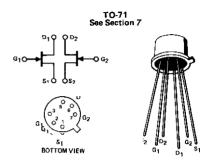
Siliconix

monolithic dual n-channel JFETs designed for ...

General Purpose Differential Amplifiers

'ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage	
Device Dissipation (Each Side), $T_A = 25^{\circ}C$	
(Derate 1.67 mW/°C) 250 mW	
Total Device Dissipation, $T_A = 25^{\circ}C$	
(Derate 2.67 mW/°C)	
Storage Temperature Range	
Lead Temperature	
(1/16" from case for 30 seconds)	


Beef Greation e5 Curves NNP

Sili

BENEFITS


- High Input Impedance I_G < 50 pA
- Minimum System Error and Calibration

5 mV Offset Maximum (2N5545)

'ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic				Min	Ma	ax	Unit	Test	Conditions	
1		1	0					-1	00	pА			1
2 3 4 5 6 7 8 9	s	IGSS	Gate Reverse Current					-1	50	nA	VGS = -30 V.	VDS = 0	Τд = 156
3	T	BVGSS	Gate-Source Breakdown Volta	ge			-50			v	I _G = -1 μΑ, V	DS = 0	
ŀ	Т	VGS(off)	Gate-Source Cutoff Voltage				-0.5	-4	.5	v	V _{DS} = 15 V,		
	c	1G	Gate Operating Current						50	pА	V _{DG} = 15 V,	t _D = 200 μA	
	Ŭ.	IDSS	Saturation Drain Current				0.5		8	mA	V _{DS} ≈ 15 V, V	/ _{GS} = 0	
		9fs	Common-Source Forward Tra	nsconduc	tance		1500	60	00	μmho			f=1kH
l	D	gos	Common-Source Output Cond	uctance				:	25	, o	V _{DS} ≠ 15 V, V	/cc = 0	
	Y	Ciss	Common-Source Input Capaci	tance					6		105 101	-05 -	f≈1 MH
	N A	Crss	Common-Source Reverse Tran	sfer Çapa				2	рF				
ļ	м	NE	Spot Noise Figure					3	.5	dB		2N5545	f = 10 H
	L C						1	5		V _{DG} ≃ 15 V,		R _G = 1 MΩ	
		ēn	Equivalent Short Circuit Input	Noise Voltage					30	<u>nV</u>	I _D = 200 μA	h	f = 10 H
1						, <u> </u>		20	10	<mark>r∕</mark> Hz		2N5546	
Characteristic					545	2N5	546	2N5	6547	Unit	Tore	Conditions	
				Min	Max	Min	Max	Min	Max	Unit	1 650	Conditions	
I		IG1-IG2	Differential Gate Current		5		5		5	nA	V _{DG} = 15 V,	I _D = 200 μA	T _A = 12
		DSS1	Saturation Drain Current	0.95	1			0.00					
		IDSS2	Ratio (Note 1)	0.95 1		0.90	1	0.90	1	-	V _{DS} = 15 V, V _{GS} = 0		
l	м	hen verst	Differential Gate-Source	5			10		15	mV	15.1		1 _D = 50
Į	Α	VGS1-VGS2	Voltage		5		10		15	1 ^m v	V _{DG} = 15 V		ID = 200
	т С					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			40				$T_A = 2$
		AlVest-Vesal	2 Gate-Source Voitage		10		20		40	µv/°c			T _B = 12
	н						····	<u> </u>		μv/ C			
	1	ΔΤ	Differential Drift (Note 2)		10				40				
;					10		20		40		VD0 - 15 V	$i_{\rm D} = 200 a_{\rm D}$	T _B = 2
	I N			0.07		0.05					V _{DG} = 15 V,	i _D = 200 μA	$T_B = 2$
	I N	ΔΤ	Differential Drift (Note 2)	0.97	10 1	0.95	20 1	0.90	40 1	_	V _{DG} = 15 V,	i _D = 200 μA	T _B = 2
	I N	ΔT 9fs1	Differential Drift (Note 2) Transconductance Ratio	0.97		0.95		0.90	1	_ μmho	• V _{DG} = 15 V,	i _D = 200 μA	T _B = 2
	I N G	ΔT 9fs1 9fs2	Differential Drift (Note 2) Transconductance Ratio (Note 1) Differential Output	0,97	1	0.95	1	0.90	1	– µmho	V _{DG} = 15 V,	i _D = 200 μA	$T_{A} = -5t$ $T_{B} = 2t$ $f = 1 \text{ kH}$ NNP

			Block Andrea	2115	1556	2N5	557	2N5	5558	Unit	Test Conditio		
			Characteristic	Min	Max	Min	Max	Min	Max	Unit	lest Conditio	ns	
1		à	Gate Reverse Current		-0.1		-0.1		-0.1	nA			
2	<u>s</u>	igss	Gate Reverse Current		-100	1	-100		- 100		VGS = -15 V, VDS = 0 V T = 150°		
3	Å	VGS(off)	Gate-Source Cutoff Voltage	-0.2	-4.0	~0.8	5.0	-1.5	-6.0	V	V _{DS} = 15 V, I _D = 1 nA		
4		₿V _{GSS}	Gate-Source Breakdown Voltage	-30		-30		-30		ΙĭΓ	$I_{G} = -10 \ \mu A$, $V_{DS} = 0 \ V$		
5	С	DSS	Saturation Drain Current (Note 2)	0.5	2.5	2.0	5.0	4.0	10.0	mΑ	V _{DG} = 15 V, V _{GS} ≈ 0 V		
6		g _{fs}	Common-Source Forward Transconductance	1500	6500	1500	6500	1500	6500			f=1 kHz	
7	D	g _{O\$}	Common-Source Output Conductance		20		20		20	μmho	V _{DS} = 15 V, V _{GS} = 0 V		
3	Y N	Crss	Common-Source Reverse Transfer Capacitance		3		3		3	pF		f = 1 MH;	
9	M	Ciss	Common-Source Input Capacitance	<u> </u>	6	Ţ.	6	ļ	6] []			
0	c	~	Common-Source Equivalent Short		35		35		35	٥V		f = 10 Hz	
1		е ^р	Circuit Input Noise Voltage		20		20		20			f = 100 H	
2		NE			1		1				V _{DS} = 15 V, V _{GS} = 0 V,	f = 10 Hz	
3	INF	Noise Figure		1		1			dB	BW = 1.0 Hz	f = 100 H		

*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted!

*JEDEC registered data

NOTES:

1. Geometry is symmetrical. Units may be operated with source and drain leads interchanged.

Pulse test duration ≤ 2 ms.

Siliconix

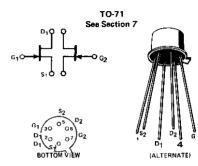
NRL

matched dual n-channel JFETs designed for . . .

Wideband Differential Amplifiers

Commutators

'ABSOLUTE MAXIMUM RATINGS (25°C)


Gate-Gate Voltage i 80 V
Gate-Drain or Gate-Source Voltage40 V
Gate Current 50 mA
Device Dissipation (Each Side), $T_A = 25^{\circ}C$
(Derate 2.2 mW/°C) 325 mW
Total Device Dissipation, $T_A = 25^{\circ}C$
(Derate 3.3 mW/°C) 650 mW
Storage Temperature Range
Lead Temperature
(1/16" from case for 10 seconds)

Performance Curves NC See Section 5

Siliconix

BENEFITS

- High Gain
 7500 μmho Minimum g_{fs}
- Specified Matching Characteristics

"ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic				Min	Ma	×	Unit	Test Conditions		
1		IGSS	Gate-Reverse Current					-1	00	pА			
2 3	s	-655	Gate-Neverse Current			Γ		-2	00	nΑ	V _{GS} = -20 V, V _{DS} = 0	150°C	
	Ť	BVGSS	Gate-Source Breakdown Volta	ige			-40		-3		$i_{G} = -1 \mu A, V_{DS} = 0$		
4	Ą	VGS(off)	Gate-Source Cutoff Voltage				-0.5				V _{DS} = 15 V I _D = 1 nA		
5 6	i	VGS(f)	Gate-Source Voltage						1.0		V _{DS} = 0 V, I _G = 2 mA		
	С	DSS	Saturation Drain Current (No	. ,			5		30	mΑ	V _{DS} = 15 V, V _{GS} = 0	-	
7		^r DS(on)	Static Drain Source ON Resist	ance				1	00	Ω	ID = 1 mA, VGS = 0		
8		9fs	Common Source Forward Tra	nsconduc	tance		7500	12,5	00			f=1kHz	
-	D	91S	(Note 1)				7000			µmho		f = 100 MHz	
9	Y	9 _{OS}	Common-Source Output Conc						45			f=1 kHz	
0	A .	Crss	Common-Source Reverse Tran		citance				3	٥F	V _{DG} = 15 V, I _D = 2 mA	f = 1 MHz	
1	м	Ciss	Common-Source Input Capaci	tance				_	12				
2	ċ	NF	Spot Noise Figure			1	1.0	dB		f = 10 Hz, Rg = 1			
3	Ť	^و ں	Equivalent Short Circuit Input Noise Voltage						50	<u>_n∨</u> ⊮7		f = 10 Hz	
			haracteristics	2N5564		2N	5565	2N5566					
		L	naracteristics	Min	Max	Min	Max	Min Max		Unit	Test Conditions		
4	м	IDSS1 IDSS2	Saturation Drain Current Ratio (Notes 1 and 2)	0.95	1	0.95	1	0.95	1	-	V _{DS} = 15 V, V _{GS} = 0		
5	A T	WGS1-VGS2	Differential Gate-Source Voltage		5		10		20	mV			
6	С Н 1	AIVGS1-VGS2	Gate-Source Voltage		10		25		50	μV/		$T_{A} = 25^{\circ}C$ $T_{B} = 125^{\circ}C$ $T_{A} = -65^{\circ}C$	
`	N G	ΔΤ	Differential Drift (Note 3)		10		25		50	°c	V _{DS} = 15 V, I _D = 2 mA	T _A = -55°C T _B = 25°C	
7		9fs1 9fs2	Transconductance Ratio (Notes 1 and 2)	0.95	1	0.90	1	0.90	1	-	f	f = 1 kHz	

*JEDEC registered data.

NOTES.

Siliconix

1. Pulse test required, pulse width 300 $\mu s,$ duty cycle \leq 3%.

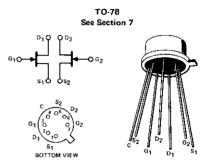
2 Assumes smaller value in numerator.

3. Measured at ends points, $T_{\mbox{\scriptsize A}}$ and $T_{\mbox{\scriptsize B}}$

NC

A Siliconix

matched dual n-channel JFETs designed for .


Differential Amplifiers **High Input Impedance** Amplifiers

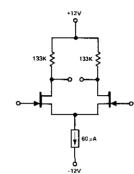
*ABSOLUTE MAXIMUM RATINGS (25°C)
Gate-to-Gate Voltage ±80 V
Gate-Drain or Gate-Source Voltage,
Gate Current
Device Dissipation (Each Side). $T_A = 25^{\circ}C$
(Derate 3 mW/°C) 367 mW
Total Device Dissipation, T _A = 25°C
(Derate 4 mW/°C) 500 mW
Storage Temperature Range

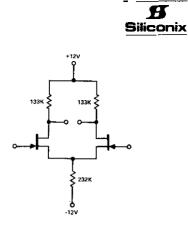
Performance Curves NT See Section 5

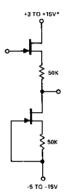
BENEFITS

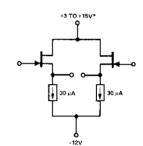
- Matching Characteristics Specified
- High Input Impedance $I_G = 1 pA Max (2N5906-9)$

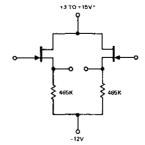
'ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

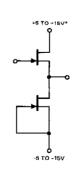

			2	N5902	-5	2N5	906-9	<u> </u>	nit				Test Conditions	
		Characteristic	M	in I	Max	Min	Max		na					
	1	<u> </u>			-5		-2		A		10 14 14	0		
S T	'GSS	Gate Reverse Current			-10		-5	,	iΑ	⊻GS =	-20 V. V	<u>05</u> =0	125°C	
]Ť[BVGSS	Gate-Source Breakdown Voltage	-4	0		-40					μA, V _{DS}			
ļ,	VGS(off)	Gate-Source Cutoff Voltage	-0.	6 -	4.5	-0.6	-4.5		νE	VDS ≕	10 V. I _D	= 1 nA		
]:	VGS	Gate Source Voltage			-4		-4							
]C	IG	Gate Operating Current			-3		-1	1	A	VDG *	10 V, ID	≃ 30 μA		
1	.0	opto operating content	[-3		-1		A				125°C	
	DSS	Saturation Drain Current	3	0	500	30	500	1	A					
	9fs	Common Source Forward Transconductance	7	0	250	70	250		nho				f = 1 kHz	
	9 _{OS}	Common-Source Output Conductance			5		5		'	VDS =	10 V, VG	s = 0		
]_	Ciss	Common-Source Input Capacitance			3		3		٦,					
- P N	C _{rss}	Common-Source Reverse Transfer Capacitance			1.5		1.5		5F				f = 1 MHz	
A M I	9fs	Common-Source Forward Transconductance	5	0	150	50	150	μ	nho	VDG = 10 V, ID = 30 µA		= 30 µA		
	gos	Common Source Output Conductance			1		1						f≌1kHz	
	ēn	Equivalent Short Circuit Input Noise Voltage			0.2		0.1		HZ HZ					
	NF	Spot Noise Figure		+	3		1	1	dB	VDS ≕	VDS = 10 V, VGS = 0		f = 100 Hz, RG = 10 M	
			2N59	2N5902, 6 2N5		03, 7	2N59	04, B	2N59	905, 9				
		Characteristic			Min	Мах	Min	Max	Min	Max	Unit		Test Conditions	
T				2.0	1	2.0		2.0		2.0		V _{DG} = 10 V,	2N5902-5	
	1G1-IG2	Differential Gate Current			I	-					nA	l _D = 30 μA,	2N5906-9	
1				0.2		0.2		0.2	L	0.2	1	T _A = 125°C	2140300-3	
M	IDSS1 IDSS2	Saturation Drain Current Ratio (Note 1)	0.95	1	0.95	1	0.95	1	0.95	,	-	V _{DS} = 10 V,	VGS = 0	
	94s1 9fs2	Transconductance Ratio (Note 1)	0.97	1	0.97	1	0.95	1	0.95	1	-		f = 1 kHz	
ㅓ!	NGS1-VG	52 Differential Gate Source Voltage		5	†	5		10	1	15	mV		· · · · · ·	
N G		GS2 Gate-Source Voltage Differential		5		10		20	 	40		VDG = 10 V, 1 _D = 30 µA	$T_A = 25^{\circ}C$ 1B = 125°C	
1		Drift (Note 2)		5		10		20	[40	µv/°c		$T_A = -55^{\circ}C$ $T_B = 25^{\circ}C$	
1	9051-9052	 I	·	0.2	1	02	-	0.2		0.2	μmho		f = 1 kHz	
JEDE OTE	C registered o			L <u>v</u> ,z		1.02	I	0.2	I	<u> U.Z</u>	Auruo	L	N1	

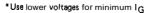

3


Siliconix


Assumes smaller value in numerator 2. Measured at end points, TA and TB


APPLICATIONS





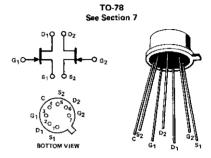
Siliconix

matched dual n-channel JFETs designed for. ...

Wideband Differential Amplifiers

*ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-to-Gate Voltage ±80 V
Gate-Drain or Gate-Source Voltage
Gate Current 50 mA
Device Dissipation (Each Side), (Derate 3 mW/°C). 367 mW
Total Device Dissipation, (Derate 4 mW/°C) 500 mW
Storage Temperature Range
Lead Temperature
(1/16" from case for 10 seconds)



2N5911 2N5912

Performance Curves NZF See Section 5

BENEFITS

- High Gain through 100 MHz $g_{fs} > 5000 \,\mu mho$
- Matching Characteristics Specified

'ELECTRICAL CHARACTERISTICS (25° unless otherwise noted)

		Characteristic			Min	Max	Unit	Test Conditions	
1	GSS	Gate Reverse Current				-100	рА	N 15 N N 0	
2	GSS	Gate Reverse Current				-250	пA	V _{GS} = -15 V, V _{DS} = 0	T _A = 150
3 <u>s</u>	BVGSS	Gate-Source Breakdown Voltage			-25			IG = -1 μΑ, V _{DS} = 0	
2 3 S 4 A 5 T	VGS(off)	Gate-Source Cutoff Voltage			-1	-5	_ v	V _{DS} = 10 V, I _D = 1 nA	
5 T	VGS	Gate-Source Voltage			-0.3	-4			
6 C	IG	Gate Operating Current				-100	рА	V _{DG} = 10 V, 1 _D = 5 mA	
1						-100	n.A.	<u> </u>	T _A = 12
7	IDSS Saturation Drain Current (Note 1)				7	40	mA	V _{DS} = 10 V, V _{GS} = 0 V	
3	9fs	Common-Source Forward Transcond	luctance		5000	10,000			f=1kHz
	9fs	Common-Source Forward Transcond	luctance		5000	10,000			f = 100 N
<u>ם</u> ב	90s	Common-Source Output Conductant				100			f=1 kHz
ปีมั	Y g _{os} Common-Source Output Conductance N Ciss Common-Source Input Capacitance					150			f = 100 N
2						5	oF	V _{DG} = 10 V, I _D = 5 mA	f = 1 MH
3 M	M Crss Common-Source Reverse Transfer Ca		apacitanc	e		1.2			
4 C	C Equivalent Short Circuit Input Noise	e Voltage			20	<u>nV</u> ∕Hz		f = 10 kH	
5	NF	Spot Noise Figure				1	dB		f = 10 kH RG = 100
		Characteristic	2N5911		2N	5912	Unit	Test Conditions	
			Min	Max	Min	Max			
6	IG1-IG2	Differential Gate Current		20	<u> </u>	20	nA	V _{DG} = 10 V, I _D = 5 mA	T _A = 12
	IDSS1 IDSS2	Saturation Drain Current Ratio (Notes 1 and 2)	0.95	1	0.95	1	-	V _{DS} = 10 V, V _{GS} = 0	
7 м		the second s				15	mν		Τ
7 M	VGS1-VGS2	Differential Gate-Source Voltage		10	1				
		· · · · · · · · · · · · · · · · · · ·		10 20		40			$T_A = 2t$ $T_R = 125$
M A B T C	$\frac{\Delta V_{GS1} - V_{GS2} }{\Delta T}$	• <u> </u>				40	μ ∨ /⁰C	V _{DG} = 10 V, I _D = 5 mA	$T_A = 25$ $T_B = 125$ $T_A = -55$ $T_B = 25$
MATCHIN	ΔIVGS1-VGS2I	Gate-Source Voltage Differential	0.95	20	0.95	-	μν/°c −	V _{DG} = 10 V, I _D = 5 mA	$T_A = 2!$ $T_B = 12!$ $T_A = -5!$ $T_B = 2!$ f = 1 kH.

NOTES:

1. Pulsewidth \leq 300 μ s, duty cycle \leq 3%. 2. Assumes smaller value in numerator.

3. Measured at end points, TA and TB.

N163

enhancement-type **p-channel MOSFETs** designed for...

■ Ultra-High Input Impedance Amplifiers

> **Electrometers Smoke Detectors pH** Meters

Digital Switching Interfaces **Analog Switching**

*ABSOLUTE MAXIMUM RATINGS (25°C)

Drain-Source or Gate-Source Voltage 31\11	-40 V
Drain-Source or Gate-Source Voltage 3N164	-30 V
Transient Gate-Source Voltage (Note 1)	±150 V
Drain Current	-50 mA
Storage Temperature	o +200° C
Operating Junction Temperature55 to	o +150° C
Total Device Dissipation	
(Derate 3.0 mW/°C to 150°C)	375 mW
Lead Temperature 1116" From Case For 10 Seconds	265°C

Performance Curves MRA See Section 5

BENEFITS

- Rugged MOS Gate Minimizes Handling Problems
 - ±150 V Transient Capability
- Low Gate-Leakage Typically 0.02 pA
- High Off-Isolation as a Switch $I_{DSS} < 200 \, pA$

TO-72 See Section 7

Silidanix

*ELECTRICAL CHARACTERISTICS (25°C and VBS = 0 unless otherwise noted)

			Characteristic	3N	163	<u>3N</u> 1	164	Unit	Test Conditions	
			Citaracteristic	Min	Max	Min	Max	Unit		
1					-10 -25	· · · · ·			$V_{GS} = -40 V, V_{DS} = 0$ $T_A = 126'$	
3		IGSS	Gate-Body Leakage Current				-10	PΑ	V _{GS} = -30 V, V _{DS} = 0	
4							-25		VGS30 V, VDS - 0 T _A = 125°	
5	s	BVDSS	Drain-Source Breakdown Voltage	-40		-30			I _D = -10 μA, V _{GS} = 0	
6	Ţ	BVSDS	Source-Drain Breakdown Voltage	-40		-30			I _S = -10 μA, V _{GD} = V _{BD} = 0	
7	^	VGS	Gate Source Voltage	-3	-6.5	-2.5	-6.5	v	V _{DS} = -15 V, I _D = -0,5 mA	
8	1	VGS(th)	Gate-Source Threshold Voltage	-2	-5	-2	-5	-5	V _{DS} = V _{GS} , I _D ⇒ -10 µA	
9 C	С	¹ DSS	Drain Cutoff Current		-200		-400	- 4	V _{DS} = -15 V, V _{GS} = 0	
10		ISDS	Source Cutoff Current		-400		-800	рА	$V_{SD} = -20 V, V_{GD} = 0, V_{DB} = 0$	
11		ID(on)	ON Drain Current	-5	-30	-3	-30	mA	V _{DS} = -15 V, V _{GS} = -10 V	
12		^r DS{on}	Drain-Source ON Resistance		250		300	Ω	V _{GS} = -20 V, I _D = -100 μA	
	DY	9fs	Common-Source Forward Transconductance	2,000	4,000	1,000	4,000	µmho	V _{DS} = -15 V, f = 1 kHz	
14	N	9 ₀₅	Common-Source Output Conductance		250		250	_	l _D = -10 mA	
15	Â	C _{iss}	Common-Source Input Capacitance		2.5		2,5		V _{DS} ≖ -15 V, I _D = -10 mA f = 1 MHz	
16	i c	Crss	Common-Source Reverse Transfer Capacitance		0,7		0.7	рF		
17	~	Coss	Common-Source Output Capacitance		3		3			
18	s	^t d(on)	Turn-ON Delay Time		12		12		V _{DD} = -15 V	
19	w	۲	Rise Time	L	24		24	115	ID(on) = -10 mA	
20		toff	Turn-OFF Time		50		50		$R_G = R_L = 1.5 \text{ k}\Omega$	
DEC	reg	gistered o	data			Voo			M	
TE: Trans	sier	nt gate-s	ource voltage JEDEC registered as ±	125 V .	Vince		⁴ ∟ ⊸ ^v out		LSE SAMPLING SCOPE E ≪2 ns L< 0.2 ns	

Siroonix

© 1979 Siliconix incorporated

MO

current regulator diodes Siliconix **Performance** Curves designed for . . . NKL NKM NKO See Section 5 Current Regulation BENEFITS Simple Two Lead Current Source Current Limiting • Current Insensitive to Temperature Changes Biasing Temperature Coefficient Better Than 1500 ppm/°C On All Devices • TO-18 Package for Improved Current Control Simplifies Floating Current Sources No Power Supplies Required **TO**18 ABSOLUTE MAXIMUM RATINGS (25°C) See Section 7 C. CA

NOTES

1. Pulse test - steady state currents may vary.

2. Pulse test - steady state impedances may vary

Min V μ required to insure $1\rho > 0.8$ [F3(min)-Max V ρ where $1\rho < 1.1$ [F1(max) is guaranteed

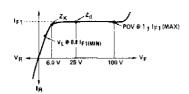
Ħ

Low Voltage References

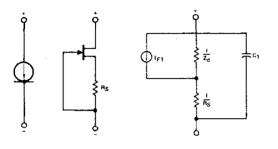
		· /	
Peak Operating Volta	age		100∨
Forward Current			20 m A
Reverse Current , .			
Thermal Resistance	θ _{JC}		. 100°C/W
Power Dissipation at	t TC = 25°C		, 1.25 W
Operating Junction	Temperature	<i></i> 55 t	to +150°C
Storage Temperature	θ	, . , , , , <i>-5</i> 5 t	to +200°C

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

Symbol		ÌF1		Z	d	ZI ZI	κ.	v	ι	POV		⁴ 1		1
Parameter	Regu	ator C	irrent	Dynamic I	mpedance	Kriee Im	pedance	Limitin	g Voltage	Peak Operating Voltage	T	imperature Coefficie	nt	6
	v	r = 25	v	V ⊨ ≐	25 V			fc = 0.1	BIF1(Mia)	IF = 1.1 F1(Max)	VF = 25 V	V = = 25 V	V _F = 25 V	Ē
Test Conditions		Note 1)	(Not	te 2)	VF-	6 V		ate 3)	(Note 4)	-55°C < T _A < 25°C	$0^{\circ}C \le T_{A} \le 60^{\circ}C$	$25^{\circ}C \le T_{A} \le 125^{\circ}C$] 0
		(mA)	-	M	Ω	M	u	Va	lits.	Min Volts	Typ ppm/°C	Typ ppm/°C	Typ ppm/°C	M
Units	Nom	Min	Max	Min	Түр	Min	Түр	Max	Тур		Typ ppm/ C	Typ ppm/ C	Typ ppile C	
CR022	0.22	0.198	0.242	13.0	16.0	2.75	3.6	1.0	0.40	100	+1350	+1050	+750	
CR024	0.24	0.216	0.264	10.0	14.0	2.35	3.0	1.0	0.45	100	+1200	+900	+600	
CR027	0.27	0.243	0.297) <u>9.0</u>)	13.0	1.95	2.8	1.0	0.50	100	+1000	+700	+400	1
CR030	0.30	0.270	0.330	B.0	12.0	1,60	2.5	1.0	0.55	100	+800	+500	+200	
CR033	0.33	0.297		6.6	11.0	1.35	2.2	1.0	0.60	100	+600	+300	50	N K
CR039	0.39	0.351	0.429	4.10	9,5	1.00	1.90	1.05	0.70	100	+300	+50	-300	lî.
CR043	0.43	0.387	0.473	3.30	8.6	0.87	1.65	1.05	0.78	100	+150	-150	-450	-
CR047	0.47	0.423	0.517	2.70	8.0	0.75	1.50	1.10	0.85	100	50	300	-600	1
CR056	0.56	0.504	0.616	1.90	6.5	0.56	1.25	1.20	0.98	100	-300	-600	-900	1
CR052	0.62	0.558		1.55	6.2	0.47	1.15	1.30	1.10	100	-500	- 800	-1100	Ι.
CR068	0.68	0.612	0.748	1.35	8.5	0.400	1.70	1.15	0.70	100	+850	+400	-50	<u> </u>
CR075	0.75	0.675	0.825	1,15	7.2	0.335	1.50	1.20	0.75	100	+650	+200	-250	1
CR082	0.82	0.738	0.902	1.00	6.0	0.290	1.30	1.25	0.80	100	+450	+50	-450	
CR091	0.91	0.819	1.001	0.88	5.2	0.240	1.10	1.29	0.85	100	+300	-150	-600	
CFI100	1.00	0.900	1.100	0.BO	4.4	0.205	0.95	1.35	0.95	100	+150	-300	-750	N K
CR110	1.10	0.990	1.210	0.70	3.8	0.180	0.80	1.40	1.05	100	+50	-450	-900	۱ĥ.
CR120	1.20	1.08	1.32	0,64	3.3	0.155	0.71	1.45	1.15	100	150	-600	-1050	1
CB130	1,30	1.17	1.43	0.68	3.2	0.135	0.60	1.50	1.25	100	-300	-750	1200	1
CFI140	1.40	1.26	1.54	0.54	2.5	0.115	0.52	1.55	1.30	100	-400	-860	-1300	
CR150	1.50	1.35	1.65	0.51	2.2	0.105	0.46	1.60	1.35	100	-500	-950	-1400	
CR160	1.60	1.44	1.76	0.475	1.00	0.092	0.35	1.65	0.50	100	+650	+350	+50	
CFI180	1.80	1.62	1.98	0.420	0.95	0.074	0.30	1.75	0.65	100	+500	+200	- 100	1
CH200	2.00	1.80	2.20	0.395	0.88	0.061	0.25	1.85	0.60	100	+350	+50	-250	
CR220	2.20	1.98	2.42	0.370	0.80	0.052	0.22	1.96	0.65	100	+200	-100	- 350	Į –
CR240	2,40	2.16	2.64	0.345	0,75	0.044	0.20	2.00	0.70	100	+50	-200	-450	N
CFI270	2,70	2.43	2.97	0,320	0.68	0.035	0.18	2.15	0.75	100	100	-300	~550	K
CR300	3.00	2.70	3.30	0.300	0.60	0.029	0.14	2.25	0.85	100	-250	-450	-700	0
CH330	3.30		3.63	0.280	0.56	0.024	0.13	2.35	0.90	100	-400	-600	- 800	1
CR360	3.60	3.24	3.96	0.265	0.52	0.020	0.11	2.50	0.95	100	-550	-750	-900	
CR390	3.90		4.29	0.255	0.48	0.017	0.10	2.60	1.00	100	-700	-850	-1000	
CFI430	4.30	3.87	4.73	0.245	0,45	0.014	0.09	2.75	1.10	100	-850	-950	-1100	1
CR470	4.70	4.23	6.17	0.235	0.40	0.012	0.08	2.90	1.40	100	-1000	-1100	-1200	

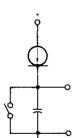

3-45

- -

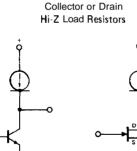

NKL. NKM. NKO

Siliconix

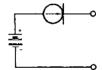
EQUIVALENT CIRCUIT


SYMBOLS AND DEFINITIONS

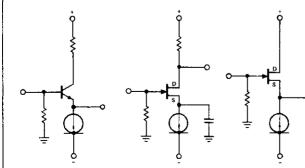
- А Anode (Drain)
- Cathode (Source and Gate Shorted) С
- ١F Forward Current (Anode Positive)
- Current at a rpecified Test Voltage. VF E1
- POV Peak Operating Voltage
- $\frac{\theta_1}{\theta_1}$ **Current Temperature Coefficient**
 - Thermal Resistance Junction to Care
- Thermal Resistance Junction to Ambient $\theta_{.|\mathbf{A}}$
- Knee AC Impedance at rpecified VF. ZK should Ζĸ be as high as possible and is rpecified as a minimum.
- Dynamic Impedance at rpecified VF. Zd is speci-Zd fied as a minimum.

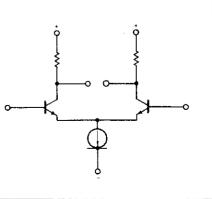

APPLICATIONS

The current-limiter diode is the electrical dual of the Zener diode.


Constant-Current **Timing Circuits**

4




Constant-Current Supply or Current-Limiting Element

Emitter or Source Biasing

enhancement-type Silicenix p-channel MOSFET Performance Curves MRA designed for ... See Section 5 High-Input BENEFITS **Impedance** Amplifiers High Input Impedance IGSS = 30 Femto Amp Typical **Smoke Detectors** High Gain gfs ≠ 1000 µmho Minimum Electrometers **pH Meters** ABSOLUTE MAXIMUM RATINGS (25°C) TO-18 Gate-Source Voltage±10 V See Section 7 Total Device Dissipation at (Or Below) TA = 25°C Operating Junction Temwerature.-55 to +150°C Lead Temperature ELECTRICAL CHARACTERISTICS (25°C) Characteristic Min Max **Test** Conditions Unit ~1.0 ΡA $V_{GS} = -10 V, V_{DS} = 0$ 1 IGSS Gate-Source Leakage Current 2 BVDSS -25 т Drain-Source Breakdown Voltage v $I_D = -10 \,\mu A, V_{GS} = 0$ А 3 VGS Gate-Source Voltage -2.0 --6.0 v $V_{DS} = -10 V$, $I_{D} = -10 \mu A$ т $V_{DS} = -10 V, V_{GS} = 0$ 4 L Drain Cutoff Current -20 лA ^IDSS С 5 **ON Drain Current** -3.0 mΑ $V_{DS} = -10 V, V_{GS} = -10 V$ D(on) 6 Common-Source Forward 1000 μmhos $V_{DS} = -10 V. I_{D} = -2 mA, f = 1 kHz$ 9fs Transconductance Y Ν Common-Source Input 7 Ciss 6.0 Α Capacitance М ρF $V_{DS} = -10 \text{ V}. V_{GS} = -10 \text{ V}. \text{ f} = 1 \text{ MHz}$

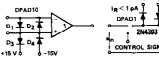
MRA

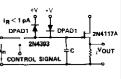
Siliconix

1.5

I.

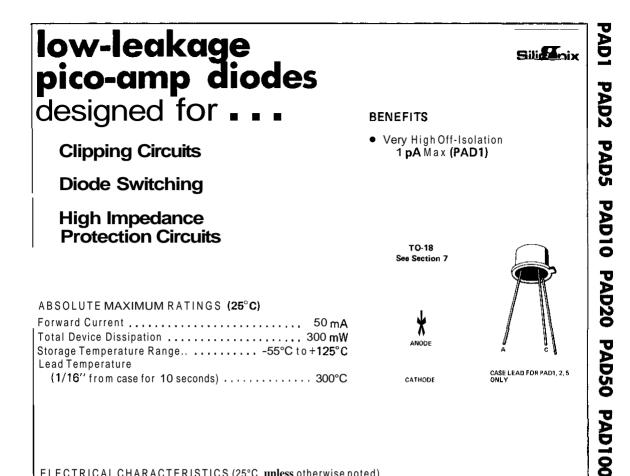
С


Crss

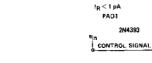

Common-Source Reverse

Transfer Capacitance

			i co al d for.			er	е	BENEFITS • Very High Off	
	C H	Clipping (Diode Sw High Impe Circuits		rot	ect	tior	1	1 pA Max (D • High Isolation I 20 Femto Ar • Matched Capac • Compact Packa T0-71 (Pins 2 and 6 Remove See Section 7	Between Diodes np Typical (DPAD1) itances ging TO-78
For Tota D Stor Lea	wa al)er rad d 1	ard Gate Current Device Dissipatio ate 4.0 mW/°C t	o 125°C Range ,	 <i></i>		. 4 55 to	100 m	W A1 ^{C2} C1	$C_{C}^{C_2} = C_{C}^{C_2}$
ELE	C	TRICAL CHAR	ACTERISTICS (25°C	unle	ss oth	erwis	A1 (C1 BOTTOW VIEW (ALTERNATE) e noted)	A1 (A2
ELE	C	TRICAL CHAR		25°С мім	unle: TYP	ss oth	erwis UNIT	(ALTERNATE) e noted)	AI (2 4) AZ BOTTOM VIEW
ELE	STATIC	CHARACTER						(ALTERNATE) e noted)	
1 2 3 4 5 6	STATI	CHARACTER	ISTIC			MAX -1 -2 -5 -10 -20 -50	UNIT	(ALTERNATE) e noted) TEST CC	DPAD1 DPAD2 DPAD5 DPAD10 DPAD20 DPAD50
1 2 3 4 5 6 7	STATI	CHARACTER	ISTIC : Current	MIN		MAX -1 -2 -5 -10 -20 -50 -100	UNIT	(ALTERNATE) e noted) TEST CC	DPAD1 DPAD2 DPAD5 DPAD5 DPAD10 DPAD20 DPAD50 DPAD100 DPAD1, 2.5
1 2 3 4 5 6 7 8 8 10	STATI	CHARACTER	ISTIC • Current • Breakdown Voltage d Voltage Drop	MIN	TYP	MAX -1 -2 -5 -10 -20 -50 -100 -120 1.5 0.8	UNIT pA V	(ALTERNATE) e noted) $V_R = -20 V$ $I_R = -1 \mu A$ $I_F = 1 m A$	DPAD1 DPAD2 DPAD5 DPAD5 DPAD20 DPAD20 DPAD20 DPAD50 DPAD100 DPAD100 DPAD1, 2.5 DPAD10, 20, 50.100
1 2 3 4 5 6 6 7 7 8 8 10 11 11	STATIC	CHARACTER	ISTIC Current Breakdown Voltage d Voltage Drop ance	MIN	TYP	MAX -1 -2 -5 -10 -20 -50 -100 -120 1.5	UNIT	(ALTERNATE) e noted) $V_R = -20 V$ $I_R = -1 \mu A$	DPAD1 DPAD2 DPAD5 DPAD5 DPAD20 DPAD20 DPAD50 DPAD100 DPAD1, 2.5 DPAD10, 20, 50.100 DPAD1, 2.5.10.20.50.100


Operational Amplifier Protection, Input Differential Voltage limited to 0.8 V (typ) by DPADS D1 and D2 Common mode input voltage limited by DPADS D3 and D₄ to ±15 V.

Typical sample and hold circuit with clipping, DPAD diodes reduce offset voltages fed capacitively from the FET switch gate.


Siliconix

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

Characteristic	Min	Түр	Max	Unit	Test Conditions			
			- 1			PAD1		
			-2			2		
			-5			5		
S IR Reverse current			-10	pΑ	V _R = -20 V	PAD10		
A			-20			20		
т			-50			50		
			-100			PAD100		
	-45		-120			PAD1, 2, 5		
BVR Breakdown Voltage (Reverse)	-35			V V	l _R = -1 μA	PAD10, 20, 50, 100		
VF Forward Voltage Drop		0.8	3,5	L	iF=5mA	PAD1, 2, 5, 10, 20, 50, 100		
			0.8	pF		PAD1, 2, 5		
Y C _R : Capacitance			2	^{pr}	VR = -5 V, f = 1 MHz	PAD10, 20, 50, 100		

3-49

APPLICATION

Operational Amplifier Protection. Input Differential Voltage limited to 0.8 V (typ) by PADS D1 and D2 COMMON mode input voltage limited by PADS D_3 and D_4 to ±15 \vee .

Vout

Typical sample and hold circuit with clipping. PAD diodes reduce

offset voltages fed capacitively from the FET switch gate.

PAD1 2N4393

n-channel JFETs designed for . . .

Siliconix

Seef Geotaboe 5 Curves NC

Analog Switches
 Commutators
 Choppers

BENEFITS

- Low Insertion Loss
 Boo(1) ≤ 50Ω/112
- R_{DS(on)} ≤ 50 Ω (U202) ● Good Off-Isolation I_{D(off)} ≤ 1 nA

TO-18 See Section 7

ABSOLUTE MAXIMUM RATINGS (25°C)
Gate-Drain or Gate-Source Voltage
Storage Temperature Range
(1/16" from case for 10 seconds)

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

				U2	00	U2	:01	່ ປ2	02				
			Characteristic	Min	Max	Min	Max	Min	Max	Unit	Test Conditions		
1			6 8	1	-1		-1		-1	nA			
2		IGSS	Gate Reverse Current		-1		-1		-1	μA	VGS = -20 V, VDS = 0	150°C	
3	S T	BVGSS	Gate-Source Breakdown Voltage	-30		-30		-30		<	IG = -1 μA, V _{DS} = 0		
4	A	VGS(off)	Gate-Source Cutoff Voltage	-0.5	-3	-1.5	-5	-3.5	-10	Ň	V _{DS} = 20 V, I _D = 10 nA		
5			Drain Cutoff Current		1		1		1	nA	V _{DS} = 10 V, V _{GS} = -12 V		
p	С	¹ D(off)	Drain Cutorr Current		1		1		1	μA		150°C	
6		IDSS	Saturation Drain Current (Note 1)	3	25	15	75	30	150	mA	V _{DS} = 20 V, V _{GS} = 0		
7		rds(on)	Drain-Source ON Resistance		150		75		50	ohm	V _{GS} = 0, i _D = 0	f = 1 kHz	
8	D Y	Ciss	Common-Source Input Capacitance (Note 1)		30		30		30	۵F	$V_{\rm DS} = 20 V, V_{\rm GS} = 0$		
1	Ň	Crss	Common-Source Reverse Transfer Capacitance		8		8		8	ΥΥ	V _{DS} = 0, V _{GS} = -12 V	f≈1MHz	

NOTE.

1. Pulse tort required, pulsewidth = 300 μ sec, duty cycle $\leq 3\%$.

Siliconix

NC

3

Siliconix

H Siliconix

monolithic dual n-channel JFETs designed for ...

Differential Amplifiers

BENEFITS

BOTTOM VIEW

See Section 5

Good Matching Characteristics

0 6-

TO-71 See Section 7

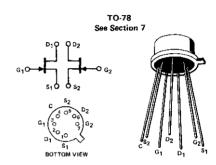
Performance Curves NNP

Gate-Drain or Gate-Source Voltage
Gate Current
Total Device Dissipation at 25°C
(Derate 1.7 mW/°C to 200°C)
Storage Temperature Range
Lead Temperature
(1/16" from case for 10 seconds)

			Characteristic				Ain	Max	Unit	Test Condition	s	
1 2		IGSS Gate	Reverse Current					-100	pА	V _{GS} = -30 V, V _{DS} = 0	-50%0	
	s	BVGSS Gate	Seurae Breakdowe Veltare			-	-50	-500	An A		150°C	
4	Ť		-Source Breakdown Voltage -Source Cutoff Voltage				-50	4.5	-	$I_{G} = -1 \mu A, V_{DS} = 0$		
_	A T	20(011)	-Source Voltage					-4.5 -4.0		V _{DS} = 20 V, I _D = 1 nA	1nA	
5	i	GS Gate	-dource vortage				-0.3		ρA	V _{DG} = 20 V, I _D = 200 μA		
6	С	IG Gate	Operating Current			-		-250		*DG ~ 20 V, ID = 200 µA	125°C	
7	ľ	- IDSS Satu	ration Drain Current (Note 1)	urrent (Note 1)				5.0		V _{DS} = 20 V, V _{GS} = 0	12.9 0	
_						1	000	3000			f = 1 kHz	
8		9 _{fs} Com	mon-Source Forward Transcor	nductance	(Note 1)	1	000			$V_{DS} = 20 V, V_{GS} = 0$	f = 100 M	
	D Y	gfs Com	fs Common-Source Forward Transconductance (Note 1						μmho	VDG = 20 V, ID = 200 μA		
0	Ň	9os Com	mon-Source Output Conducta	nçe				35		V _{DS} = 20 V, V _{GS} = 0	f=1kHz	
	A	9 ₀₅ Cum	mon-Source Output Conducta	nce				10		V _{DG} = 20 V, I _D = 200 μA		
2				1				6	p+		f=1MH;	
3	C C _{rss} Common-Source Reverse Transfer Ca		Capacitanc	e			2		$V_{DS} = 20 V_{V} V_{GS} - 0$			
4		ខិ _ក Equi	valent Short Circuit Input Noi:	se Voltage	Voltage			80		- +DS 20+,+GS=0	f = 100 H	
_		Chara	cteristic	U231 Max	U232 Max	U233 Max	U234 Max	U235 Max	Unit	Test Condition	 ns	
5	Į	liGt-IG2	Differential Gate Currant	10	10	10	10	10	nA	$V_{DG} = 20 V, I_D = 200 \mu A$	125°C	
6		(IDSS1~IDSS2) IDSS1	Saturation Drain Current Match (Note 1)	5	5	5	10	15	%	V _{DS} - 20 V, V _{GS} - 0		
	M A	WGS1-VGS21	Differential Gate-Source Voltage	5	10	15	20	25	mV			
8	T C H	∆IVGS1-VGS2	Gate-Source Voltage	10	25	50	75	100	μV/°C		T _A = 25 T _B = 125 T _A = -55	
9	I N	Δτ	Differential Drift (Note 2)	10	25	50	75	100	<u>, , , , , , , , , , , , , , , , , , , </u>	VDG ≈ 20 V, 1 <mark>D</mark> ≈ 200 µA	T _A = -65 T _B = 25	
20	G	(g _{fs1} -g _{fs2}) g _{fs1}	Transconductance Match (Note 1)	3	5	5	10	15	%		f = 1 kHz	
11		gos1-gos2)	Differential Output Conductance	5	5	5	5	5	μmho		1 - 1 KH2	
NOT		lg _{os1} -g _{os2}) S:			5	5	5	5	μmho		NN	

matched dual n-channel JFET designed for . . .

Performance Curves NZF See Section 5


B Siliconix

BENEFITS

- High Gain through 100 MHz
 g_{fs} = 5000 µmho Minimum
- Matching Characteristics Specified

ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage
Gate Current 50 mA
Device Dissipation (Each Side), T _A = 85°C
(Derate 3.85 mW/°C)
Total Device Dissipation, $T_A = 85^{\circ}C$
(Derate 7.7 mW/°C)
Storage Temperature Range
Lead Temperature
(1116" from case for 10 seconds)

ELECTRICAL CHARACTERISTICS (25° unless otherwise noted)

			Characteristic	Min	Max	Unit	Test Conditions	
1	s	1	Gate Reverse Current		-100	pА	V _{GS} = -15 V, V _{DS} = 0	1
2	J T	GSS			-250	nA	VGS15 V, VDS - 0	150°C
3	A	₿V _{GSS}	Gate-Source Breakdown Voltage	-25		~	$I_{G} = -1 \ \mu A, V_{DS} = 0$	
4	i	VGS(off)	Gate-Source Cutoff Voltage	-1	-5	v	V _{DS} = 10 V, i _D = 1 nA	<u> </u>
5	С	DSS	Saturation Drain Current (Note 1)	5	40	mА	V _{DS} = 10 V, V _{GS} = 0	
6		9fs	Common-Source Forward Transconductance	5000	10,000		V _{DS} = 10 V, I _D = 5 mA	f = 1 kHz
7	D	9fs	Common-Source Forward Transconductance	5000	10,000		V _{DG} = 10 V, i _D = 5 mA	f = 100 MH;
8	Ŷ	gos	Common-Source Output Conductance		150	µmho	V _{DS} = 10 V, 1 _D = 5 mA	t = 1 kHz
9	A	90s	Common Source Output Conductance		150			f = 100 MH
10	м	Ciss	Common-Source Input Capacitance		5	ρF	Verse 10 Verse Em A	f=1 MHz
11	c	Crss	Common-Source Reverse Transfer Capacitance		1.2	μr	V _{DG} = 10 V, I _D = 5 mA	
12		ēn	Equivalent Short Circuit Input Noise Voltage		30	n⊻ Miz		f = 10 kHz
13	M	DSS1 DSS2	Saturation Drain Current Ratio (Notes 1 and 2)	0.85	1		V _{DS} = 10 V. V _{GS} = 0	
14		VGS1-VGS2	Differential Gate Source Voltage		100	mν		
15	Z – Z	9fs1 9fs2	Transconductance Ratio (Note 2)	0.85	1		V _D G = 10 V, i <u>D</u> ≈ 5 mA	f = 1 kHz
16	G	9051-9052	Differential Output Conductance		20	µmho		

NOTES:

iconix

1. Pulse test required, pulse width = 300 μs , duty cycle \leqslant 30% 2. Assumes smaller value in numerator.

NZF

n-channel JFETs Siliconix designed for main Performance Curves NVA See Section 5 Analog Switches BENEFITS Ultra-Low Insertion Loss Commutators RDS(on) < 2.5 Ω (U290) High Off-Isolation Choppers ID(off) < 1nA ABSOLUTE MAXIMUM RATINGS (25°C) TO-52 See Section 7 Reverse Gate-Drain or Gate-Source Voltage.....-30 V Gate Current 100 mA Total Device Dissipation at 25°C Free-Air Temperature (Note 1)..... 500 mW Lead Temperature ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) U290 U291 Test Conditions Characteristic Unit Min Max Mis Max -1 -1 nА Gate Reverse Current VGS = -15 V, VDS = 0 igss 2 -1 μА 150°C -1 3 Gate-Source Breakdown Voltage -30 -30 $I_G \approx -1 \,\mu A$, $V_{DS} \approx 0$ BVGSS v 4 s _4 -10 -1.5 -4.5 V_{DS} = 15 V, I_D = 3 nA Gate-Source Cutoff Voltage VGS(off) 5 1 1 nΑ $V_{DS} = 5 V, V_{GS} = -10 V$ Drain Cutoff Current D(off) 6 150°C 1 1 μA 7 VDS(on) 70 m٧ $V_{GS} = 0$, $I_D = 10 \text{ mA}$ C Drain-Source ON Voltage 25 Saturation Drain Current 8 $V_{DS} = 10 V, V_{GS} = 0$ 500 200 mΑ IDSS (Note 2) Static Drain-Source ON 9 1.0 2.5 2 7 Ω $V_{GS} = 0 V$, $I_D = 10 mA$ ^rDS(on) Resistance D 10 Drain-Source ON Resistance 1.0 2.5 2 7 Ω $V_{GS} = 0, I_{D} = 0$ f=1kHz ds(on) 11 Source Gale OFF Capacitance 30 Vsg = 15 V, lp = 0 Ν CSGO 30 12 ۵ Drain-Gate OFF Capacitance рF $V_{DG} = 15 V, I_S = 0$ f = 1 MHz CDGO 30 30 Source Gate Plus Drain Gate c 160 $V_{DS} = 0, V_{GS} = 0$ 13 160 CSG+CDG On Capacitance 14 Turn-ON Delay Time 15 15 $V_{DD} = 1.5 V, I_{D(on)} = 30 \text{ mA}, R_L = 50 \Omega,$ td(on) $V_{GS(on)} = 0 V$, 15 Rise Time 20 tŗ 20 s ns Turn-OFF Delay Time VGS(off) - -12 V (U290) 16 w 15 15 td(off)

20

3-53

20

NOTES:

t٢

17

I. Derate linearly a, the rare of 4 0 mW/ $^\circ\text{C}$

2. Pulse test required pulsewidth 300 $\mu s,$ duty cycle \leq 3%.

Fall Time

NVA

© 1979 Siliconix incorporated

Silcosix

)**290** U**291**

VGS(off) = ~ 7 V (U291)

pchannel JFETs designed for...

Analog Switches

- Commutators
- Choppers

Performance Curves PS See Section 5

Sili

BENEFITS

- Low Insertion Loss
 R_{DS(on}) < 85 Ω (U304)
- High Off-Isolation
 ID(off) < 500 pA

TO-18 See Section 7

ABSOLUTE MAXIMUM RATINGS (25°C)
Reverse Gate-Drain or Gate-Source Voltage (Note 1) 30 V Gate Current 50 mA Total Device Dissipation, Free-Air
(Derate 2.8 mW/°C)
Lead Temperature (1/16" from case for 60 seconds)

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

] ປະ	304) ບ:	305	UB	06		Test Conditions			
			Characterístic	Min	Max	Min	Max	Min	Max	Unit		Test Co	nditions	
1		lass	Gate Reverse Current		500		500		500	pА	V 20		0	
2		GSS	Gate Reverse Current		1.0		1.0		1.0	μA	VGS = 20	GS = 20 V, V _{DS} = 0		150°C
з		8VGSS	Gate-Source Breakdown Voltage	30		30		30			lg - 1μΑ			
4	s	VGS(off)	Gate-Source Cutoff Voltage	5	10	3	6	1	4		V _{DS} = -1	5 V, I <u>D</u> = -	1μΑ	
5	T A T	VDS(on)	Drain-Source ON Voltage		-1.3		-0.8		-0.6			Ā (U305),	A (U304),	
6	Ċ	1DSS	Saturation Drain Current (Note 2)	-30	-90	-15	-60	-5	-25	mА	$V_{DS} = -1$	5 V, VGS =	• 0	
7	,	1D{off} Drain Cutoff Currer	Drain Cutoff Currant		-500		-500		-500	pА	V _{DS} = -15 V, V _{GS} = 12 V (U304), V _{GS} = 7 V (U305),		4),	
8			Drain Cuton Current		-1.0	<u> </u>	-1.0		-1.0	μA	VGS = 5 \ VGS = 5 \			150°C
9		DS(on)	Static Drain-Source ON Resistance		85		110		175	Ω	V _{GS} = 0 V, l _D = -1 mA			
0		rds(on)	Drain-Source ON Resistance		85		110		175	Ω	V _{GS} = 0 V	√, I _D = 0		f≈1kHz
1	D	Ciss	Common-Source Input Capacitance		27		27		27		Vps = -1	5 V, VGS -	= 0	
2	Y N	Crss	Common-Source Reverse Transfer Capacitance		7		7		7	ρF	V _{DS} = 0, V _{GS} = 7 V V _{GS} = 5 V	V (U305),	V _{GS} = 12 V (U304) / (U305),	
3	s	td(on)	Turn-ON Delay Time		20		25		25			U304	U305	U306
-	W		Rise Time	I	15	<u> </u>					VDD	-10 V	-6 V	-6 V
4	Ť	tr		├	15		25		35	ns	VGS(off)		7 V	5 V
-	T C	td(off)	Turn-OFF Delay Time	ļ	10	ļ	15		20		RL	580 Ω	743 Ω	1800 Ω
6	Ň.	^t f	Fall Time		25		40		60	ŀ	VGS(on)	0 -15 mA	0 -7 mA	0 -3 mA
. 1				1	L		L		1		D(on)	-15 MA	-7 mA	-3 mA

NOTES:

ň

1. Due to symmetrical geometry these units may be operated with

source and drain leads interchanged,

2. Pulse test pulsewidth = 300 μ s, duty cycle \leq 3%.

PS

d	e	sigl	ned for	• •	•	ł			Ę	erfo See	orm Sec	anc	e_Cı 15	urves NZ	ZA
	F A C		itors	nsiti	ivit	у			•	Higi 1 Lov 2 Wid	ustry 6 dB 1 dB v Noi 2 7 dI le Dy Greate	Star wer C at 10 at 4 ise B Noi nami er tha	05 MH 50 MH ise Fig ic Rar an 10		on-Gate) MHz
Gat Gat Tot Pov Sto Lea	te-I e C al ver rag ad	Drain or C Current , Power Di Derating Ie Temper Fempera 16'' from	case for 10 seconds)	· · · · ·	· · · · · · · · · · · · · · · · · · ·	4.(65 to	. 20 500) mV 5+15	mA mW V/°C 50°C 00°C				0-52 ction 7	7	G.C. D	s s
				(25°(U308	ESS O	Min	U309 Typ	Max) Min	U310 Typ	Max	Unit	Test Cor	ditions
1		IGSS	Gate Reverse Current			-150			-150			-150	pА	V _{GS} ≃ –15 V,	
2	s		Gate-Source Breakdown	25		-150	-25		-150	~25		-150	nA	V _{GS} = 0 I _G = -1 µA, V	$T_A = 125^\circ C$
4	T A T	BVGSS	Voltage Gate-Source Cutoff Voltage	-1.0		-6.0	-25		-4.0	-2.5		-6.0	v	·	
5	T I C	VGS(off)	Saturation Drain Current	12		60	12		30	24		60	mA	$V_{DS} = 10 V, I_D = 1 nA$ $V_{DS} = 10 V, V_{GS} = 0$	
		VGS(f)	(Note 1) Gate-Source Forward			1.0			1.0			1.0	v	IG = 10 mA, 1	
7		9fg	Voltage Common-Gate Forward Transconductance (Note 1)	10		20	10		20	10		18	mmho		
8	D Y	90g	Common-Gate Output	1		200			200			200	µmbo	Vps = 10 V, I _D = 10 mA	f = 1 kHz
9	NA	C _{gd}	Conductance Drain-Gate Capacitance	+	-	2.5		<u> </u>	2.5			2.5		V _{GS} = -10 V,	
10	M	Cga Cgs	Gate-Source Capacitance	1		5.0			5.0			5.0	pF	V _{DS} = 10 V	f = 1 MHz
11	Ċ	е _п	Equivalent Short Circuit Input Noise Voltage		10			10			10		<u>nV</u> √Hz	Vps = 10 V, Ip = 10 mA	f = 100 Hz
12		06-	Common-Gate Forward		15			15			15				f = 105 MHz
13	н	9fg	Transconductance	ļ	14			14			14				f = 450 MHz
14		9og	Common-Gate Output	 	0.18			0.18	<u> </u>		0.18		mmhai		f = 105 MHz
15	F		Conductance	14	0.32		14	0.32		14	0.32			V _{OS} = 10 V, In = 10 mA	f = 450 MHz
16 17	E	Gpg	Common-Gate Power Gain (Note 2)	10	16		10	16	<u> </u>	10	11	<u> </u>	1	<u> </u>	f = 450 MHz
18	l o			<u>†</u>	1.5	2.0	<u> </u>	1.5	2.0	<u> </u>	1.5	2.0	dB		f = 105 MHz
19	1	NF	Noise Figure		2.7	3.5		2.7			2.7	3.5	1		f = 450 MHz
NO		·.													NZA

1. Pulse test duration = 2 ms

2 Gain (Gpg) measured a, optimum input noise match

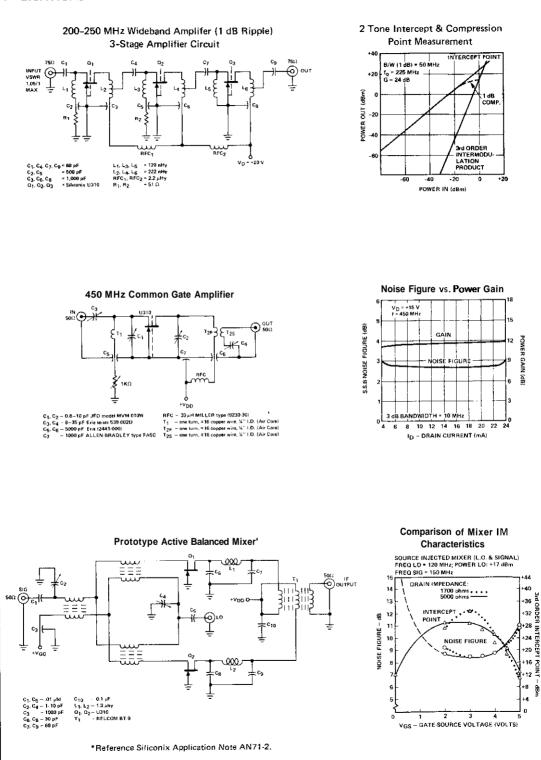
U308 U309 U310

3

Siliconix

Silianix

n-channel JFETs designed for . . .


		, <u></u> , <u></u>	· · · · · · · · · · · · · · · · · · ·	[U308			U309			U310				Test Conditions	
		С	haracteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Test Cor		
1		lean	Gate Reverse Current			-150			-150			-150	pА	V _{GS} ≃ –15 V,		
2		GSS				-150			-150			-150	nА	VGS = 0	T _A = 125°C	
3	S	BV _{GSS}	Gate-Source Breakdown Voltage	25			-25			~25			v	I _G = −1 µA, V	DS = 0	
4	T	VGS(off)	Gate-Source Cutoff Voltage	1.0		-6.0	-1.0		-4.0	-2.5		-6.0		V _{DS} = 10 V, I	D=1nA	
5	c	DSS	Seturation Drain Current (Note 1)	12		60	12		30	24		60	mΑ	VDS = 10 V.	√GS = 0	
6		VGS(f)	Gate-Source Forward Voltage			1.0			1.0			1.0	v	I _G = 10 mA, 1	/ _{DS} = 0	
7		Şfg	Common-Gate Forward Transconductance (Note 1)	10		20	10		20	10		18	mmho	Vps = 10 V,	f=1 kHz	
8	Y	aoð	Common-Gate Output Conductance			200			200			200	µmho	I _D = 10 mA		
9	A	Cgd	Drain-Gate Capacitance			2.5			2.5			2.5	٥F	V _{GS} = -10 V,	f = 1 MHz	
10		Cgs	Gate-Source Capacitance			5.0			5.0			5.0	pr	V _{DS} = 10 V	a - y micik	
11	C	en	Equivalent Short Circuit Input Noise Voltage		10			10			10		$\frac{nV}{\sqrt{Hz}}$	Vps = 10 V, i _D = 10 mA	f = 100 Hz	
12			Common-Gate Forward		15			15			15				f = 105 MHz	
13	Н	9fg	Transconductance		14			14			14		:		f = 450 MHz	
14][Common-Gate Output		0.18			0.18	l		0.18		mmhai		f = 105 MHz	
15] _	9 ₀ g	Conductance		0.32			0.32			0.32			V _{DS} = 10 V,	f = 450 MHz	
16] в	1	Common-Gate Power	14	16		14	16		14	16			1 _D = 10 mA	f = 105 MHz	
17	1 E 0	Gpg	Gain (Note 2)	10	11	<u> </u>	10	11		10	11				f = 450 MHz	
18		NE	Noise Figure		1.5	2.0	-	1.5	2.0		1.5	2.0	dB		f = 105 MHz	
19]	2.7	3.5		2.7	3.5	<u> </u>	2.7	3.5		<u> </u>	f = 450 MHz	

NZA

APPLICATIONS

U308 U309 U310

Siliconix

		annel JFET				Si	B liconix
d	esig	ned for		Ð	eefai	entione5Curves N	ZA
	VHF A	mplifiers		в	ENEF	ITS	
	Oscilla	•	•	16 Ga			
	Mixer	5			Ga Low 1.5 2.7	Noise Figure 5 dB Typ @ 105 MHz 7 dB Typ @ 450 MHz Dynamic Range–Great	
ABS	OLUTE M	AXIMUM RATINGS (25°C)				ID TO-72 Section 7	
Gate	Current	Gate-Source Voltage					
Stor Lead (1	age Tempe I Tempera /16″ from	issipation (Derate 1.7 mW/°C) 3 rature Range	300 mW +200° (300°C	 	۵0-		c
Stor Lead (1	age Tempe I Tempera /16″ from	rature Range	300 mW +200° (300°C	 	a0- Unit	Test Conditions	c
Stor Lead (1	age Tempe I Tempera /16″ from	rature Range	800 mW +200°C 300°C erwise	noted)		$V_{GS} = -15 V. V_{DS} = 0$	c 150°C
Stor Lead (1	age Tempera I Tempera /16'' from CTRICAL	rature Range	800 mW +200°C 300°C erwise	noted) Max	Unit pA nA		c 150°C
Stor Lead (1	age Tempera d Tempera /16" from CTRICAL	rature Range	300 mW +200°(300°C erwise	noted) Max	Unit pA	V _{GS} = -15 V, V _{DS} = 0	c 150°C
Stor Lead (1	age Tempera I Tempera /16" from CTRICAL	rature Range	300 mW +200° (300°C erwise Min -25	noted) Max -150 -150	Unit pA nA	$V_{GS} = -15 V, V_{DS} \approx 0$ $I_{G} \approx -1 \mu A, V_{DS} \approx 0$	c 150°C
Stor Lead (1 ELE	age Tempera J Tempera /16" from CTRICAL IGSS BVGSS VGStoff)	rature Range	300 mW +200° (300°C erwise Min -25 -1	noted) Max -150 -150 -6	Unit pA nA V	$V_{GS} = -15 V. V_{DS} \approx 0$ $I_G \approx -1 \mu A, V_{DS} \approx 0$ $V_{DS} = 10 V. I_D = 1 nA$	c 150°C
Stor Lead (1 ELE 3 A T 5 C	age Tempera J Tempera /16'' from CTRICAL IGSS BVGSS VGStoff) IDSS	rature Range	300 mW +200° (300°C erwise Min -25 -1	noted) Max -150 -150 -6 60	Unit pA nA V mA V	$V_{GS} = -15 V, V_{DS} = 0$ $I_G = -1 \mu A, V_{DS} = 0$ $V_{DS} = 10 V, I_D = 1 nA$ $V_{DS} = 10 V, V_{GS} = 0$ $I_G = 1 mA, V_{DS} = 0$	1
Stor Lead (1 ELE 3 A T 5 6	age Tempera I Tempera /16'' from CTRICAL IGSS BVGSS VGStoff) IDSS VGS(f)	rature Range	800 mW +200°C 300°C erwise Min -25 -1 20	noted) Max -150 -6 60 1	Unit pA nA V mA	$V_{GS} = -15 V, V_{DS} = 0$ $I_G = -1 \mu A, V_{DS} = 0$ $V_{DS} = 10 V, I_D = 1 nA$ $V_{DS} = 10 V, V_{GS} = 0$	c 150°C f = 1 kHz
Stor Lead (1 ELE 1 2 STAT 5 6 7	age Tempera I Tempera /16" from CTRICAL IGSS BVGSS VGS(off) IDSS VGS(f) 9fg	rature Range	800 mW +200°C 300°C erwise Min -25 -1 20	noted) Max -150 -6 60 1 20,000	Unit pA nA V mA V	$V_{GS} = -15 V, V_{DS} = 0$ $I_G = -1 \mu A, V_{DS} = 0$ $V_{DS} = 10 V, I_D = 1 nA$ $V_{DS} = 10 V, V_{GS} = 0$ $I_G = 1 mA, V_{DS} = 0$	

NOTE: 1. Puise test duration = 2 ms,

NZA

3

n-channel JFETdesigned for . . .

■ VHF/UHF Common-Gate **Amplifiers**

Mixers


Performatione Curves NZF

BENEFITS

- High Power Gain 10 dB Typical at 450 MHz. Common Gate
- Low Noise NF = 3.5 dB Typical at 450 MHz

ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage
Gate Current ,
Total Power Dissipation at or below 25°C
Free-Air Temperature , , . , . , . , . , . , . , .
Power Derating
Operating Temperature Range
Storage Temperature Range65 to +150°C
Lead Temperature
(1/16" from case for 10 seconds)

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

		Characterístic	Min	Max	Unit	Test Conditions	
S	IGSS	Gate Reverse Current		-0.1 -0 1	nA μA	V _{GS} = -15 V, V _{DS} = 0	150°C
Å	8V _{GSS}	Gate-Source Breakdown Voltage	-25		V	I _{G =} -1 μA, V _{DS} = 0	•
, ; []	VGS(off)	Gate-Source Cutoff Voitage	-1	-6	V	V _{DS} = 10 V, I _D = 1 nA	
×	DSS	Saturation Drain Current (Note 1)	10	30	mA	V _{DS} = 10 V, V _{GS} = 0	
	9fg	Common-Gate Forward Transconductance (Note 1	6000	10,000	μmho	V _{DS} = 10 V, 1 _D = 10 mA	f=1kH;
₽ V	9 ₀₉	Common-Gate Output Conductance		200	μmho	4D2 - 104, ID - 101104	
Ň	C _{9d}	Gate-Drain Capacitance		1.2	ρF	VDG = 10 V, ID = 10 mA	f = 1 MH
	Cgs	Gale-Source Capacitance	1	3.8	pF	*DP = 10 *'10 = 10 WM	

NOTE:

1, Pulse test duration = 2 ms

Silicenix

n-channel JFETs designed for...

VHF Buffer Amplifiers **IF Amplifiers**

ReafSection®Curves NIP

BENEFITS

- High Gain $g_{fs} = 120,000 \ \mu mho$ Typical
- Wide Dynamic Range

TO-39

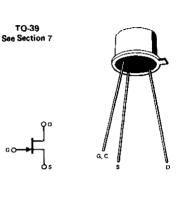
• Low Intermodulation Distortion

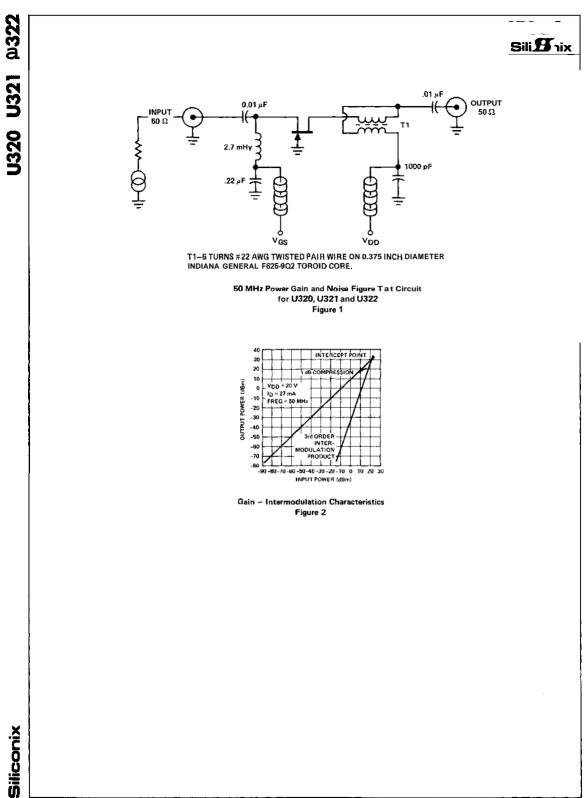
ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage
Power Derating (to 150°C) 24 mW/°C Storage Temperature Range55 to +150°C
Operating Temperature Range
Lead Temperature
(1/16" from case for 10 seconds)

	CHARACTERISTICS	(25° C unless	othorwise noted
ELECTRICAL	CHARACTERISTICS		

			haracteristic		U320			U321			U322		Unit	Tere Construine	
		L.	naracteristic	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Unit	Test Conditions	
1		lGSS	Gate Reverse Current (Note 1)			-3			-3			-3	nA		
2	s	GSS	Gate Reverse Current (Note 1)			-0.5]		-0.5			-0.5	μA	V _{GS} = -15 V, V _{DS} = 0 V	T ≈ 100°C
3	ΤÍ	VGS(off)	Gate-Source Cutoff Voltage	-2		-10			-4	-3		-10	v	V _{DS} = 6 V, I _D = 1 mA	
4	÷.	BVGSS	Gate-Source Breakdown Voltage	-25			-25			-25			•	IG = -1 μA, V _{DS} = 0 V	
5	i	DSS	Saturation Drain Current (Note 2)	100		500	80		250	200		700	mΑ	V _{DS} = 15 V, V _{GS} = 0 V	
6	c	VGS(f)	Gate-Source Forward Voltage			1			1			1	v	IG = 1 mA, VDS = 0 V	
7		TDS(on)	Drain-Source ON Resistance			10			11			8	Ω	VGS = 0 V, ID = 10 mA	
8		9fs	Common-Source Forward Transconductance (Note 2)	75	120	200	75	120	200	75	130	200	mmhos	V _{DS} = 15 V, V _{GS} = 0 V	f=1kHz
9	D	Ciss	Common-Source Input Capacitance			30			30			30			
10	Ň	C _{rss}	Common-Source Reverse Transfer Capacitance			15			t5			15	pF	VGS = -10 V, VDS = 0 V	f = 1 MHz
11	M	Cgs	Gate-Source Capacitance		12			12			12			V _{GS} ~ -10 V, i _D = 0	
12	ċ	Cgd	Gate-Drain Capacitance		12			12			12			V _{GD} = -10 V, I _S = 0	
13		en en	Equivalent Short Circuit Input Noise Voltage		2			2			2		nV √Hz	V _{DS} = 5 V, I _D = 10 mA	f = 1 kHz
14	н	9fg	Common Gate Forward Transconductance		55			55			55				
16	- G E	9ig	Commen-Gate Input Conductance		56			56		_	56		mmho	Vpg = 20 V, Ip = 25 mA	f - 50 ML
6	F	g _{og}	Common-Gate Output Conductance		0.5			0.5			0.5			vBC ~ 20 v, 1D − 20 mA	1 - 30 MP
7	R	GPS	Power Gain (Note 3)	-	9			9			9		dB		
8	E	Ft	Gain-Bandwidth (Note 4)		400			400			400		MHz	V _{DS} = 15 V, V _{GS} = 0 V	
19	4	NF	Noise Figure (Note 3)		2.5			2.5			2.5		dB	VDG = 20 V, ID = 25 mA f = 30	


3-59


NOTES:

1. Approximately doubles for every 10° C increase in T_A. 2. Pulse test duration $\Rightarrow 2$ ms. 3. Noise figure (SSB) and power gain measured in circuit shown in Figure 1. *I*. Computed as gfs/Crss.

3

monolithic dual Ħ Siliconix n-channel JFETs Performance Curves NNR See Section 5 BENEFITS designed for. Minimum System Error and Calibration Low Noise FET Input 5 mV Offset Maximum (U401) 95 dB Minimum CMRR (U401-04) Amplifiers Low Drift with Temperature Low and Medium Frequency 10 µV/°C Maximum (U401, 02) Operates from Low Power Supply Amplifiers Voltages Impedance Converters V_{GS(off)} < 2.5 V Simplifies Amplifier Design **Precision Instrumentation** Output Conductance < 2 umho I ow Noise Amplifiers $\overline{e}_n = 6 \text{ nV} / \sqrt{\text{Hz}}$ at 10 Hz Typical Comparators TO-71 See Section 7 D10 OD2 ABSOLUTE MAXIMUM RATINGS (25°C) O Ga Gate-Drain or Gate-Source Voltage 50 V Forward Gate Current . . . 10 mA Device Dissipation (each side) @ T_A = 85°C derate 2.6 mW/°C 300 mW Total Device Dissipation @ $T_A = 85^{\circ}C$ (derate 5 mW/°C) 500 mW 0 Storage Temperature Range -65 to 200°C ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise noted) BOTTOM VIEW U401 U402 U403 U404 U405 11406 Characteristic Unit Test Condition Min Max Min Max Min Max Min Max Min Max Min Max Gate-Source Breakdow BVGSS -50 -50 -50 -50 -50 -50 v V_{DS} = 0, I_G = -1 μA Voltage Gate Reverse Current 2 -25 +25 -26 1055 -25 -25 -25 oА V_{DS} = 0, V_{GS} = -30 V (Note 1) Gate-Source Cutoff -2.5 -2.5 3 VGSioff - 5 -2,5 -.5 -.8 - 5 -2,5 ~ 5 -2.5 -2.5 V_{DS} = 15 V, I_D = 1 nA - F Voltage v Gate-Source _23 -23 -2.3 -2.3 4 VGSton -23 -23 V_{DG} = 15 V, I_D = 200 µA Voltage (on Saturation Orain Current Б n e 10.0 0.5 10.0 0.5 10.0 05 10,0 0.5 10,0 0.5 10.0 mA $V_{OS} = 10 V, V_{GS} = 0$ 1_{DSS} (Note 2) 6 --15 -15 -15 -15 --15 -15 pА V_{DG} = 15 v, Gate Current (Note 1) l_G 7 ~10 -10 -10 -10 -10 -10 I_D = 200 μA nA $T_A = 125^{\circ}C$ Gate-Gate Breakdown 6 BVG1 - G2 ±50 ±50 ±50 ±50 ±50 v $V_{DS} = 0, V_{GS} = 0, I_G = \pm 1 \,\mu A$ ±50 Voltage Common-Source Forward 9 2000 7000 2000 7000 2000 7000 2000 7000 2000 7000 2000 7000 91: Transconductance (Note 2 VDS = 10 V, f = 1 kHz Common-Source Output VGS=0 10 20 20 20 20 20 20 9.... Conductance umho Common-Source Forward 11 1000 1600 1000 1600 1000 1600 1000 1000 1600 1000 1600 1600 94. Transconductance f = 1 kHzCommon-Source Output 12 9₀₅ 2.0 20 20 2.0 2.0 2.0 Conductance VDG = 15 V, 1D = 200 µA Common-Source Input 13 C_{iss} 8.0 8.0 8,0 8.0 6.0 8.0 Capacitance οE f = 1 MHz Common-Source Reverse 14 3.0 3.0 3.0 3.0 3.0 Crss 3.0 Transfer Capacitance

Siliconix

3

© 1979 Siliconix incorporated

TC = +125"C

f = 10 Hz

 $T_{A} = -55^{\circ}C, T_{B} = +25^{\circ}C$

NNR NRL-D

V_{DG} = 10 to 20 V, I_D = 200 μA

VDG = 10 V, ID = 200 µA

V_{DS} = 15 V, V_{GS} = 0

V_{DG} = 10 V,)_D = 200 μA

dÐ

*u*V/°c

20

40 m٧

80

Equivalent Short-Circuit

Common-Made Rejection

Gate-Source Voltage Differ

ential Drift (Note 4)

Input Noise Voltage

Ratio (Note 3) Differential Gate-Source

Voltage

20

5

10

95

20

10

10

NOTES: 1 Approximately doubles for every 10°C increase in T_A 2 Pulse test duration = 300 μ s; duty cycle < 3%, -> CMRR = 20log 10 $\left[\frac{\Delta V_{DD}}{\Delta |V_{CS1} - V_{CS2}|}\right]$, ΔV_{DD} = 10 V

96

20

10

25

95

20

15

25

95

20

20

40

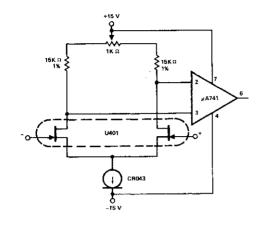
90

15 ēN

16 CMBB

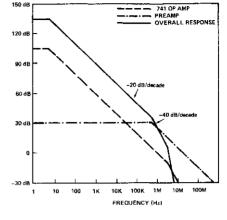
17

18 G


VGS1 - VGS2

 $\frac{\Delta |V_{GS1} - V_{GS2}|}{\Delta T}$

4. Measured at and points, T.A., T.B and T.C.


APPLICATIONS

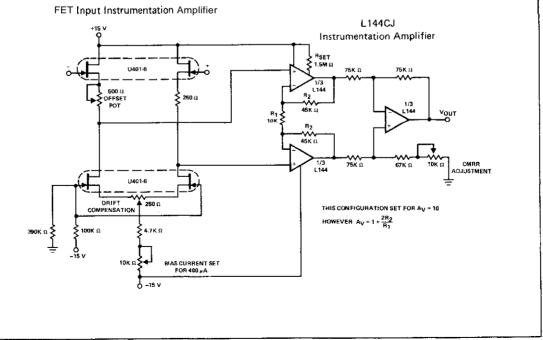
General Purpose FET Input Op Amp

Open Loop Gain and Frequency Response of Op Amp

H Siliconix

Typical Specs for General Purpose FET Input Op Amp*

Common Mode Range +6.7 to -8.8 Volts Worst Care Drift Referred to the Input . . $\approx 12 \,\mu$ V/°C Broad Band Noise Referred to the Input (0,1 to 1 kHz) $\approx 188 \,$ nV/Rms


Gain and Bandwidth (see graph)

*These specs depend upon the specifications of the Opera tional amplifier IC used.

For futher design information, write for:

DESIGNING FET-INPUT OPERATIONAL AMPLIFIERS (AN74-3)

Describer the advantages of FET input operational amplifiers over their bipolar transistor counterparts. Includes data on noise, leakage current, offset and drift. CMRR and slew rate. Detailed design information and several practical circuits are included. (16 pages).

Siliconix

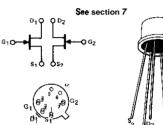
3

Siliconix

Sili

monolithic dual **n-channel JFETs** designed for.

■ FET Input Amplifiers Low and Medium Frequency Amplifiers Impedance Converters **Precision Instrumentation** Amplifiers **Comparators**


ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-To-Gate Voltage
Gate-Drain or Gate-Source Voltage40 V
Gate Current
Total Package Dissipation (25°C Free-Air)
Power Derating
Storage Temperature Range
Lead Temperature (1/16" from case for 10 seconds) 300°C

Performance Curves NQP See Section 5

BENEFITS

- Low Cost
- Minimum System Error and Calibration 10 mV Offset Maximum (U410) 70 dB Minimum CMRR (U410)
- Low Drift with Temperature $10 \,\mu V/^{\circ} C$ Maximum (U410)
- Simplifies Amplifier Design
 Low Output Conductance TO-71

BOTTOM VIEW

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

Characterístic			U410			U411			U412				T . R . In:			
			Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Unit	Test Conditions			
1		IGSS	Gate Reverse Current (Note 1)			-200			-200			-200	pА	V _{DS} = 0, V _{GS} = -30 V		
2	s T	VGS(off)	Gate-Source Cutoff Voltage	-1.0		-3.5	-1.0		-3.5	-1.0		-3.5		V _{DS} = 20 V, I _D = 1 nA		
3	T A T	BVGSS	Gate-Source Breakdown Voitage	-40			-40			-40				V _D ς = 0 V, I _G = -1 μA		
4		IDSS	Saturation Drain Current (Note 2)	0.5		5.0	0.5		5.0	0.5		5.0	mΑ	V _{DS} = 20 V, V _{GS} = 0 V		
Б		IG	Gate Current (Note 1)			-200			-200			-200	pА			
6		VGS	Gate-Source Voltage	-0.2		-3.0	-0.2		-3.0	-0.2		-3.0	<u> </u>	V _{DG} = 20 V, ‡ _D = 200 μA		
7			Common-Source Forward	1,000		4,000	1,000		4,000	1,000		4,000	µmho	V _{DS} = 20 V, V _{GS} = 0 V		
8		9fs	Transconductance	600		1,200	600		1,200	600		1,200		V _{DG} = 20 V, I _D = 200 µA V _{DS} = 20 V, V _{GS} = 0 V		
9	ь		Common-Source Output			20			20			20		V _{DS} = 20 V, V _{GS} = 0 V		
10	Y N	g _{os}	Conductance			5			5	[5		V _{DG} = 20 V, 1 _D = 200 μA		
11		Ciss	Common-Source Input Capacitance		4.5			4.5			4.5		oF	V _{DS} = 20 V, V _{GS} = 0 V	f = 1 MHz	
12	ċ	C _{rss}	Common-Source Reverse Transfer Capacitance		1.2			1.2			1.2					
13		Ēn	Equivalent Short-Circuit Input Noise Voltage			50			50			50	<u>nV</u> VHz	V _{DS} = 20 V, I _D = 200 μA	f = 100 H	
14	M	NGS1-VGS2	Differential Gate-Source Voltage	1		10			20			40	mV	V _{DG} = 20 V, ι _D = 200 μA		
15	C H	ΔIV _{GS1} -V _{GS2} ΔT	Gate-Source Differential Drift (Note 3)			10			25			80	µv/°c	$V_{DG} = 20 V, t_D = 200 \mu A$ $T_A = 25^{\circ}C \text{ to } T_B = 85^{\circ}C$ $V_{DD} = 10 V \text{ to } V_{DD} = 20 V$ $t_D = 200 \mu A$		
16	Ł	смяп	Common-Mode Rejection Ratio (Note 4)		80			60			70		dB			
-		L		-l	L	l		<u> </u>				I	[
1. 2.	Ap Pu	proximately doub	bles for every 10° C increase in = 300 μ sec; duty cycle \leq 3%. Ints, TA and TB	T _A .	4. CM	RR = 2()log10	[2 IV G	si-VG],2 s2]	1VDD	= 10 V.		ľ	UF	

2

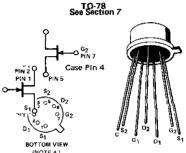
monolithic dual n-channel JFETs designed for ...

Very High Input Impedance Differential Amplifiers

Electrometers

Impedance Converters

ABSOLUTE MAXIMUM RATINGS (25°C)

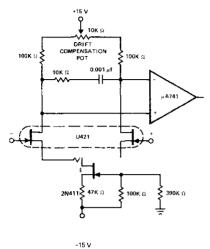

Gate-to-Gate Voltage	i40 V
Gate-Drain or Gate-Source Voltage	-40 V
Gate Current	
Device Dissipation (Each Side), $T_A = 25^{\circ}C$ (Derate 3.2 mW/°C to 150°C)	400 mW
Total Device Dissipation, $T_A = 25^{\circ}C$	
(Derate 6.0 mW/°C to 150°C)	′50 mW
Storage Temperature Range65 to	+150°C

Sili

Performance Curves NQT See Section 5

BENEFITS

- High Input Impedance
 I_G = 0.1 pA Maximum (U421-3)
- High Gain g_{fs} = 140 μmho Minimum @ I_D = 30 μA (U421-3)
- Low Power Supply Operation
 VGS(off) = 2 V Maximum (U421-3)
- Minimum System Error and Calibration 10 mV Maximum Offset 90 dB Minimum CMRR (U421, U424)

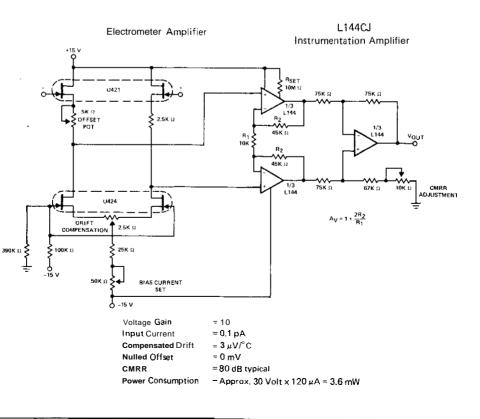

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

Characteristic					U421-3			U424-6			Un	it	Test Conditions				
					Min	Тур	Max	Min	Тур	Max							
1		BV _{GSS}	BV _{G1G2} Gate-Gate Breakdown Voltage I _{GSS} Gate Reverse Current (Note 1)			-60		-40	-60			_	i _G = -1 μA, V _{DS} = 0				
2		BVG1G2						±40] `		¦G = -	G = -1 μA, ID = 0, IS = 0			
3	S T A T	^I GSS					0.2 0.5	<u> </u>		1.0 1.0	p/ n/		T = +2 T = +1	$T = +25^{\circ}C$ $T = +125^{\circ}C$ $V_{GS} = -20$		V, V _{DS} = 0	
4		1 _G					0.1 -100			0.5 -500	- p/	4	T = +2 T = +1	5°C 25°C	${}^{\circ}C_{5^{\circ}C}$ V _{DG} = 10 V, I _D = 30 μ A		
5	С	V _{GS(off)}	Gate-Source Cutoff Voltage		-0.4		-2.0	-0.4		-3.0	T,		v _{DS} ≖	10 V	i _D = 1 nA		
6		V _{GS}	Gate-Source Voltage				-1.8	1		-2.9	ľ		V _{DG} =	10 V	. I _D = 30 µА		
7		IDSS	Saturation Drain Current		60		1000	60		1800	μ	,	VDS =	s = 10 V, V _{GS} = 0			
8		9ts	Common-Source Forward Transconduct	ance	300		800	300		1000	μ	5				f≖1kHz	
9		9 ₀₅	Common-Source Output Conductance		ſ	1	3.0			5.0	р <i>ш</i>	5	V _{DS} =	10 V, V _{GS} = 0			
10	P	C _{iss}	Common-Source Input Cepanitance				3.0			3.0	- 01					f = 1 MHz	
11	A	Crss	Common-Source Reverse Transfer Capac			1.5			1.5								
12]M	9fs	Common-Source Forward Transconduct	nmon-Source Forward Transconductance			250	135		300	μĩ	2				f=1kHz	
13	C	9 ₀₅	Common-Source Output Conductance				0.5			1.0		5	V _{DG} = 10 V, I _D				
14		 e _n	Equivalent Short Circuit Input Noise Voltage	· ·			50	-	20 10	70		/Hz	VDG -	- 10 1.10 - 30 µA		f ≠ 10 Hz f = 1 kHz	
15	1	NF	Noise Figure				1.0	Γ	1	1.0	d	8		Í	f = 10 Hz	R _G = 10M Ω	
Characteristic U4					J421, 4	ŧ į	U	422, 5		U423,6		1			Test Conditions		
		Min		Міл	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit				
16	м	1V _{G\$1} - V	GS2I Differential Gate-Source Voltage			10			15			25	mV	Vpg	= 10 V, I _D = 3	30 µA	
17	T C	IV _{GS1} - ν Δτ	GS2 Differential Gate-Source Voltage Change With Temperature (Note 2			10			25			40	μV/°C ^V DG TA =		= 10 V, † _D = 30 μA, -55°C, T _B = 25°C, T _C = 125°C		
18	ľ	CMRR	CMRR Common Mode Rejection Ratio 90 (Note 3)				80	90		80	90		dB	⁻ D	30 µA, V _{DG} =	10 to 20 V	
1	TES App Mea:	roximately do			R = 20k ead not			V _{DD} 51-V(is2 ¹	A V	0~3	ŦOY.				NOT	

Si l'conix

APPLICATIONS

Very Low Leakage FET Input Op Amps


l _G	= 0.1 pA at V _{cm} = 0
Offset	= Can be nulled to 0 volts
Drift	= Can be nulled to $2 \mu V/^{\circ}C$
Slew Bate	= 0.5 V/ μ s

NOTE: Pin 4 (case) is isolated from the substrate and should be left floating.

For more information see:

DESIGNING FET INPUT OPERATIONAL AMPLIFIERS IAN7431

Describes the advantages of FET input operational amplifiers aver their bipolar transistor counterparts. Includes data on noise, leakage current, offset and drift, CMRR and slew rate. Detailed design information and several practical circuits are included.

Siliconix

© 1979 Siliconix incorporated

matched dual n-channel JFETs designed for . . .

Balanced Mixers **Differentia!** Amplifiers

ABSOLUTE MAXIMUM RATINGS (25°C)

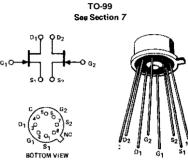
Gate-Drain or Gate-Source Voltage25 V
Gate Current 10 mA
Total Continuous Power Dissipation at
(or Below) 25°C Free Air Temperature
Derate 4 mW/°C to 150°C 500 mW
Continuous Device Dissipation (Each Side) at
(or Below) 25°C Free Air Temperature
Derate 2.4 mW/°C to 150°C 300 mW
Storage Temperature Range
Lead Temperature
(1/16" from case for 10 seconds)

ELECTRICAL CHARACTERISTICS (25° unless otherwise noted)

U430 U431 Characteristic Unit Test Conditions Min Тур Max Min Тур Max -150 - 150 1 pА V_{GS} = -15 V, V_{DS} = 0 V IGSS Gate Reverse Current s 2 ~150 -150 ńΑ T = 150°C 7 BVGSS 3 Gate-Source Breakdown Voltage -25 -25 IG = -1 µA, VDS = 0 V A T 4 VGS(off) -4.0 -2.0 6.0 VDS = 10 V, ID = 1 nA Gate-Source Cutoff Voltage _1 D ν 5 VDS = 0 V, IG = 10 mA VGS(f) 1.0 Gate-Source Forward Voltage 1.0 С 24 60 $V_{DS} = 10 V, V_{GS} = 0 V$ 6 IDSS Saturation Drain Current (Note 4) 12 30 mА Common-Source Forward 7 10 20 10 20 mmho qfe Transconductance D f = 1 k HzVDS = 10 V, 1D = 10 mA Y Common-Source Output 8 200 200 gos umho Ń Conductance AM 9 Cgs Gate-Source Capacitance 5.0 5.0 V_{GS} = -10 V, V_{DS} = 0 V f = 1 MHz ٥F 10 Drain Gate Capacitance 2.5 2.5 1 Cgd С Equivalent Short-Circuit Input n¥ ⊮Hz 11 10 10 VDS = 10 V, ID = 10 mA f = 100 Bz ē_n Noise Voltage Common-Source Forward 12 12 12 н Afs Transconductance Common-Source Output V_{DS} = 10 V, I_D = 10 mA mmho 0.15 13 0.15 9os Conductance f = 100 MHz 14 9ig Power-Match Source Admittance 12 12 R Gc 35 E Conversion Gain (See Note 1) 3.0 3.0 dB VDS = 20 V. VGS = 1/2 VGS(off) Q 16 (MD Intercept Point (See Notes 1 and 2) +30 +30 dBm FDSS1 Saturation Drain Current 17 0.9 1.0 0.9 1.0 $V_G = 0 V$ Ratio (Note 3) IDSS2 м VGS(off)1 Gate-Source Cutoff А 18 0.9 0.9 V_{DS} = 10 V $I_D = 1 nA$ 1.0 1.0 VGS(off)2 Voltage Ratio (Note 3) н 9fs1 Transconductance Ratio 19 0.9 1.0 0.9 1.0 lg = 10 mA (Note 3) 9fs2 N7A NOTES 1 VHF single-balanced mixer drain load impedance 2k Ω

2 2-tone 3rd-order IMD

3. Assumes smaller value in numerator.


4. Pulse test pulsewidth = 300 μ s, duty cycle $\leq 3\%$

Performance Curves NZA See Section 5

Silianiy

BENEFITS

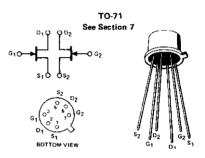
- Low Noise Figure
- Low IMD 30 dBm Intercept Point

Siliconix

B Siliconix

matched dual n-channel JFETs designed for

VHF/UHF Amplifiers


Performance Curves NZF See Section 5

BENEFITS

- High Gain
 g_{fs} = 4500 μmho Minimum
- Dual Version of 5300 with Matched Gate-to-Source Voltage

ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-To-Gate Voltage ±50 V Gate-Drain or Gate-Source Voltage
Total Package Dissipation (25°C Free-Air Temperature)
Power Derating
Storage Temperature Range65 to +150°C
Lead Temperature
(1/16" from case for 10 seconds)

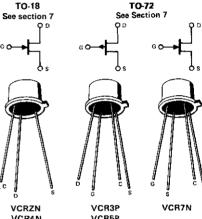
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

					U440			U441		Unit	T O		
	Characteristic				Түр	Мах	Min	Түр	Max	Unit	Test Conditions		
1	8	IGSS	Gate Reverse Current (Note 1)			-500			-500	ρA	V _{DS} = 0, V _{GS} = -15 V		
2	T	VGS{off}	Gate-Source Cutoff Voltage	-1		-6	-1		-6	v	V _{DS} = 10 V, i _D = 1 nA		
3	Ŧ	BVGSS	Gate-Source Breakdown Voltage	-25			-25			Ň	V _{DS} = 0, I _G = -1 μA		
4		1DSS	Saturation Drain Current (Note 2)	6]	30	6		30	mA	VDS = 10 V, VGS = 0		
5		'G	Gate Current (Note 1)			-500			-500	pА	V _{DG} = 10 V, I _D = 5 mA		
6	D	9fs	Common Source Forward Transconductance	4,500		9,000	4,500		9,000			f≃1kH	
7	N	90s	Common-Source Output Conductance			200			200	µmho	VDG = 10 V, 1D = 5 mA		
8	Ř	Ciss	Common-Source Input Capacitance		3.5			3.5		рF	ADG - 10 41 10 - 2 mM	f=1MH	
9	c	Crss	Common-Source Reverse Transfer Capacitance		0.8			0.8		pr		(- 1 1941) 1	
0	M A T	VGS1-VGS2	Differential Gate-Source Voltage			10			20	mν	V _{DG} = 10 V, I _D = 5 mA		

NOTES:

1. Approximately doubles for every 10°C increase in TA

2. Pulse test duration = 300 $\mu sec;$ duty cycle \leq 3%.


NZF

voltage-controlled resistor FETs designed for . . .

Silianix

Performance Curves NC NP NT PC PE See Section 5

Small Signal Attenuators Filters Amplifier Gain Control Oscillator Amplitude Control

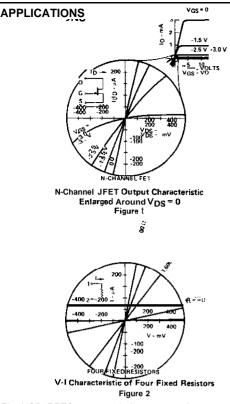
ABSOLUTE MAXIMUM RATING (25°C)

Gate-Drain or Gate-Source Voltage
Gate Current
Total Device Dissipation at $T_A = 25^{\circ}C$
(Derate at 2.0 mW/°C to 175°C)
Storage Temperature Range55 to +175°C

VCR4N

VCR5P

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) N-Channel VCR FETs

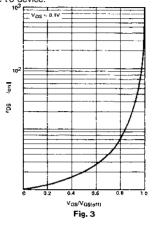

		~	VCR2N		VCR4N		VCR7N		Unit	T		
	Characteristic				Max	Min	Max	Min	Max	Unit	Test Conditions	
1	S	IGSS	Gate Reverse Current		-5		-0.2		-0.1	nA	$V_{GS} = -15 V, V_{DS} = 0$	
2] <u>4</u>	BVGSS	Gate-Source Breakdown Voltage	-15	1	-15		15			$I_{G} = -1 \mu A$, $V_{DS} = 0$	
3	11	VGS(off)	Gate-Source Cutoff Voltage	-3.5	-7	-3.5	-7	-2.5	-5		I _D = 1 μA, V _{DS} = 10 V	
4	1°_	rds(on)	Drain Source ON Resistance	20	60	200	600	4,000	8,000	Ω	V _{GS} = 0, I _D = 0	f=1kHz
5	D	Cdgo	Drain-Gate Capacitance	1-	7.5		3		1.5		V _{GD} = -10 V, I _S = 0	f = 1 MHz
6	1¥	C _{sgo}	Source-Gate Capacitance		7.5		3		1.5	pF	V _{GS} = -10 V, I _D = 0	
				N	с	N	Р	N	т			

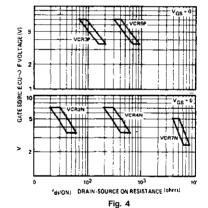
P-Channel VCR FETs

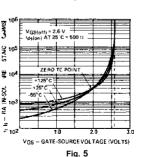
				VC	R3P	VC	R5P			
1	s	IGSS	Gate Reverse Current		20		10	nA	V _{GS} = 15 V, V _{DS} = 0	
2	T A	BVGSS	Gate-Source Breakdown Voltage	15		15		V	i _G = 1 μA, V _{DS} = 0	
3	T	VGS(off)	Gate-Source Cutoff Voltage	3,5	7	3.5	7] *	ID = -1 μA, VDS = -10 V	
4	ċ	rds(on)	Drain-Source ON Resistance	70	200	300	900	Ω	V _{GS} = 0, I _D = 0	f=1kHz
5	D	C _{dgo}	Drain-Gate Capacitance		6		3	- 5	V _{GD} = 10 V, I _S = 0	f = 1 MHz
6	Ŷ	C _{sgo}	Source-Gate Capacitance		6	[3	PF	V _{GS} = 10 V, I _D = 0	
					PE		°C			

Siliconix

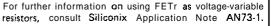
The VCR FET has an a-c drain-source resistance, evaluated around $V_{DS} = 0$, that is controlled by d-c bias voltage V_{GS} applied to the high-impedance gate terminal. Minimum rds occurs when $V_{GS} = 0$ and, as V_{GS} approaches the pinch-off voltage, rds rapidly increaser. Comparing Fig. 1 and 2 for $V_{DS} \le \pm 0.1$ volt and $V_{GS} = constant$, the VCR FET has a bilateral characteristic with no offset voltage, just like a fixed resistor. However, when $V_{DS} > \pm 0.1$ volts, the VCR FET characteristic has noticeable curvature.

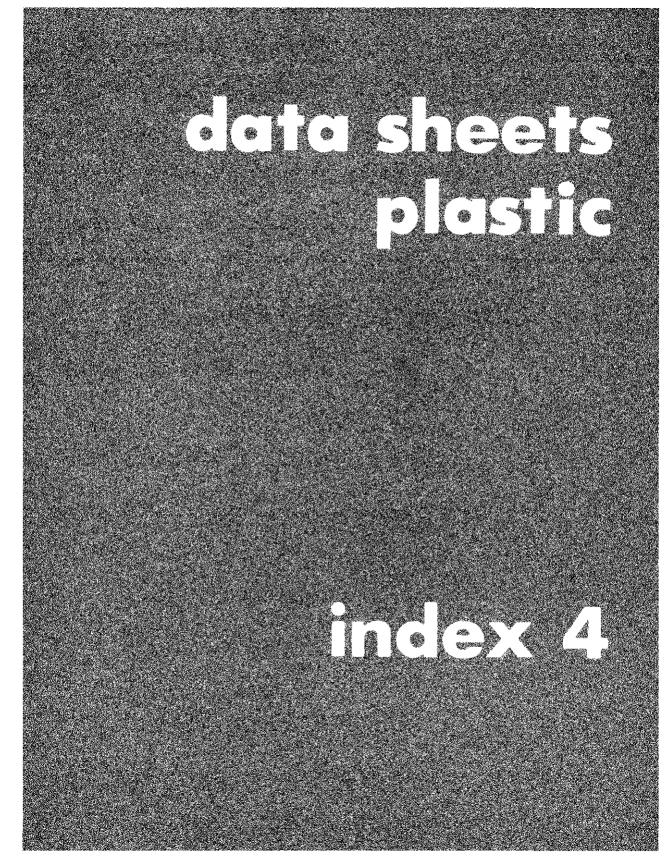

This series of junction FETr is intended for applications where the drain-source voltage is a low-level a-c signal with no d-c component. Thus the FET operating point will swing symmetrically around $V_{DS} = 0$. In the first quadrant. signal distortion depends on what extent the FET output characteristic deviates from a straight line or linear relation. Besides the linearity problem in the third quadrant, when VGS is near zero and $v_{ds} > 0.5$ volt rms, the gate-channel junction will become forward biased and cause additional curvature in the characteristic. Also, whenever the gate becomer forward biased due to any combination of VGS and Vds, it ceases to be a high-impedance control terminal for the VCR.


Fig. 3 presents a normalized plot of rDS versus normalized VGS where VGS(off) is defined as that value of VGS at ID/IDSS = 0.001. The dynamic range of rDS is shown as greater than 100:1. For best control of rDS the normalized VGS should lie between 0 and 0.8 VGS(off) because as


VGS approaches VGS(off), rDS increaser very rapidly so that recontrol becomes very critical and unit-to-unit

scenadeinnesistaaloe oot WhypossibVacg r∓ Dig.v4rie desoan indverse


function of VGS(off). In Fig. 5 rds has a typical 0.7%/°C temperature coefficient far P-channels which decreases as VGS approaches the zero t.c. point. N-channel devices have a typical 0.3%/°C t.c. Specific bias voltage to set operation at the zero t.c. point varier, as doer VGS(off) from device to device."



ž

L. Evans; "Biasing FETr for Zero DC Drift": Electro Technology, August 1964.

.

n-channel JFET Silis designed for Performance Curves NRL General Purpose Amplifiers BENEFITS Analog Switching Low Cost Specified at 100 MHz Automatic Insertion Package									
'ABS	OLUT	ΞM	AXIMUM RATINGS (25°C)						
Drair Reve Gate Cont at (N Stora Lead (1	n-Source rse Ga Curre inuous (or Be lote 1) age Ter I Temp /16'' fa	e Vol e-Son Devid low) inpera eratur om C	ge Itage urce Voltage. 25°C Free Air Temperature ture Range re Case for 10 seconds)	29 10 i . 200 r o +150 260	5 V 5 V mA nW 0°C 0°C	TO-92 See Section 7			
Characteristic Min Max							Test Condition	<u> </u>	
1	BV	SS	Gate-Source Breakdown Voltage	~25		Unit	I _G = -1 μA, V _{DS} = 0		
$\frac{2}{3}$	s T A		Gate Reverse Current	†	2 2	nA µA	V _{GS} = -15 V, V _{DS} = 0	T _A = 100° C	
4		3	Saturation Drain Current	2	20	mΑ	V _{DS} = 15 V, V _{GS} = 0 (Note 2)		
	c <u>v</u> G		Gate-Source Voltage	0.5	-7.5	v	V _{DS} = 15 V, I _D = 200 μA		
6	VG	(off)	Gate-Source Cutoff Voltage	1	-8	v	V _{DS} = 15 V, I _D = 2 nA		

			Characteristic	Min	Max	Unit	Test Conditions			
1		BVGSS	Gate-Source Breakdown Voltage	25		v	$I_{G} = -1 \ \mu A, V_{DS} = 0$			
2	S T	1000	Gate Reverse Current		-2	nA	V 15 V V 0			
3	A	GSS			2	μA	V _{GS} = -15 V, V _{DS} = 0	T _A = 100°C		
_4	T	DSS	Saturation Drain Current	2	20	mΑ	V _{DS} = 15 V, V _{GS} = 0 (Note 2)			
5	c	VGS	Gate-Source Voltage	0.5	-7.5	v	V _{DS} = 15 V, 1 _D = 200 μA			
6		VGS(off)	Gate-Source Cutoff Voltage		8	V	V _{DS} = 15 V, I _D = 2 nA			
7		Vfs	Common-Source Forward Transfer Admittance	2000	6500	µmho		£ _ 4 .11-		
8	D Y	γ _{os}	Common Source Output Admittance		50	µmho	V _{DS} = 15 V, V _{GS} = 0 (Note 2)	f = 1 kHz		
9	N A M	Ciss	Common Source Input Capacitance		8	p۴		£ _ 4 M411-		
10	1 C	Crss	Common Source Reverse Transfer Capacitance		4	٩q	V _{DS} = 15 V, V _{GS} = 0	f≂1MHz		
11		yfs	Common Source Forward Transfer Admittance	1600		µmho	V _{DS} = 15 V, V _{GS} = 0	f = 100 MHz		

* JEDEC registered data

NOTES;

1. Derate linearly to 125°C (free air temperature at a rate of 2 mW/°C), 2. Pulse tested pulse width = 100 ms, duty cycle \leq 10%.

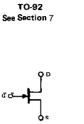
4

2N3819

NRL

n-channel JFETs designed for . . .

General Purpose AmplifiersSwitches


BENEFITS

- Low Cost
- Automated Insertion Package

Beef Geotione5Curves NRL

*ABSOLUTE MAXIMUM RATINGS (25°C)

Dirain-Source Voltage
Dirain-Gate Voltage, 25
Source-Gate Voltage 25 V
Total Device Dissipation at 25°C.
Derate above 25°C 2.82 mW/°
Operating Junction Temperature 135°C
Storage Temperature Range

Silizanix

*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

6					2N5457			2N5458			2N5459			Test Conditions	
Characteristic			Min	η Τγρ	p Max	Min	in Typ	Max	Min	Тур	Max	Unit	rest condition	13	
1			Contra Dominio C. 1999		01	-1.0		01	-1.0		01	-1.0	- 0	Von = -15 V. Von z 0	
2	ъ т	GSS	Gate Reverse Current			-200			-200			-200	nΑ	V _{GS} = -15 V, V _{DS} = 0	$T_A = 1100^{\circ}$
3	•	BVGSS	Gate-Source Breakdown Voltage	-25	-60		25	-60		-25	-60			$I_{G} = -10 \mu\text{A}, V_{DS} = 0$	
4	т	VGS(off)	Gate-Source Cutoff Voltage	-0.5		-6.0	-1.0		-7.0	~2.0		-8.0		V _{DS} = 15 V, I _D = 10 n	A
5	с	DSS	Saturation Drain Current	1.0		5,0	2.0		9.0	4.0		16	mA	V _{DS} = 15 V, V _{GS} = 0 (Note 1)
6		9fs	Common-Source For- ward Transconductance	1,000		5,000	1,500		5,500	2,000		6,000			f=1 kHz
7	D Y	9 ₀₅	Common-Source Out- put Conductance		10	50		15	50		20	50	µmho	V _{DS} = 15 V, V _{GS} = 0	
в	N	Ciss	Common-Source Input Capacitance		4.5	7,0		4.5	7.0		4.5	7,0		. 03	f=1MHz
9	Ñ.	Crss	Common-Source Re- verse Transfer Capaci- tance		1,0	3.0		1.0	3.0		1.0	30]pF		
0	C	NF	Noise Figure		.04	3.0		.04	3.0		.04	3 0	dB	V _{DS} = 15 V, V _{GS} ÷0 R _G = 1 MΩ, NBW = 1 Hz	f=1kHz

*JEDEC registered data

NOTE:

1. Pulse test pulsewidth = 2 ms.

NRL

n-channel JFETs

designed for . . .

VHF/UHF Amplifiers

- Mixers
- Oscillators

Analog Switches

*ABSOLUTE I	MAXIMUM RATINGS (25°C)
-------------	------------------------

Drain-Gate Voltage
Source Gate Voltage
Drain Current
Forward Gate Current
Total Device Dissipation @ 25° C
Derate above 25°C
Operating Junction Temperature Range65 to +135°C
Storage Temperature Range
Lead Temperature
(1116" from case for 10 seconds)

*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

B Siliconix

Performance Curves NH See Section 5

BENEFITS

- Low Cost
- Completely Specified for 400 MHz

 Operation Low Error Analog Switch Very Little Charge Coupling C_{rss} < 1.0 pF

			aracteristic	2N5484		2N5485		2N5486		Unit	Test Conditions		
		011	(F 4 6 16 19 10	Min	Max	Min	Max	Min	Max	5			
1	s		Gate Reverse Current		-1.0		-1.0		-1.0				
2	а т	GSS			-200		-200		-200	nA	VGS = -20 V. VDS = 0	T <u>A</u> ≃ +100°C	
3	A	BVGSS	Gate-Source Breakdown Voltage	-25		-25		-25		v	i _G = -1 μA, V _{DS} = 0		
4	;		Gate-Source Cutoff Voltage	-0.3	-3.0	-0.5	-4.0	-2.0	-6.0		V _{DS} = 15 V, l _D ≈ 10 nA		
5	C	DSS	Saturation Drain Current	1.0	5.0	4.0	10	8.0	20	mΑ	V _{DS} - 15 V, V _{GS} = 0 (Note 1)		
6		9fs	Common-Source Forward Transconductance	3,000	6,000	3,500	7,000	4,000	8,000			f = 1 kHz	
7		9os	Common-Source Output Conductance		50		60		75			<u></u>	
8	[Common-Source Forward	2,500								f = 100 MHz	
9		Re(Vfs)	Transconductance			3,000		3,500				f = 400 MHz	
10	1		Common-Source Output		75					µmhos		f = 100 MHz	
11		Re(yos)	Conductance				100		100		V _{DS} - 15 V, V _{GS} = 0	f =400 MHz	
12			Common-Source Input		100					ĺ		f = 100 MHz	
13		Re(_{Vis})	Conductance	<u> </u>	ţ		1,000	<u> </u>	1,000	1	l	f = 400 MHz	
14	N	Ciss	Common-Source Input Capacitance		5.0		5.0		5.0				
15	M	Crss	Common-Source Reverse Transfer Capacitance		1.0		1.0		1.0	₽F		f = 1 MHz	
16	<u>]</u> ^	C _{DSS}	Common-Source Output Capacitance	T	2.0		2.0		2.0				
17]			Γ	2.5		2.5		2.5		V_{DS} = 15 V, V_{GS} = 0, R_{G} = 1 M Ω	f − 1 kHz	
18	}	NF	Noise Figure		3.0]	$V_{DS} = 15 V$, $I_D = 1 mA$, $R_G = 1 k\Omega$	f = 100 MHz	
19		NE	Noise rigule		ļ	ļ	2.0	L	2.0	4	VDS = 15 V, ID = 4 mA, BG = 1 kΩ		
20	1			\downarrow	<u> </u>		4.0	<u> </u>	4.0	dB		f = 400 MHz	
21		Gps	Common-Source Power	16	25	+	L	L		4	V _{DS} = 15 V, I _D = 1 mA	f = 100 MHz	
22	-) ~ps	Gain	<u> </u>		18	-		30	-	VDS = 15 V, ID = 4 mA	<u> </u>	
23		<u> </u>				10) 20	10	20			f = 400 MHz	
* JE	DEC	registere	ed data									NH	

N ₩ 2N54>5 2N5486

NOTE:

_ _ _

_

1 Pulse Test PW 300 µs, duty cycle ≤ 3%

© 1979 Siliconix incorporated

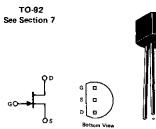
2N5

n-channel JFET designed for . . .

Analog Switches

- Choppers
- Commutators

Silizenix Sectorectione


BENEFITS

- Low Cost
- Automatic Insertion Package
- No Offset or Error Voltages Generated by Closed Switch Purely Resistive
- Low Charge Coupling from Driver to Load

```
C_{rss} = 0.8 \text{ pF} Typically
```

'ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage
Gate Current
Total Device Dissipation at (or Below) $T_A = 25^{\circ}C \dots 360 \text{ mW}$
(Derate 3.28 mW/°C to 135°C)
Operating Temperature Range
Storage Temperature Range
Lead Temperature
(1/16" from case for 10 seconds)

'ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic	Min	Max	Unit	Test Conditions		
1	I GSS Gate Reverse Current				-1.0 0.2	μΑ Ι	V _{GS} = -15 V. V _{DS} = 0	$T_A = 100^\circ C$	
3]	IDGO	Drain Leakage Current		1.0 0.2	nA μA	V _{DG} = 15 V, I _S = 0	T _A = 100°C	
5 6	S T A	D(off)	Drain Cutoff Current		10 2.0	Αn Αų	V _{DS} = 12 V, V _{GS} = -10 V	T _A = 100°C	
7	Т	BVGSS	Gate-Source Breakdown Voltage	-25			$I_G = -10 \ \mu A, V_{DS} = 0$ $I_G = 1 \ mA, V_{DS} = 0$ $I_D = 7 \ mA, V_{GS} = 0$		
8	c I	V _{GS(f)}	Gate-Source Forward Voltage		1.0				
9		VDS(on)	Drain-Source ON Voltage		1.5				
0		^r DS(on)	Static Drain-Source ON Resistance		150	Ω	ID = 0.1 mA, VGS = 0	• • • • • • • • • • • • • • • • • • •	
1		IDSS	Saturation Drain Current	15		mA	V _{DS} = 15 V, V _{GS} = 0		
2	0	rds(on)	Drain-Source ON Resistance		150	Ω	I _D = 0, V _{GS} = 0	f=1 kHz	
3	Y	Ciss	Common-Source Input Capacitance		5.0		V _{DS} = 15 V, V _{GS} = 0		
4	N	C _{rss}	Common-Source Reverse Transfer Capacitance		1.2	p۴	V _{DS} = 0, V _{GS} = -10 V	f = 1 MHz	
5	S W	^t d{on}	Turn ON Delay Time		5			•	
6	W 1	tr	Rise Time		5		V _{DD} = 10 V. I _{D(on)} = 7 mA, R _L = 1.21K V _{GS(on)} = 0, V _{GS(off)} = -10 V		
7	T	^t d(off)	Turn DFF Delay Time		15	ns			
8	H	tf	Fall Time	1	10	1			

Sifconix

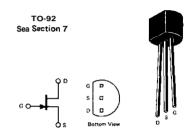
'JEOEC registered data

NH

n-channel JFETs designed for . . .

Analog Switches

Commutators Choppers

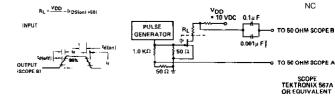

'ABSOLUTE MAXIMUM RATINGS (25°C)
Drain-Source Breakdown Voltage
Drain-Gate Breakdown Voltage 30 V
Source-Gate Breakdown Voltage
Forward Gate Current 10 mA
Total Device Dissipation at TLEAD = 25°C 625 mW
Derate above 25°C 5.68 mW/°C
Operating Junction Temperature Range65 to +135°C
Storage Temperature Range
Lead Temperature
(1/16" from case for 10 seconds)

Silicianix

BecfoBectione5Curves NC

BENEFITS

- Low Cost
- Industry Standard Package
- Automatic Insertion Package
- Fast Switching t_{rise} < 5 ns (2N5638)
- Low Insertion Loss
 R_{DS(on)} < 30 Ω (2N5638)
- Short Sample and Hold Aperture Time C_{rss} < 4 pF


*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

		Char	acteristic	2N!	5638	2N5	639	2N5	640	Unit	Test Conditions					
			Min Max		Min	Max	Min	Max	9.11							
1		₿V _{GSS}	Gate- Source Breakdown Voltage	-30		-30		-30		v	1 _G = -10 μΑ, V _{DS} = 0					
2	s	IGSS	Gate Reverse Current		-1.0		-1.0		-1.0	nA	V _{GS} = -15 V, V _{DS} = 0					
3	T	1035	Gale neverse current		-1.0		-1.0		-1,0	μA	VGS15 V, VDS - 0	T _A = +100°C				
4		D(off)	Drain Cutoff Current		1.0		1.0		1.0	nA	V _{DS} = 15 V, V _{GS} = -12 V (2N5638)					
5	11	(דיס)םי	Drain Coton Content		1.0		1.0		1.0	μΑ	$V_{GS} = -8 \vee (2N5639), V_{GS} = -6 \vee (2N5640)$ T _A = +					
6		D\$S	Saturation Drain Current	50		25		5.0		mΑ	V _{DS} = 20 V, V _{GS} = 0 (Note 1)					
7		V _{DS(on)}	Drain-Source ON Voltage		0.5		0.5		0.5	٧	V _{GS} = 0, I _D = 12 mA (2N5638), I _D = 6 mA (2N5639), I _D = 3 mA (2N5640)					
8		'DS(on)	Static Orain-Source ON Resistance		30		60		100	Ω	I _D = 1 mA, V _{GS} = 0					
9		^r ds(on)	Drain-Source ON Resistance		30		50		100		V _{GS} = 0, } _D = 0	f = 1 kHz				
10		Ciss	Common-Source Input Capacitance		10		10		10	- pF	VGS = -12 V, VDS = 0	f = 1 MHz				
11	N	Crss	Common-Source Reverse Transfer Capacitance		4.0		4.0		4.0		VGS12 V, VDS - 0					
12		^t d(on)	Turn-On Delay Time		4.0		6.0		8,0		V _{DD} = 10 V I _{D(on)} = 12 mA (2N5638) R _L	= 800 Ω (2N5638)				
13	s	t _r	Rise Time		5.0		8.0		10	- nsec	V _{GS(on)} = 0 I _{D(on)} = 6,mA (2N5639) R _L =1.6k Ω (2N5639					
14	w	td(off)	Turn-OFF Delay Time		5.0		10		15		V _{GS(off)} = -10 V I _{D(on)} =3 mA (2N5640) R _L =3.2k Ω (2N564					
15		tf	Fall Time		10		20	[30	1						

JEOEC registered data

NOTE:

1 Pulse test PW ≤ 300 µsec, duty cycle ≤ 3 0%

4

Sliconix

n-channel JFETs designed for . .

Analog Switches

- Commutators
- Choppers

Performance Curves NC See Section 5

BENEFITS

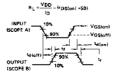
- Low Cost
- Automatic Insertion Package
- High Speed
 - ton + toff = 24 ns Max (2N5653)
- Low Insertion Loss
 RDS(on) = 50 Ω Max (2N5653)

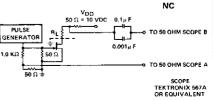
*ABSOLUTE MAXIMUM RATINGS (25°C)

Drain-Source Voltage
Source-Gate Voltage
Forward Gate Current
Total Device Dissipation at (or Below) $T_A = 25^{\circ}C$
(Derate 2.82 mW/°C to 135°C)
Operating Junction Temperature Range65 to +135°C
Storage Temperature Range

TO-92 See Section 7 $G \bigcirc \bigcup_{S}^{D} \qquad \begin{array}{c} a \\ s \\ b \\ B \\ B \\ C \\ U \\ W \\ W \end{array}$

Sili**B** ix


'ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)


				2N5	653	2N	5654	Unit	Test Conditions			
Characteristic			Min Max		Min Max		Unit	lest Conditions				
1		^{₿V} GSS	Gate-Source Breakdown Voltage	-30		-30		v	I _G = -10 μA, V _{DS} = 0			
2		IGSS	0		-1.0	1	-1.0	nA				
3	T	GSS	Gate Reverse Current		-1.0		-1.0	μA	V _{GS} = -15 V, V _{DS} = 0	T _A = +100°		
4	A		D := 0 := ((0 -=	[1.0		1.0	nΑ	V _{DS} = 15 V, V _{GS} = -12 V (2N5653)			
5	11	D(off)	Drain Cutoff Current		1.0		1.0	μA	V _{GS} =8 V (2N5654)	T _A = +100°0		
6	c	DSS	Saturation Drain Current	40		15		mA	$V_{DS} = 20 V, V_{GS} = 0 \text{ (Note 1)}$ $V_{GS} = 0, I_D = 10 \text{ mA (2N5653)}, I_D = 5 \text{ mA (2N5653)}$			
7	1	V _{OS(on)}	Drain-Source ON Voltage		0.75		0.75	v				
8		^r DS(on)	Static Drain-Source ON Resistance		50		100	Ω	I _D = 1 mA, V _{GS} = 0			
9		^r ds(on)	Drain-Source ON Resistance		50		100	71	V _{GS} = 0, I _D = 0	f≖1 kHz		
10	D Y N	Ciss	COMMON-SOUICE Input Capacitance		10		10	_		f = 1 MHz		
11	1	Crss	COMMONSOUICE Reverse Transfer Canacitance		3.5		3.5	pF	V _{GS} = -12 V. V _{DS} = 0			
12	J	[†] d(on)	Turn-ON Delay Time		4.0		6.0		V _{DD} = 10 V, I _{D(on)} = 10 mA (2N5653	3)		
	s		Rise Time		5.0		8.0	nsec	V _{GS(on)} = 0, I _{D(on)} = 5 mA (2N5654)			
14	W	^t d(off)	Turn-OFF Délay Time		5.0]	10		V _{GS(off)} = ~12 V, R _L – 925 Ω (2N5653) R _L = 1.85K Ω (2N5654)			
15	1	t _f	Fall Time	1 -	10		20					

*JEDEC registered data

NOTE:

1. Pulse test PW \leq 300 μs duty cycle \leq 3%.

Siliconix

n-channel JFETs designed for . . .

VHF/UHF Amplifiers Mixers Oscillators

*ABSOLUTE MAXIMUM RATINGS (25°C)

Drain-Gate Voltage
(Derate 3.27 mW/°C)
Operating Temperature Range
Storage Temperature Range55 to 150°C
Lead Temperature Range
(1/16" from case for 10 seconds)

Silicenix.

BENEFITS

Low cost

TO-92 See Section 7

- Automatic Insertion Package
- Specified for 100 MHz Operation

*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

Characteristic				2N8	5668	2N5	5669	2N5	5670	11-14		
		Characteristic			Max	Min	Max	Min	Max	Unit	Test Conditio	ns
1	s	IGSS	Gate Reverse Current		-2.0 -2.0		-2.0 -2.0		-2.0	nA иA	V _{GS} = -15 V, V _{DS} = 0	T _A = +100°C
3	T A T	BVGSS	Gate-Source Breakdown Voltage	-25	-2.0	-25	-2.0	-25	~2.0	<u> </u>	I _G = -10 μA, V _{DS} = 0	-A - +100 C
4	1	VGS(off)	Gate-Source Cutoff Voltage	0.2	4.0	1.0	6.0	2.0	8.0		V _{DS} = 15 V, I _D = 10 nA	
5	C	DSS	Saturation Drain Current	1.0	5.0	4.0	10	8.0	20	mA	V _{DS} = 15 V, V _{GS} = 0 (N	ote 1)
6		9fs	Common-Source Forward Transconductance	1500	6500	2000	6500	3000	7500			
7		g _{OS}	Common-Source Output Conductance		20		50		75	umhos	V _{DS} = 15 V, V _{GS} = 0 f ≈ 100 M	T = T KHZ
B		Re(yfs)	Common-Source Forward Transconductance	1000		1600		2500				
9	D	Re(yos)	Common-Source Output Conductance		50		100		150			f = 100 MHz
10	Y N A	Re(yis)	Common-Source Input Conductance		800		800		800			
11	M I	C _{iss}	Common-Source Input Capacitance		7.0		7.0		7.0			
12	с	Crss	Common-Source Reverse Transfor Capacitance		3.0		3.0		3.0	ρF		f≖1MHz
13		C _{oss}	Common-Source Output Capacitance		4.0		4.0		4.0			
14		NF	Noise Figure		2.5		2.5		2.5		V _{DS} = 15 V, V _{GS} = 0, R _G = 1K Ω	(100 M)
15		G _{ps}	Common-Source Power Gain	16		16		16		dB	V _{DS} = 15 V, V _{GS} = 0	f = 100 MHz

*JEDEC registered data

NOTE:

1. Pulse test PW = 300 μs , duty cycle \leq 3%.

NH

Siliconix

n-channel JFETs designed for...

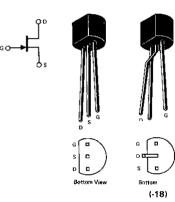
Analog Switches

Choppers

Commutators

Siliconix

Performance Curves NVA See Section 5


BENEFITS

- Very Low Insertion Loss RDS(on) < 3 Ω (J105)
- No Offset or Error Voltages Generated by Closed Switch Purely Resistive High Isolation Resistance from Driver

TO-92 See section 7

ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage	- 25 V
Gate Current ,	50 mA
Total Device Dissipation at 25°C Ambient	
(Derate 3.27 mW/°C)	0 mW
Operating Temperature Range	35°C
Storage Temperature Range55 to 1	50°C
Lead Temperature Range	
(1/16" from case for 10 seconds)	100°C

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic		J10	15		J1()6		J10)7	Unit	Test Conditions		
Gnaracteristic					Тур	Max	Міп	Түр	Max	Min	Тур	Max				
1		IGSS	Gate Reverse Current (Note 1)			-3			-3			-3	nΑ	V _{DS} - 0 V, V _{GS} 15 V		
2	s	VGS(off)	Gate-Source Cutoff Voltage	-4.5		-10	-2		-6	-0.5		-4,5	v	$V_{DS} = 5 V, 1_{D} = 1 \mu A$		
3	4	BVGSS	Gate-Source Breakdown Voltage	-25			-25			-25			ľ v	V _{DS} = 0 V, I _G = -1 μA		
	Ť	1DSS	Drain Saturation Current (Note 2)	500			200			100			mΑ	V _{DS} = 15 V, V _{GS} = 0 V		
	1	[†] D(off)	Drain Cutoff Current (Note 1)			3			3			3	nA	V _{DS} = 5 V, V _{GS} = -10 V		
3	С	DS(on)	Drain Source ON Resistance			3			6	-		8	Ω	V _{DS} ≤ 0.1 V, V _{GS} = 0 V		
'		C _{dg(off)}	Drain Gate OFF Capacitance			35			35			35		V _{DS} = 0 V, V _{GS} = -10 V		
3		C _{sg(off)}	Source Gate OFF Capacitance			35			35			35		VDS - 0 V. VGS10 V		
9 D 9 Y N A	Y N	C _{dg(on)} + C _{sg(on)}	Drain Gate plus Source Gate ON Capacitance			160			160			TGU	pF	V _{DS} - V _{GS} - 0 V		
)	M I	t _{d(on)}	Turn On Delay Time	1	15		1	15			15			Switching Time Test Conditions		
1 c	c	tr	Rise Time		20			20			20			J105 1106 J107 Von 1,5 V 1.5 V 1.5 V		
2	-	^t d(off)	Turn Off Delay Time		15			15			15		ns	V _{GS(off)} -12 V -7 V 5 V		
3		tr	Fail Time		20			20			20			\mathbf{R}_1 50 Ω 50 Ω 50 Ω		

NOTES:

Siliconix

2. Pulse test duration = 300 μs , duty cycle $\leq 3\%$.

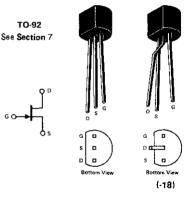
NVA

^{1.} Approximately doubles for every 10°C increase in TA.

n-channel JFETs designed for ...

- Analog Switches
- Choppers
- Commutators
- Low Noise Audio Amplifiers

Siliconix


Sectore Surves NIP

BENEFITS

- Low Cost
- Automated Insertion Package
- Low Insertion Loss
- RDS(on) <8 Ω (J108) No Offset or Error Voltages Generated by Closed Switch **Purely** Resistive High isolation Resistance from Driver
- Fast Switching
 - tD(on) + tr = 5 ns Typical
- Low Noise
 - $\overline{e}_n = 6 \text{ nV}/\sqrt{Hz}$ at 10 Hz. Typ (J110)

ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage
Total Device Dissipation at 25°C Ambient (Derate 3.27 mW/°C)
Operating Temperature Range55 to 135°C Storage Temperature Range55 to 150°C
Lead Temperature Range (1/16" from case for 10 seconds)

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

Characteristic			J108			J109			J110		Unit	Test Conditions		
	Characteristic	Min	Түр	Max	Mìn	Тур	Max	Min	Тур	Max	Unit	Tase Conditions		
GSS	Gate Reverse Current (Note 1)			-3			-3			-3	nA	$V_{DS} = 0 V, V_{GS} = -15 V$		
V _{GS(off)}	Gate-Source Cutoff Voltage	-3	[-10	-2		-6	-0.5		-4	- V	V _{DS} = 5 V, I _D = 1 µA		
av _{GSS}	Gate-Source Breakdown Voltage	-25			-25			-25			Ť	V _{DS} = 0 V, I _G = -1 µA		
DSS	Drain Saturation Current (Note 2)	80			40			10			mА	V _{DS} = 15 V, V _{GS} = 0 V		
D(off)	Drain Cutoff Current (Note 1)			3			3			3	nA	V _{DS} = 5 V, V _{GS} = -10 V		
^r DS(on)	Drain-Source ON Resistance			8			12			18	Ω	$V_{DS} \le 0.1 V$, $V_{GS} = 0 V$		
C _{dg(off)}	Drain-Gate OFF Capacitance			15			15			15		y = 0 y y = 10 y		
C _{sg(off)}	Source-Gate OFF Capacitance			15			15			15	-	*DS = 0 *, *GS = =10 *	- f = 1 MHz	
C _{dy(on)}				85			85			85	p⊦	V _{DS} ⁻ ∨ _{GS} = 0		
^t d(on)	Turn ON Delay Time		4			4			4			Switching Time Test Condition	ons	
t,	Rise Time		1	-		1			1			J108 J109 Vec 15V 15V	J110 1.5 V	
t _{d(ott)}	Turn OFF Delay Time		6			6			6		ns	DQ ·	-5 V	
4	Fall Time		30	[30	-		30			R _L 150 Ω 150 Ω	150 Ω	
	VGS(off) 8VGSS 1DDSS 1D(off) 7DS(on) Cgg(off) Cgg(off) Cgg(off) Cgg(off) Cgg(off) 4 Cgg(off) t d(on) t t d(on) t t	IGSS Gate Reverse Current (Note 1) VGS(off) Gate-Source Cutoff Voltage 8VGSS Gate-Source Breakdown Voltage IDSS Drain Saturation Current (Note 2) ID[off] Drain Cutoff Current (Note 1) rDS(on) Drain-Gate OFF Capacitance Cgg(off) Drain-Gate OFF Capacitance Cgg(off) Drain-Gate Plus Source-Gate OFF Capacitance Cgf(on) Turn ON Delay Time t_d(on) Turn OFF Delay Time t_d(ott) Turn OFF Delay Time	Min I _{GSS} Gate Reverse Current (Note 1) VGS(off) Gate-Source Cutoff Voltage 3V _{GSS} Gate-Source Breakdown Voltage 2SS Drain Saturation Current (Note 2) 10 Drain Saturation Current (Note 2) 10 Drain Cutoff Current (Note 1) rDS(on) Drain Cutoff Current (Note 1) rDS(on) Drain-Gate OFF Capacitance Cgg(off) Drain-Gate OFF Capacitance Cgg(onf) Gate ON Capacitance Cgg(onf) Gate ON Capacitance clu(on) Turn ON Delay Time t_q(ont) Turn OFF Delay Time t_q(ott) Turn OFF Delay Time	Min Typ I _{GSS} Gate Reverse Current (Note 1) ////////////////////////////////////	Min Typ Max I _{GSS} Gate Reverse Current (Note 1) -3 -3 VGS(off) Gate-Source Cutoff Voltage -3 -10 8V _{GSS} Gate-Source Cutoff Voltage -3 -10 8V _{GSS} Gate-Source Breakdown Voltage -25 -10 1DSS Drain Saturation Current (Note 2) 80 -10 1Dloff) Drain Cutoff Current (Note 1) 3 3 rDS(on) Drain-Gate OFF Capacitance 15 8 Cig(off) Drain-Gate OFF Capacitance 15 15 Cig(off) Source-Gate OFF Capacitance 15 85 Cig(on) Drain-Gate Plus Source-Gate OFF Capacitance 45 85 Cig(on) Drain-Gate Plus Source-Gate OFF Capacitance 4 1 t_q(on) Turn ON Delay Time 4 1 t_q(ott) Turn OFF Delay Time 6 4	MinTypMaxMin I_{GSS} Gate Reverse Current (Note 1)-3-3 $V_{GS(off)}$ Gate-Source Cutoff Voltage-3+10-2 $8V_{GSS}$ Gate-Source Breakdown Voltage-25-2-25 I_{OSS} Drain Saturation Current (Note 2)804040 $I_{D(off)}$ Drain Cutoff Current (Note 1)33 $r_{DS(on)}$ Drain-Gate OFF Capacitance155 $C_{gg(off)}$ Drain-Gate OFF Capacitance455 $C_{ug(on)}$ Drain-Gate Plus Source-Gate OFF Capacitance455 $c_{ug(on)}$ Drain-Gate Plus Source-Gate OFF Capacitance45 $c_{ug(on)}$ Drain-Gate Plus Source-Gate OFF Capacitance45 $c_{ug(on)}$ Turn ON Delay Time45 $c_{ug(on)}$ Turn ON Delay Time45 $c_{ug(ott)}$ Turn OFF Delay Time65	Min Typ Max Min Typ I _{GSS} Gate Reverse Current (Note 1) -3 -3 -3 V _{GS(off)} Gate-Source Cutoff Voltage -3 -10 -2 8V _{GSS} Gate-Source Cutoff Voltage -3 -25 -25 IOSS Drain Saturation Current (Note 2) 80 40 -10 ID(off) Drain Cutoff Current (Note 1) 3 40 -11 ID(off) Drain-Source ON Resistance 8 -25 -25 C _{gg(off)} Drain-Gate OFF Capacitance 15 -25 -25 C _{gg(off)} Source-Gate OFF Capacitance 15 -25 -25 C _{gg(off)} Drain-Gate Plus Source-Gate OFF Capacitance 85 -25 -25 C _{ug(on)} Drain-Gate Plus Source-Gate OFF Capacitance 15 -25 -25 C _{ug(on)} Drain-Gate Plus Source-Gate OFF Capacitance 85 -25 -25 C _{ug(on)} Drain-Gate Plus Source-Gate OFF Capacitance 15 -25 -25 C _{ug(on)}	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Min Typ Max Min Type Max Min Type Max Min Type Max Min Type Max Mi	Min Typ Max Min <td>Min Typ Max Min Typ Max Min<td>Min Typ Max Min Typ Max Max<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td></td>	Min Typ Max Min <td>Min Typ Max Min Typ Max Max<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td>	Min Typ Max Max <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

1. Approximately doubles for every 10°C increase in Ta

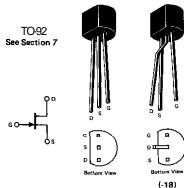
2. Pulse Test duration 300 µs; duty cycle < 3%.

n-channel FETs designed for . . .

Choppers

Commutators

R Siliconix


Berf Bertaince Curves NC

BENEFITS

- Low Cost
- Automated Insertion Package
- Low Insertion Loss $R_{DS(on)} < 30 \Omega (J111)$
- No Offset or Error Voltages Generated by Closed Switch **Purely Resistive** High Isolation Resistance from Driver
- Fast Switching
 - tD(on) + tr = 13 ns Typical
- Short Sample and Hold Acerture Time $C_{gd(off)} < 5 \text{ pF}$ $C_{gs(off)} < 5 \text{ pF}$

ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage
Total Device Dissipation at 25°C Ambient
(Derate 3.27 mW/°C),
Operating Temperature Range
Storage Temperature Range
Lead Temperature Range
(1/16" from case for 10 seconds)

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic	J111				J112			J113		UNIT	Test Conditions				
			Characteristic	Min Typ Max Min Typ Max Min Typ Max		UNIT	Test Conditions											
1		IGSS	Gate Reverse Current (Note 1)			-1			-1			-1	nA	V _{DS} = 0 V, V _{GS} = 15 V				
~	s	VGS(off)	Gate Source Cutoff Voltage	3		10	-1		-5	-0.5		3	v	V _{D\$} = 5 V, I _D = 1	1 μA			
3	A	≣VG\$S	Gate Source Breakdown Voltage	35			- 35			-35			ľ	V _{DS} = 0 V, I _G = -1 µA				
1	Ţ	DSS	Drain Saturation Current (Note 2)	20			5			2			mΑ	V _{DS} = 15 V, V _{GS} ≈ 0 V				
5	ċ	D(off)	Drain Cutoff Current (Note 1)			-1			1			-1	nA	v _{DS} = 5 v, V _{GS} -				
5		DS(on)	Drain Source ON Resistance			30	1		50			100	Ω	VDS = 0.1 V, VG	s = 0 V			
7		C _{dg(off)}	Drain Gate OFF Capacitance			5			5			5	pF					
3	_	C _{sg(off)}	Source Gate OFF Capacitance			5			5			5		V _{DS} = 0 V, V _{GS} -	= -10 V	f = 1 MHz		
	D Y N	C _{rig} (on) C _{sgion})	Drain Gate Plus Source Gate ON Capacitance		ļ	28			28			28	μ.	V _{DS} = V _{GS} = 0				
5	A	^t d(an)	Turn On Delay Time	Γ	7			7			7			Switching Time Te	est Condi	tions		
ı]	1	t _r	Rise Time		6			6			6				Л11	J112	J113	
2	c	td(off)	Turn Off Delay Time		20			20			20	<u> </u>	ns		10 V 12 V	10 ∨ -7 V	10 V -5 V	
3		ч	Fall Time	-	15			15			15			00(0///	00 12	1.600 Ω	3,200 Ω	

NOTES:

Siliconix

1. Approximately doubler for every 10°C increase in TA.

2. Pulse Test duration 300 µs; duty cycle ≤ 3%.

n-channel JFET designed for...

Analog Switches

ABSOLUTE MAXIMUM RATINGS (25°C)

Total Device Dissipation at 25°C Ambient

- Choppers
- Commutators

Lead Temperature Range

Sili

Sectorotion Scurves NZF

BENEFITS

- No Offset or Error Voltages Generated by Closed Switch Purely Resistive High Isolation Resistance from Driver
- Very Fast Switching
 t_D(on) + t_r = 6 ns Typical
- Short Sample and Hold Aperture Time Cgd(off) < 2 pF Cgs(off) < 2 pF

TO-92 See Section 7

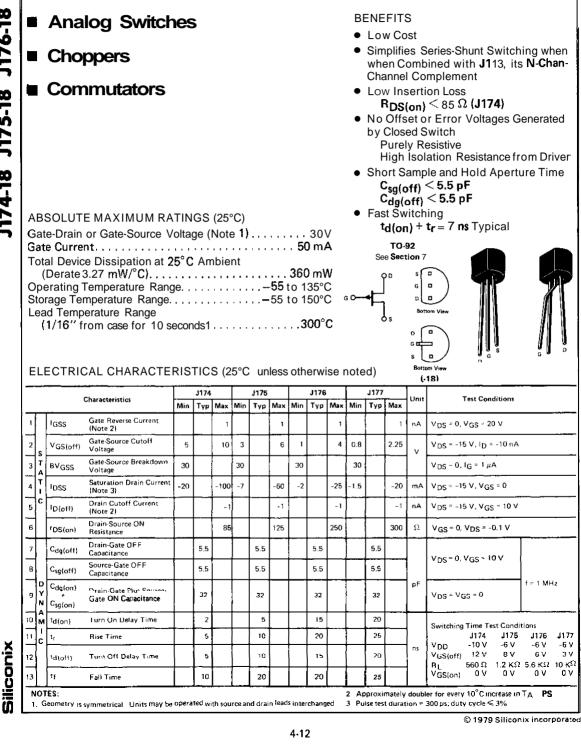
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic		J114		Unit	Test Conditions	
			Characteristic	Min	Тур	Max	Unit	rest Conditions	_
1		IGSS	Gate Reverse Current (Note 1)			-1	nA	V _{DS} = 0 , V _{GS} = -15 V	
2 3 4	S T	VGS(off)	Gate-Source Cutoff Voltage	-3	[-10		V _{DS} = 5 V, I _D = 1 µA	
3	Å	BVGSS	Gate-Source Breakdown Voltage	-25			v	V _{DS} = 0, I _G = -1 μA	
4	т	DSS	Saturation Drain Current (Note 2)	15		1	mA	V _{DS} = 15 V, V _{GS} = 0	
5	L L	¹ D(off)	Drain Cutoff Current (Note 1)			1	nA	V _{DS} = 5 V, V _{GS} = -10 V	,
6	Ľ	⁷ DS(on)	Drain-Source ON Resistance			150	Ω	V _{DS} ≤0.1 V, V _{GS} = 0	
7		Cdg(off)	Drain-Gate OFF Capacitance			2			
8		C _{sg(off)}	Source-Gate OFF Capacitance			2	1	V _{DS} = 0, V _{GS} = -10 V	
9	D Y N	C _{dg(on)} + C _{sg(on)}	Drain-Gate Plus Source-Gate ON Capacitance			8	рF	V _{DS} = V _{GS} = 0	f = 1 MHz
10	M	^t d(on)	Turn On Delay Time		3			[
11 12	1	tr	Rise Time		3]	Switching Time Test Con	
12	С	td(off)	Turn Off Delay Time		12		กร	V _{DD} = 10 V, V _{GS(off)} =	
13		tf	Fall Time	_	8			$R_L = 1 K\Omega, VGS(on) = 0$)

4-11

NOTES:

1. Approximately doubles for every 10°C increase in TA.


2. Pulse test duration = $3 W \mu s$; duty cycle $\leq 3\%$.

NZF

Sliconix

p-channel JFETs

designed for . . .

Silicanix

J177

-6 V

3 V

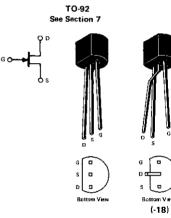
0 V

Performance Curves PS

See Section 5

n-channel JFETs designed for...

Secf Section Curves NP


General Purpose Amplifiers

BENEFITS

- High Input Impedance IG = 35 pA Typical
- Good for Low Power Supply Operation
 - $V_{GS(off)} < 1.5 V (J201)$

ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage (Note 1)40 V
Gate Current
Total Device Dissipation at 25°C Ambient
(Derate 3.27 mW/°C)
Operating Temperature Range
Storage Temperature Range
Lead Temperature Range
(1116" from case for 10 seconds)

ELECTRICAL CHARACTERISTICS	(25°C unless otherwise noted)
----------------------------	-------------------------------

				1	J201			J202			1203		Unit	Tota Canaditions		
	Characteristic			Min Typ N		Мах	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions		
1		[†] GSS	Gate Reverse Current (Note 2)			-100			-100			-100	ρĄ	V _{DS} - 0, V _{GS} = -20 V		
2	5 T	VGS(off)	Gate-Source Cutoff Voltage	-0.3		-1.5	-0.8		-4.0	-2.0		-10.0	v	V _{DS} = 20 V, I _D = 10 nA		
3	A T	₿V _{GSS}	Gate-Source Breakdown Voltage	-40			-40			-40			·	VDS = 0, IG = -1 µA		
4	l C	1D\$S	Saturation Drain Current (Note 3)	0.2		1.0	0.9		4.5	4.0		20	mA	V _{DS} = 20 V, V _{GS} = 0	_	
5		١G	Gate Current (Note 2)		-35			-35			-35		рΑ	V _{DG} = 20 V, I _D = I _{DSS} (min)	
6	D	9fs	Common-Source Forward Transconductance (Note 3)	500			1,000			1,500			µmho		f≖1kHz	
?	Y N	9 ₀₅	Common source Output Conductance		1			35			10		μπηο		1. 1.640	
	M	Ciss	Common Source Input Capacitance				Ì	ļ	1 -					V _{DS} = 20 V, V _{GS} = 0	f≐⊺MH	
	c	Crss	Common-Source Reverse Transfer Capacitance										pF		1 - 1 (401)	
0		ē'n	Equivalent Short Circuit Input Noise Voltage		5			5			5		<u>nV</u>	V _{DS} = 10 V, V _{GS} = 0	f = 1 kHz	

NOTES.

1 Geometry is symmetrical. Units may be operated with source and drain leads interchanged

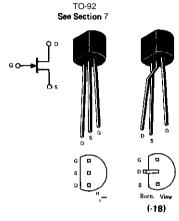
2 Approximately doubles for every 10°C increase in T_A.

3 Pulse test duration = 2 ms.

NΡ

Siliconix

n-channel JFETs designed for...


General Purpose Switching

Silianix performance Curves NP See Section 5

BENEFITS

Very Low Leakage

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

					J 204			Test Conditions				
		Ca	racteristic	Min	Тур	Max	Unit					
1		' _{GSS}	Gate Reverse Current (Note 2)			-100	pΑ	V _{DS} = 0, V _{GS} = -20 V				
2	s	V _{GS(off)}	Gate-Source Cutoff Voltage	-0.5		-2.0	v	V _{DS} = 20 V, I _D = 10 nA				
3	T A T	BV _{GSS}	Gate-Source Breakdown Voltage	-25				V _{DS} = 0, I _G = -1 μA				
4	Ċ	IDSS	Saturation Drain Current (Note 3)		1.2		mA	mA V _{DS} = 20 V, V _{GS} = 0				
5		۱ _G	Gate Current (Note 2)		-35		pА	$V_{DG} = 20 V, I_D = 200 \mu A$				
6		gfs	Common Source Forward Transconductance (Note 3)		1500		umho		f=1kHz			
7	D Y N	g ^{O2}	Common-Source Output Conductance		2.5		μιπο	$V_{DS} = 20 V_{c} V_{GS} = 0$	Г-			
8	A M I C	C _{iss}	Common-Source Input Capacitance		4			v _{DS} = 20 v, v _{GS} = 0	f = 1 MHz			
9		C _{rss}	Common-Source Reverse Transfer Capacitance		1		pF					
10		ēη	Equivalent Short-Circuit Input Noise Voltage		10		nV √Hz	V _{DS} = 10 V. V _{GS} = 0	f=1kHz			

NOTES:

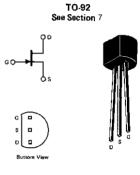
- 1, Geometry is symmetrical. Units may be operated with source and drain leads interchanged
- 2. Approximately doubles for every 10°C increase in T_A.
- 3. Pulse test duration = 2 mr.

Silicanix

Silianix

Performance Curves NZF See Section 5

- High Gain GFS = 7000 µmho Minimum (J211, J212)
- High Input Impedance
 IGSS = 100 pA Maximum
 Ciss = 5 pF Typical


ABSOLUTE MAXIMUM RATINGS (25°C)

n-channel JFETs

General Purpose Amplifiers

designed for...

Gate-Drain or Gate-Source Voltage
Gate Current 10 mA
Total Device Dissipation at 25°C Ambient
(Derate 3.27 mW/°C)
Operating Temperature Range,,,,,,,,, -55 to 135°C
Storage Temperature Range 55 to 150°C
Lead Temperature Range
(1/16" from case for 10 seconds)

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic		J21 0			J211			J212		Unit		
				Min	Тур	Max	Min	Түр	Max	Min	Тур	Max	Unit	Test Conditions	
1	s	IGSS	Gate Reverse Current (Note 1)	-	_	-100			-100			-100	pА	V _{DS} = 0, V _{GS} = -15 V	
2	Т	VGS(off)	Gate-Source Cutoff Voltage	-1		-3	-2.5		-4.5	-4		-6	v	V _{DS} = 15 V, I _D = 1 nA	
3	1 ^	BVGSS	Gate-Source Breakdown Voltage	-25		[-25			-25			v	$V_{DS} = 0, I_G = -1 \mu A$	
4];	IDSS	Saturation Drain Current (Note 2)	2	[15	7		20	15		40	mΑ	V _{DS} = 16 V, V _{GS} = 0	
5	c	١ _G	Gate Current (Note 1)		-10			-10			-10		pА	V _{DG} = 10 V, I _D = 1 mA	
6	l	9 _{fs}	Common-Source Forward Transconductance (Note 2)	4,000		12,000	7,000		12,000	7,000		12,000	umho		1 = 1 kH
7	P	9 _{OS}	Common-Source Output Conductance			150			200			200			
8	A	Ciss	Common-Source Input Capacitance		4			4			4			V _{DS} = 15 V, V _{GS} = 0	
9		C _{rss}	Common-Source Reverse Transfer Capacitance		1			1			1	i.	φF		f = 1 M⊦
0	1 ⁻ I	ēn	Equivalent Short-Circuit Input Noise Voltage		10			10			10		n <u>∨</u> ⊮Hz		f=1kH

NOTES:

1. Approximately doubles for every 10° C increase in T_A.

2. Pulse test duration = 2 ms.

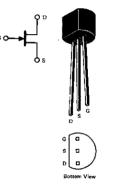
NZF

Δ

Siliconix

n-channel JFETs designed for . . .

Audio and Sub-Audio Amplifiers


Performance Curves NS See Section 5

BENEFITS

• Ultra Low Noise $\vec{e}_n = 8 \text{ nV}/\sqrt{\text{Hz}}$ Typical at 10 Hz $\vec{e}_n = 2 \text{ nV}/\sqrt{\text{Hz}}$ Typical at 1 kHz

ABSOLUTE MAXIMUM RATINGS (25°C)
Gate-Drain or Gate-Source Voltage (Note 1)40V Gate Current
Total Device Dissipation at 25°C Ambient (Derate 3.27 mW/°C),

Sili

	Characteristic						1	J231			JZ32		Unit	Test Conditions		
		c	naracteristic	Min	Тур	Max	Min	тур	Max	Min	Түр	Мах	Unit	Test Conditions		
1		IGSS	Gate Reverse Current (Note 2)			-250			-250			-250	pА	V _{DS} = 0, V _{GS} = -30 V		
2	S T	VGS(off)	Gate-Source Cutoff Voltage	-1		-3	-2		-5	-4		-6	v	V _{DS} = 20 V, I _D = 1 μA		
3	A T	BVGSS	Gate-Source Breakdown Voltage	-40			-40			-40				$V_{DS} = 0, I_{G} = -1 \mu A$		
4	I C	IDSS.	Saturation Drain Current (Note 3)	0.7		3	2		6	5		10	mA	V _{DS} = 20 V, V _{GS} = 0	<u> </u>	
5		IG	Gate Current (Note 2)		-10			-10			-10		pΑ	V _{DG} = 10 V, I _D = 0.5 m	A	
6	D	9 _{fs}	Common-Source Forward Transconductance (Note 3)	1,000		2,500	1,500		3,000	2,500		4,000	µmho		f = 1 kHz	
7	Y	9os	Common-Source Output Conductance	Ι		2	_		4			6	μπιτο			
8	A M	Ciss	Common-Source Input Capacitance		12			12			12		pF	V _{DS} = 20 V, V _{GS} = 0	f = 1 MH:	
9	I C	Crss	Common-Source Reverse Transfer Capacitance		2			2			2		μı	·		
D		_	Equivalent Short Circuit	1	8	30		8	30		8	30	<u>n</u> V	N	f = 10 Hz	
1		ē _n	Input Noise Voltage		2	[2		1	2		₩Hz	V _{DS} = 10 V, V _{GS} = 0		

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

NOTES:

Siliconix

1. Geometry is symmetrical. Unit may be operated with source and drain leads interchanged.

2. Approximately doubles for every 10°C increase in T_A.

3. Pulse test duration = 2 ms.

NS

designed for . . . See Section 5 General Purpose Amplifiers BENEFITS I ow Cost Automatic Insertion Package High Gain Amplifiers Low Noise TO-92 See Section 7 ABSOLUTE MAXIMUM RATINGS (25°C) Total Device Dissipation at 25°C Ambient Lead Temperature Range G (-18)ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

					J270			J271			T to 0 in the second				
_			Characteristic Min Typ Max Min Typ Max					Unit	Test Conditions						
1	s	IGSS	Gate Reverse Current (Note 2)			200			200	pА	V _{DS} = 0, V _{GS} = 20 V				
2	т	VGS(off)	Gate-Source Cutoff Voltage	0.5		2,0	1.5		4.5	v	V _{DS} = -15 V, I _D = -1 nA				
3	A	BVGSS	Gate-Source Breakdown Voltage	30			30]	$V_{DS} = 0, I_G = 1 \mu A$				
4		loss	Saturation Drain Current (Note 3)	-2		-15	-6		-50	mA	V _{DS} = -15 V, V _{GS} = 0				
5	С	IG	Gate Current (Note 2)		15			60		pА	VDG = -15 V, ID = IDSS(min)				
6		9fs	Common-Source Forward Transconductance (Note 3)	6,000		15,000	8,000		18,000	1					
7	D Y	9 _{OS}	Common-Source Output Conductance			200			500	μπho		f = 1 kHz			
8	N A	C _{iss}	Common-Source Input Capacitance		32			32			V _D \$ = −15 V, V _G \$ = 0				
9	M I C	C _{rss}	Common Source Reverse Transfer Capacitance		4			4		ρF		f=1MHz			
10		e _n	Equivalent Short-Circuit Input Noise Voltage		6			6		nV	V _{DS} = -10 V, I _D = I _{DSS} (min)	f = 1 kHz			

NOTES:

1. Geometry is symmetrical. Units may be operated with source and drain leads interchanged

~=channelFETs

2. Approximately doubles for every 10°C increase in T_A.

3. Pulse test duration = 2 ms.

Silicenix

18 J271-18

Performance Curves PS

- $q_{fs} = 14,000 \ \mu mho Typical (J271)$
- $\overline{\mathbf{e}}_{n} = 6 \text{ nV} / \sqrt{Hz}$ at 1 kHz Typical

Siliconix

© 1979 Siliconix incorporated

PS

4-17

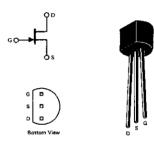
8

n-channel JFETs designed for

VHF/UHF Amplifiers Oscillators Mixers

Siliconix

Beef Sectione 5 Curves NZF


BENEFITS

- High Power Gain 20-23 dB Typical at 100 MHz, Common-Source 17.5-20.5 dB Typical at 100 MHz. Common-Gate
 - Low Noise Figure **1.3 dB** Typical at 100 MHz
- High Dynamic Range Greater than 100 dB

TO-92 See Section 7

ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage25 V
Gate Current
Total Device Dissipation at 25°C Ambient
(Derate 3.27 mW/°C)
Operating Temperature Range
Storage Temperature Range
Lead Temperature Range
(1/16" from case for 10 seconds)

ELECTRICAL CHARACTERISTICS (25°C unless otherwise specified)

			Characteristic	Min Max		Unit	Test Conditions			
1					-0.5	nA				
2	S T	IGSS	Gate Reverse Current		-0.1	μA	$V_{GS} = -15 V, V_{DS} = 0$ $T_{A} = 125^{\circ}$			
3	A T	BVGSS	Gate-Source Breakdown Voltage	25		v	I _G = -1 μA, V _{DS} = 0			
4	i	VGS(off)	Gate-Source Cutoff Voltage (Note 1)	-1.5	-7.0	v	V _{DS} = 10 V, I _D = 1 nA			
5	С	IDSS	Saturation Drain Current (Note 1, 2)	4	45	mA	V _{DS} = 10 V, V _{GS} = 0			
6	D	gfs	Common-Source Forward Transconductance (Note 1)		9000	µmho	V _{DS} = 10 V, I _D = 5 mA, f = 1 kHz			
7	N	gos	Common-Source Output Conductance		200					
8	A M H	Crss Capacitance			1.7	ρF	V _{DG} = 10 V, 1 _D .≈ 5 mA, f = 1 MHz			
9	с				5.5					

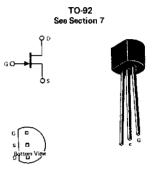
NOTES:

1. I_{DSS} and $V_{GSS(off)}$ are selected into 5 ranges and labeled according to above tabla.

2. Pulse test PW \leq 300 μ s, duty cycle \leq 3%.

VHF/UHF Amplifiers Oscillators **Mixers**

ABSOLUTE MAXIMUM RATINGS (25°C)
Gate-Drain or Gate-Source Voltage30 V
Gate Current
Total Device Dissipation at 25°C Ambient
(Derate 3.27 mW/°C)
Operating Temperature Range55 to 135°C
Storage Temperature Range
Lead Temperature Range
11/16" from case for 10 seconds)


Sili

304 J305

Performance_Curves NH See Section 5

BENEFITS

- Characterized for Operation at 100 and 400 MHz
- Low Noise
 - NF = 1.7 dB Typical at 100 MHz

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

				J304			J305					
			Characteristic	Min	Typ	Max	Min	Тур	Max	Unit	Test Conditions	
1]	S	IGSS	Gate Reverse Current (Note 1)			~100			-100	pА	VDS = 0, VGS = -20 V	
2	Å	VGS(off)	Gate Source Cutoff Voltage	-2		-6	-0.5		-3	v	V _{DS} = 15 V, I _D = 1 nA	
3	Ţ	BVGSS	Gate Source Breakdown Voltage	-30			-30				Vps = 0, Ig = -1 µA	
4	c	IDSS	Saturation Drain Current (Note 2)	5		15	1		8	mΑ	V _{DS} = 15 V, V _{GS} = 0	
5		9 _{fs}	Common-Source Forward Transconductance (Note 2)	4,500		7,500	3,000				· · · · · ·	f=ikHz
6	D Y	gos	Common-Source Output Transconductance			50			50	µmho)/	TEIKHZ
7	N A M	Ciss	Common-Source Input Capacitance		3.5			3.5			v_{DS} = 15 V, v_{GS} = 0	
8	1 C	Crss	Common-Source Reverse Transfer Capacitance		0.85			0.85		рF		f=1MH
9		Coss	Common-Source Output Capacitance		1.0			1.0				
0 1		9fs	Common-Source Forward					3,000				f = 100 N
_			Transconductance		4,200							f = 400 l
2	н	9055	Common-Source Output		60		ļ	60				f = 100 l
3	Т	0033	Conductance		80							f ≃ 400 I
4	G H	boss	Common-Source Output Conductance Common-Source Output		800			800		umho	Vps = 15 V, Vgs = 0	f ≈ 100 l
õ	_	0055	Susceptance		3,600					μπιτο	VDS - 15 V, VGS - 0	1 - 400
6	R	0	Common-Source Input		80			80			f = 1	
7	E	giss	Conductance		800]] i		f = 400
3	υ	ь. ь.	Common-Source Input		2,000			2,000				f = 100
9	E	biss	Susceptance	[7,500							f = 400
)	c	Gps	Common Source Power		20						Vps = 15 V, Ip = 5 mA	f = 100
1	ľ	-ps	Gain		11					1	AD2 - 19 A' ID = 2 WH	f = 400
2			Noise Figure	}	1.7					dB	V _{DS} = 15 V, I _D = 5 mA,	f = 100
3	1	NF	(Single Sideband)		3.8		r	İ		1	$H_{G} = 1 K\Omega$	

I. Approximately doubles for every 10°C increase in T_A.

2. Pulse test duration = 2 ms.

÷

NH

ສິ n-channel JFETs designed for. ..

■ VHF/UHF Amplifiers

Oscillators **Mixers**

ABSOLUTE MAXIMUM RATINGS (25°C)

Drain-Gate Voltage
Total Device Dissipation at 25°C Ambient
(Derate 3.27 mW/°C)
Operating Temperature Range – 55 to 135°C
Storage Temperature Range – 5 5to 150°C Lead Temperature Range
(1/16" from case for 10 seconds)

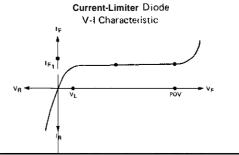
Sili**Ø**hix

Performance Curves NZA See Section 5 BENEFITS

TO-92 See Section 7

- Industry Standard Part In Low Cost Plastic Package
- High Power Gain 11 dB Typical at 450 MHz Common-Gate
- Low Noise 2.7 dB Typical at 450 MHz
- Wide Dynamic Range Greater than 100 dB
- Easily Matches to 75 Ω Input

٦ d . \$


ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) J308 J309 J310 Characteristic Unit Test Conditions Min Тур May Min Тур M ... Min Тур Max Gate-Source Breakdown ₿VGSS -25 - 25 -25 v $I_{G} = -1 \mu A, V_{DS} = 0$ Voltage 2 -1.0 1.0 1.0 пΑ VGS = -15 V, Gate Reverse Current IGSS з -1.0 -10 -1.0 V05 = 0 T = +125°C ыA Gate-Source Cutoff -1.0 -6.5 -1 D 4 VGS(aff) 4.0 -2.0 -6.5 v VDS = 10 V, ID = 1 nA Voltage Saturation Drain 5 C 12 60 12 30 24 60 Inss V_{DS} = 10 V, V_{GS} = 0 mΑ Current (Note 1) Gate-Source Forward 6 VGS(f) 1.0 1.0 1.0 v V_{DS} = 0, I_G = 1 mA Voltage Common-Source For-7 10,000 9fs B 000 20.000 20.000 8.000 18 000 ward Transconductance Common Source 8 200 200 200 4os V_{DS} = 10 V, I_D = 10 mA Output Conductance f - 1 kHz umhos Common-Gate Forward 9 13,000 13,000 12.000 9fg Transconductionce Common-Gate Output 10 909 150 100 150 Conductance Gate Drain 11 Cgd 1.8 2.5 1.8 2.5 1.8 2.5 Capacitance Vne = 0. f ~ 1 MHz рf Gate-Source V_{GS} = -10 V 12 Ċgs 4.3 50 4.3 5.0 4.3 5.0 Capacitance Equivalent Short-Circuit V_{DS} = 10 V, I_D = 10 mA 13 10 10 10 f = 100 Hz Input Noise Voltage Common Source Forward 14 Re_{(Yfs}) 12 12 12 Transconductance Common Gats Input 15 Re(yig) 14 14 14 Conductance mmho Common-Source Input 16 Re_{(yis}) 04 0.4 0.4 Conductance f = 105 MHz Common-Source Output V_{DS} = 10 V, I_D = 10 mA 17 Re(yos) 0.15 0.15 0.15 Conductance Common Gate Power 18 E Gpg 16 16 16 Gain at Noise Match 19 NF Noise Figure 1.5 1.5 15 dB Common-Gate Power 20 Gpg 11 11 11 Gain at Noise Match i = 450 MHz 21 Naise Figure **INF** 2.7 2.7 2.7 NOTE NZA 1. Pulse test PW 300 µs, duty cycle < 3%

n-channel JFETs Current regulator diodes designed for Performance Curves NCL See Section 5											
 Current Regulation Current Limiting Biasing Linear Ramp and Staircase Beasing Biasing 										Current Sources s Required	
	Gei	nerator							See	TO-92 Sectio	
For Rev Tot: (Ope Sto Lea (ward C verse Cu al Devid Derate erating rage Te ad Temp 1/16" 1	ating Voltage	mbient	55 55	20 50 360 m to 135 to 150 300	mA mA ℃ ℃	ed))		
	~- <u>-</u>	Characteristic		J500	J501	J502	J503	J504	J505	Unit	Test Conditions
	S ¹ Fi	Forward Current (Note 1)	Min Nominal Max	0.192 0.240 0.288	0.264 0.330 0.396	0.344 0.430 0.516	0 448 0.560 0.672	0.600 0.750 0.900	0 800 1.000 1.200	mA	VF = 25 V
		Peak Operating Voltage (Notes 1 and 2)	Min	50	50	50	50	50	50		lF = 1.1 lFI (Max)
	ċ┝ │∨∟	Limiting Voltage (Note 31	Мах Тур	1.2 0.8	1.3 0.9	1.5 1.1	1.7 1,2	1.9 1.4	2.1 1.5	v	F = 0.9 IFI (Min)
8		Small-Signal Dynamic Impedance (Note 1)	Min Typ	5.0 . 8.0	3.0 6.0	2.0 4,4	1,4 3,4	1.0 2.5	0.6 1.9	MΩ	V _F = 25 V, f = 1 kHz
9	CF	Anode-Cathode Capacitance	Тур	2	2	2	2	2	2	рF	V _F = 25 V, f = 1 MHz

NOTES:

1. Pulse test duration = 2 ms

2. Maximum VF where $F \le 1.1 |F|_{Max}$ is guaranteed. 3. Minimum VF required to insure $F \ge 0.9 |F|_{Min}$.

A

Siliconix

NCL

الج
 n-channelJFETsالج
 current regulator diodes
designed for...Performance

Performance Curves NCL See Section 5

Silia

BENEFITS

Low Cost

ANODE

- Simple Two Lead Current Source
- Simplifies Floating Current Sources No Power Supplies Required
- Good Operating Current Tolerance ±20%

TO-92 See Section 7

ABSOLUTE MAXIMUM RATINGS (25°C) Peak Operating Voltage

Current Regulation

Current Limiting

Biasing

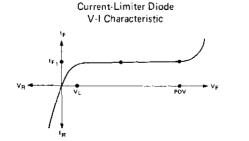
Generator

Forward Current
$Reverse \ Current. \ \ldots \ 50 \ mA$
Total Device Dissipation at 25°C Ambient
(Derate 3.27 mW/°C)
Operating Temperature Range
Storage Temperature Range55 to 150°C
Lead Temperature Range
(1/16" from case for 10 seconds),

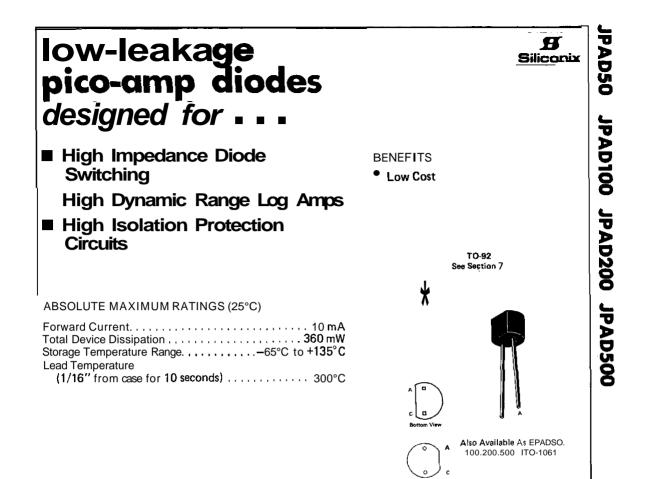
Linear Ramp and Staircase

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic	J506	J507	J508	J509	J510	J511	Unit	Test Conditions		
1				Min	1.120	1.440	1.9	2.4	2.9	3.8			
2	s	†F1	Forward Current (Note 1)	Nominal	1.400	1.800	2.4	3.0	3.6	4.7	mΑ	VF - 25 V	
3	Ă			Max	1.680	2.160	2.9	3.6	4.3	5.6			
1	T 1	POV	Peak Operating Voltage (Notes 1 and 2)	Min	50	50	50	50	50	50		1E = 1.1 IFI (Max)	
5	c	~	Limitian Malagar (Nata 2)	Max	2.5	2.8	3.1	3.5	3.9	4.2	V		
	VL Limiting Voltage (Note 3) Typ	1.8	2.0	2.2	2.5	2.8	3.0		F = 0.9 (FI (Min)				
•	D	7	Small-Signal Dynamic	Min	0.4	0.25	0.25	0.20	0.20	0.15	MΩ		
;	۲Į	ZFI	Impedance (Note 1)	Тур	1.4	1.0	0.70	0.60	0.50	0.30	IVI 5 2	VF = 25 V, f = 1 kH.	
	N	CF	Anode-Cathode Capacitance	Τγρ	2	2	2	2	2	2	рF	V _F = 25 V, f = 1 MH	


50 V

NOTES:


1. Pulse test duration = 2 ms

7 Maximum V_F where $L_F \leq 1.1\,L_{F1}(Max)$ is guaranteed

3. Minimum V $_{\rm F}$ required to insure I $_{\rm F} > 0.9$ I $_{\rm F1}(Min)$

NCL

ELECTRICAL CHARACTERISTICS (25°C)

			Characteristic		Min	Тур	Max	Unit	Test Conditions		
1				JPAD50			- 50				
2	s		During Output (Name 1)	JPAD100			-100	Aq	V _B = ~20 V		
3	A	iΒ	Reverse Current (Note 1)	JPAD200			-200 -500	рА	VR20 V		
4	τ			JPAD500							
5	ċ	BVR	Breakdown Voltage (Rever	se)	~35	-80		V	I _R = -1 μA		
6		VF	Forward Voltage Drop		<u> </u>	0.8	1.5	V	1 _F = 5 mA		
7	D Y Z	CR	Capacitance			1.5	2.0	pF	V _R =5 V, f ≈ 1 MHz		
	The	JPAD t	:Ype number denot e s i n max n I _R values intermediate to th						0.060 (7.53) 0.060 (7.53) 0.060 0.152 0.060 0.152 0.060 0.155 0.060 0.155 0.065 0.065 0.065 0.165		

Betrom View

(TO-106)

Siliconix © 1979 Siliconix incorporated

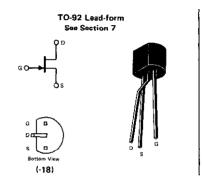
n-channel JFET designed for...

Analog Switches

Choppers

Commutators

Silicanix


Beef Section of Curves NZF

BENEFITS

- No Offset or Error Voltages Generated by Closed Switch Purely Resistive High Isolation Resistance from Driver
- Very Fast Switching
 t_D(on) + t_r = 6 ns Typical
- Short Sample and Hold Aperture Time Cgd(off) < 2 pF Cgs(off) < 2 pF

ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage
Gate Current 50 mA
Total Device Dissipation at 25°C Ambient
(Derate 3.27 mW/°C)
Operating Temperature Range
Storage Temperature Range
Lead Temperature Range
(1/16" from case for 10 seconds)

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic	1	Kt14		TT \$4			
_				Min	Τγρ	Max	Unit	Test Conditions		
1		IGSS	Gate Reverse Current (Note 1)			-1	nΑ	VDS = 0 , VGS = -15 V		
2	S	VGS(off)	Gate-Source Cutoff Voltage	-3		-10	v	V _{DS} = 5 V, I _D = 1 μA		
3	À	BVGSS	Gate Source Breakdown Voltage	-25			v	V _{DS} = 0 , I _G = -1 μA		
4	T	IDSS	Saturation Drain Current (Note 2)	15			mΑ	V _{DS} = 15 V, V _{GS} = 0		
5	l C	ID(off)	Drain Cutoff Current (Note 1)			1	nA	V _{DS} = 5 V, V _{GS} = -10 V	1	
6	Ċ	rDS(on)	Drain-Source ON Resistance			150	Ω	$V_{DS} \le 0.1 V$, $V_{GS} = 0$		
7		C _{dg(off)}	Drain-Gate OFF Capacitance			2		N		
8		C _{sg(off)}	Source-Gate OFF Capacitance			2		V _{DS} = 0, V _{GS} = -10 V	1	
9	D Y N A	C _{dg(on)} + C _{sg(on)}	Drain-Gate Plus Source-Gate ON Capacitance			8	p∓	V _{DS} = V _{GS} = 0	f = 1 MH	
10	м	^t d(on)	Turn On Delay Time		3			<u></u> _		
11	I	tr	Rise Time		3			Switching Time Test Con		
12	C	td(off)	Turn Off Delay Time		12	_	กร	V _{DD} = 10 V, V _{GS} (off) =		
13		tf	Fall Time		8	T		R _L = 1 KΩ, VGS(on) = 0)	

NOTES:

Siliconix

2. Pulse test duration = 300 μ s; duty cycle \leq 3%.

NZF

^{1.} Approximately doubles for every 10°C increase in T_A.

n-channel JFET designed for . . .

VHF/UHF Amplifiers
 Mixers
 Oscillators

ABSOLUTE MAXIMUM RATINGS (25°C)

Drain-Gate Voltage
Source-Gate Voltage
Drain-Source Voltage
Forward Gate Current
Total Device Dissipation at 25°C Ambient
(Derate 3.27 mW/°C)
On a rating Temperature Dange EF to 125%
Operating Temperature Range–55 to 135°C
Storage Temperature Range

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

Characteristic				Min	Max	Unit	Test Conditions				
1		1000	Gate Reverse Current		-250 pA		V _{GS} = -20 V, V _{DS} = 0				
2	S	IGSS	Gate neverse current		-15	nΑ	VGS20 V, VDS - 0	$T_{A} = +85^{\circ}C$			
3	A	BVGSS	Gate-Source Breakdown Voltage	-30		v	I _G = -1 μA, V _{DS} = 0				
4	i c	V _{G\$(off)}	Gate-Source Cutoff Voltage	0.5	8.0	v	V _{DS} = 15 V, I _D = 1 μA				
5		IDSS	Saturation Drain Current	4.0	25	mΑ	VDS = 15 V, VGS = 0 (Note 1)				
6		^r DS(on)	Drain-Source ON Resistance		300	Ω	1 _D = 1 mA, V _{GS} = 0				
7	-	9fs	Common-Source Forward Transconductance	4,500	10,000			f=1kHz			
8		Re _{(Yfs})	Common-Source Forward Transconductance	4,000		μmhos					
9	D Y	Re _{(Yos})	Common-Source Output Conductance		150		V - 15 V V - 0	f = 200 MH			
0	N A	Re _{{yis} }	Common-Source Input Conductance		800		V _{DS} = 15 V, V _{GS} = 0				
-	M I C	Ciss	Common-Source Input Capacitance		6.0						
2		C _{rss}	Common-Source Reverse Transfer Capacitance		2.0	pF		f≖1MHz			
3		NE	Noise Figure		3.0		$V_{DS} = 15 V, V_{GS} = 0, R_G = 1K \Omega$	f = 200 MH			
4			NOISE FIGURE		5.0	dB	V_{DS} = 15 V, V_{GS} = 0, R_{G} = 1M Ω , BW = 5 Hz	f = 10 Hz			
5		GPS	Common-Source Power Gain	15		UD	V _{DS} = 15 V, V _{GS} ≈ 0	f ≠ 200 MH			

NOTE:

1. Pulse test PW = 300 μs ; duty cycle < 3%.

NH

Siliconix

Δ

Sili

Performance Curves NH See Section 5

BENEFITS

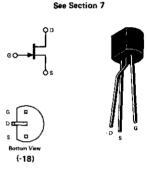
• Specified for 200 MHz Operation

ottom Vi (-18)

TO-92 See Section 7 **5**

n-channel JFETs designed for...

General Purpose Amplifiers


Performance Curves NZF See Section 5

BENEFITS

- High Gain GFS = 7000 μmho Minimum (K211-18, K212-18)
- High Input Impedance IGSS = 100 pA Maximum Ciss = 5 pF Typical

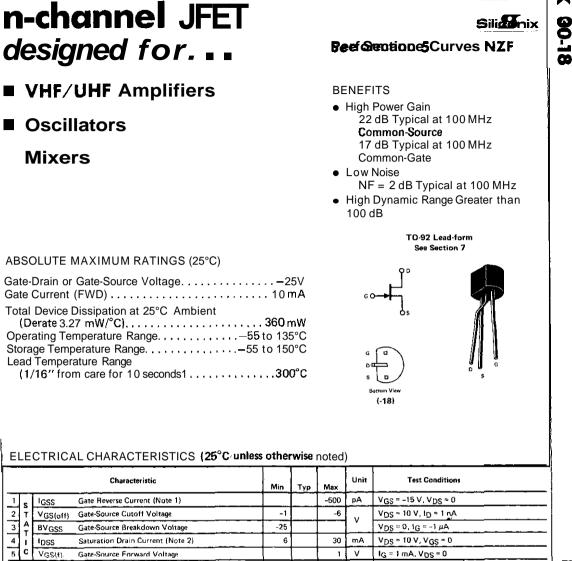
ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage – 25V
Gate Current
Total Device Dissipation at 25°C Ambient
(Derate 3.27 mW/°C) 360 mW
Operating Temperature Range
Storage Temperature Range
Lead Temperature Range
(1/16" from case for 10 seconds)

TO-92 Lead-form

ELECTRICAL C	HARACTERISTICS	25°C	unless otherwise noted)

Characteristic			Chausatasiatia		J210			J211			J212			Test Conditions	
		Min Typ Max		Min Typ Max		Min	n Typ Max		Unit						
1	s	IGSS	Gate Reverse Current (Note 1)			-100			-100			-100	pА	V _{DS} = 0, V _{GS} = -15 V	
2 :	T	VGS(off)	Gate-Source Cutoff Voltage	-1		-3	-2.5		-4.5	-4		-6	v	VDS = 15 V, ID = 1 nA	
3	A	BVGSS	Gate-Source Breakdown Voltage	-25			-25			-25			v	V _{DS} = 0, i _G = -1 μA	
ŀ	ì	DSS	Saturation Drain Current (Note 2)	2		†5	7		20	15		40	mΑ	V _{DS} = 15 V, V _{GS} = 0	
;	С	IG	Gate Current (Note 1)		-10			-10			-10		pА	V _{DG} ≈ 10 V, I _D = 1 mA	
ì		g _{fs}	Common-Source Forward Transconductance (Note 2)	4,000		12,000	7,000		12,000	7,000		12,000	µmho	V _{DS} = 15 V, V _{GS} = 0	f = 1 kHz
	D Y	9 _{OS}	Common-Source Output Conductance			150			200			200			
l	N A M	Ciss	Common-Source Input Capacitance		4			4			4				
		Crss	Common-Source Reverse Transfer Capacitance		1			1	_		1		рF		f = 1 M
		ēn	Equivalent Short-Circuit Input Noise Voltage		10			10			10		<u>n¥</u> ⊮Hz		f = 1 k


NOTES:

Silicon'x

1. Approximately doubles for every 10 $^{\circ}\mathrm{C}$ increase in T_{A}

2. Pulse test duration = 2 ms.

NZF

			Characteristic	Min	Тур	Max	Unit	Test Conditions	
1	s	IGSS	Gate Reverse Current (Note 1)			-500	pА	$V_{GS} = -15 V, V_{DS} \approx 0$	
2	T	VGS(off)	Gate-Source Cutoff Voltage	-1		ę	v	V _{DS} = 10 V, I _D = 1 nA	
3	A	BVGSS	Gate-Source Breakdown Voltage	-25			v	V _{DS} = 0, 1 _G = -1 μA	
4	i	IDSS	Saturation Drain Current (Note 2)	6		30	mΑ	V _{DS} = 10 V, V _{GS} = 0	
5	С	VGS(t)	Gate-Source Forward Voltage			1	V	IG = 1 mA, Vos = 0	
6		4fs	Common-Source Forward Transconductance (Note 2)	4,500		9,000	umho	$V_{DG} = 10 V, I_{D} = 5 mA$	t = 1 kHz
7	D	gos	Common-Source Output Transconductance			200	μππο	VDG = 10 V, 10 = 5 MA	
8	Y	Ciss	Common-Source Input Capacitance		4	5.5			
9	м	Crss	Common-Source Reverse Transfer Capacitance		1	1.7	pF	V _{DG} = 10 V, I _D = 5 mA	f = 1 MHz
10		Coss	Common-Source Output Capacitance		1.5				
11	н	lue I	Common-Source Forward Transcadmittance		6,200]		f = 100 MHz
12	1	vfs			6,000		μmho		f ≖ 450 MHz
13	-				6,000		μιιιιο	V15V5	f = 100 MHz
14	FR	l¥fgi	Common-Gate Forward Transcadmittance		5,500]	V _{DG} = 15 V, 1 _D = 5 mA	f = 450 MHz
15	Ē	Gfg	Common-Gate Power Gain		17		dB		f = 100 MHz (Note 3)
16	Q	NF	Noise Figure (Single Sideband)		2		1		

NOTES:

1. Approximately doubles for every 10°C increase in TA.

2. Pulse test duration = 2 ms.

 Typical values for performance at 100 MHz in a common-gate circuit operating 3 dB bandwidth is 2 MHz. NZF

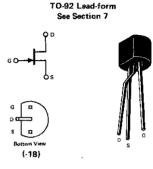
Siliconix

4-27

n-channel JFETs designed for...

VHF/UHF Amplifiers Oscillators Mixers

ABSOLUTE MAXIMUM RATINGS (25°C)


Gate-Drain or Gate-Source Voltage
Total Device Dissipation at 25°C Ambient
(Derate 3.27 mW/°C)
Operating Temperature Range55 to 135°C
Storage Temperature Range
Lead Temperature Range
(1/16" from case for 10 seconds)

Beef Gentione5Curves NH

Sili

BENEFITS

- Characterized for Operation at 100 and 400 MHz
- Low Noise NF = 1.7 dB Typical at 100 MHz

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

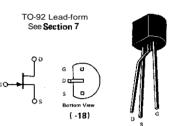
		K304-18				K305-1	8						
Characteristic				Min	Typ	Max	Min	Тур	Max	Unit	Test Conditions		
1	S	IGSS	Gate Reverse Current (Note 1)			-100			-100	pА	V _{DS} = 0, V _{GS} = -20 V		
2	A	VGS(off)	Gate Source Cutoff Voltage	-2		-6	-0.5		-3	v	V _{DS} = 15 V, I _D = 1 nA		
3	Т	BVGSS	Gate Source Breakdown Voltage	-30			-30				VDS = 0, IG = -1 µA		
4	c	DSS	Saturation Drain Current (Note 2)	5		15	1		8	mΑ	V _{DS} = 15 V, V _{GS} = 0		
5		9 _{ts}	Common-Source Forward Transconductance (Note 2)	4,500		7,500	3,000					f=1kHz	
6	D Y	9 _{OS}	Common-Source Output Transconductance			50			50	µmho	V	1= / KHZ	
7	N A M	Ciss	Common-Source Input Capacitance		3.5			3.5			V _{DS} = 15 V, V _{GS} = 0		
8	i c	Crss	Common-Source Reverse Transfer Capacitance		0.85			0.85		pF		f≖1MHz	
9		Coss	Common-Source Output Capacitance		1,0			1.0					
0		9fs	Common-Source Forward					3,000				f = 100 M	
1		515	Transconductance		4,200							f = 400 M	
2	ц	0 or c	Common-Source Output		60			60				f = 100 M	
3	ï	5055	Conductance		80						l L	f = 400 M	
4	G	b _{oss} Common-Source Output Susceptance		800			800		umba	V _{DS} = 15 V, V _{GS} = 0	f = 100 M		
5	_		Susceptance		3,600					µmha I	f f	f = 400 M	
6	R		Common-Source Input		80			80				f = 100 M	
7	E		Conductance		800							f = 400 M	
8	U	L.	Common-Source Input		2,000			2,000				f = 100 M	
9	E	b _{iss}	Susceptance		7,500							f = 400 M	
Ö	С	Gps	Common-Source Power		20							f = 100 M	
1	Y	-ps	Gain		11					dB	V _{DS} = 15 V, 1 _D = 5 mA	f = 400 M	
2			Noise Figure		1.7					08	$V_{DS} = 15 V, I_D = 5 mA,$	1 = 100 M	
13		NF	(Single Sideband)	[3.8						HG = 1 KΩ	f = 400 M	

Si lic onix

2. Pulse test duration = 2 ms.

© 1979 Siliconix incorporated

n-channel JFETs designed for...


VHF/UHF Amplifiers Oscillators Mixers

'ABSOLUTE MAXIMUM RATINGS (25°C)
Drain-Gate Voltage
Source-Gate Voltage
Forward Gate Current
Total Device Dissipation at 25°C Ambient
(Derate 3.27 mW/°C)
Operating Temperature Range
Storage Temperature Range. , , , , , , , , , , –55 to 150°C
Lead Temperature Range
(1116" from case for 10 seconds)

Sili

BENEFITS

- Industry Standard Part
 In Low Cost Plastic Package
- High Power Gain 11 dB Typical at 450 MHz Common-Gate
- Low Noise
 2.7 dB Typical at 450 MHz
- Wide Dynamic Range Greater than 100 dB
- Easily Matches to 75 Ω Input

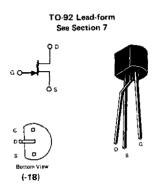
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

		Characteristic		K308			K309		K310			Unit	Test Conditions	
			Min	Түр	Мах	Min	Typ	Max	Min	Тур	Max	Unit	(BST CONDICIO	ans
1	\$v _{GS\$}	Gate-Source Breakdown Voltage	25			25			-25			V	t _G = -1 μA, V _{DS} = 0	
2 s	IGSS	Gate Reverse Current			1.0			-1.0			-1.0	nA	V _{GS} 15 V,	
Τ					-1.0			1.0			1.0	μA	VDS '0	T - +125°C
۹ ۲	VGS(off)	Gate-Source Cutoff Voltage	-1.0		-6.5	-10		40	-2.0		6.5	v	V _{DS} = 10 V, I _D - 1 nA	
ċ	DSS	Saturation Drain Current (Note 1)	12		60	12		30	24		60	mΑ	V_{DS} = 10 V, $V_{GS} \sim 0$	
5	V _{GS(f)}	Gate-Source Forward Voltage			1.0			1.0			10	v	V _{DS} = 0, I _G = 1 mA	
7	915	Common Source For- ward Transconductance	8,000		20,000	10,000		20,000	8,000		18,000			
	9 _{OS}	Common-Source Output Conductance		-	200			200			200		V _{DS} = 10 V. I _D = 10 mA	f = 1 kHz
) Y		Common Gare Forward Transconductance		13,000			13,000			12,000		µmhos I _D = 10 mA		
M	gog	Common Gate Output Conductance		150			100			150				
c	Cgd	Gate-Drain Capacitance		18	2.5		1.8	2.5		1.8	2.5		VDS = 0, VGS = -10 V	1 = 1 MHz
2	C ^{gs}	Gate-Source Capacitance		4.3	5.0		4.3	5.0		4.3	5.0	p۴		
3	ēn	Equivalent Short-Circuit Input Noise Voltage	1	10			10			10		<u>nV</u> √Hz	VDS = 10 V. Ig = 10 mA	f = 100 Hz
ł	Re _{{yts} }	Common-Source Forward Transconductance		12			12			12				1
	Refyig)	Common-Gate Input Conductance		14			14			14				
ľ	Re(yis)	Common-Source Input Conductance	1	0.4			0.4			0.4		mmho		
F	Re _{(yos})	Common-Source Output Conductance		0.15			0.15			0.15			V _{DS} = 10 V, I _D = 10 mA	f = 105 MH
	Gpg	Common Gate Power Gain at Noise Match		16			16			16				
,	NF	Noise Figure		1.5			1.5			1.5			1	1
,	Gpg	Common-Gate Power Gain at Noise Match		11			11			11		dB		4 - 450 14
	NF	Noise Figure		2.7			2.7			2.7				f = 450 MH
от		300 µs duty cycle ≈ 3%			-									NZA

4

Siliconix

n-channel JFET designed for . . .


VHF Amplifiers Mixers

H Sili<u>conix</u>

Performance **Curves NH** See Section 5

BENEFITS

- Low Noise NF = 3 dB Typical at 400 MHz
- Wide Bandwidth
- LOW Cost

ABSOLUTE MAXIMUM RATINGS (25°C)

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic			Min	Max	Unit	Test Condition	ns	
1		GSS	Gate Reverse Current				-1.0	nA	V _{GS} = -15 V, V _{DS} = 0]	
2	S	BVGSS	Gate-Source Breakdown Voltage			-30		v	I _G = -1 μA, V _{DS} = 0		
3	T A	VGS(off)	Gate-Source Cutoff Voltage				6	Ľ	V _{DS} = 15 V, I _D = 1 nA	x	
4		IDSS	Saturation Drain Current (Note 1)			5	15	mΑ			
5		9fs	Common-Source Forward Transconduct	ance (N	ote 1)	4500	7500	⊬mho		f = 1 kHz	
6	D	gos	Common-Source Output Conductance				50				
7	Y	- diss - definition - definitio			1.0		$V_{\rm DS} = 15 V, V_{\rm GS} = 0$				
8	N	Ciss	Common-Source Input Capacitance				4	pF		f≈1 MH	
9		Coss	Common-Source Output Capacitance	citance			2		<u> </u>		
			Characteristic	100 MHz			MHz	Unit	Test Conditions		
		··		Min	Max	Min	Max				
10		9iss	Common-Source Input Conductance		100		1000				
11		biss	Common-Source Input Susceptance		2500		10,000		V _{DS} = 15 V, V _{GS} = 0		
12	н	9 ₀₅₅	Common-Source Output Conductance		75		100	μmho			
13		b _{oss}	Common-Source Output Susceptance		1000	-	4000				
14	F R E	9ts	Common-Source Forward Transcon- ductance (Note 1)			4000					
				18		10					
15	Q	- µs			1		1	dB	Vps = 15 V, Ip = 5 mA		

NOTE:

1 Pulse test duration = 300 μ s.

NH

Silicorix

		annel JF				Ş	B iliconix
k	esig	ned for. •		Performance Curves NH See Section 5			
ינ	VHF/U	IHF Amplifiers			BENEFI	ſS	
I	Mixers	5			Low C	ost natic Insertion Packag	10
	Oscilla	ators			• Auton		je
						TO-92 See Section 7	
		AXIMUM RATINGS (25°C age	,			See Section /	
orv ota (E pei ora	vard Gate (I Device Di)erate 3.27 rating Temp age Tempe I Temperate	oltage Current ssipation at 25°C Ambien mW/°C) perature Range rature Range ure Range case for 10 seconds)	t 55 to 55 to	10 mA 60 mW 135°C	6 0)
LE	CTRICAL	CHARACTERISTICS (25	° C unless oth	erwise no	ited)	Bottom Vie	*
LE		CHARACTERISTICS (25	°C unless oth	erwise no Max	uted)	Bottom Vie T est Condit	
 1]				Max 2.0	Unit nA		ions
1		haracteristic		Max	Unit nA µA	Test Condit	ions
1 2 3	CI IGSS BVGSS T VGS(off)	haracteristic Gate Reverse Current Gate-Source Breakdown	Min	Max 2.0	Unit nA	Test Condit V _{GS} ≈ −15 V, V _{DS} = 0	ions TA = +100° C
	CI IGSS BVGSS T VGS(off)	haracteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff	Min	Max -2.0 -2.0	Unit nA µA	Test Condit V _{GS} ≈ -15 V, V _{DS} = 0 1 _G =10 µA, V _{DS} ≈ 0	ions T _A = +100° C
	CI IGSS BVGSS VGS(off)	haracteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage	Min 	Max -2.0 -2.0 -8.0	Unit nA µA V	Test Condit V _{GS} ≈ -15 V, V _{DS} = 0 1 _G =10 µA, V _{DS} ≈ 0 V _{DS} = 15 V, 1 _D ≈ 2 nA	ions T _A = +100° C Note 1)
	CI IGSS BVGSS VGS(off) IDSS	haracteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Saturation Drain Current	Min 25 2.0	Max -2.0 -2.0 -2.0 -8.0 20	Unit nA µA V mA	Test Condit $V_{GS} \approx -15 V, V_{DS} = 0$ $I_G = -10 \mu A, V_{DS} = 0$ $V_{DS} = 15 V, I_D \approx 2 nA$ $V_{DS} = 15 V, V_{GS} = 0 ($	ions T _A = +100° C Note 1)
1 2 3 4 5 6 7 8	C IGSS BVGSS VGS(off) IDSS VGS	haracteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Saturation Drain Current Gate-Source Voltage Common-Source Forward	Min 25 2.0 0.5	Max -2.0 -2.0 -2.0 -8.0 20 -7.5	Unit nA µA V mA V	Test Condit $V_{GS} \approx -15 V, V_{DS} = 0$ $I_G = -10 \mu A, V_{DS} = 0$ $V_{DS} = 15 V, I_D \approx 2 nA$ $V_{DS} = 15 V, V_{GS} = 0 ($	ions T _A = +100° C Note 1)
1 2 3 4 5 6 7 8	C IGSS BVGSS VGS(off) IDSS VGS Bfs	haracteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Saturation Drain Current Gate-Source Voltage Common-Source Forward Transconductance COMMONSOURCE Forward	Min 25 2.0 0.5 2000	Max -2.0 -2.0 -2.0 -8.0 20 -7.5	Unit nA µA V mA	$Test Condit$ $V_{GS} \approx -15 V, V_{DS} = 0$ $i_{G} = -10 \mu A, V_{DS} = 0$ $V_{DS} = 15 V, i_{D} = 2 nA$ $V_{DS} = 15 V, v_{GS} = 0$ $V_{DS} = 15 V, i_{D} = 200 J$	ions T _A = +100° C Note 1)
	C IGSS BVGSS VGS(off) IDSS VGS Bfs Re(yfs)	heracteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Saturation Drain Current Gate-Source Voltage Common-Source Forward Transconductance COMMON-SOURCE Forward Transconductance Common-Source Output	Min 25 2.0 0.5 2000	Max -2.0 -2.0 -2.0 20 -7.5 7500	Unit nA µA V mA V	Test Condit $V_{GS} \approx -15 V, V_{DS} = 0$ $I_G = -10 \mu A, V_{DS} = 0$ $V_{DS} = 15 V, I_D \approx 2 nA$ $V_{DS} = 15 V, V_{GS} = 0 ($	ions T _A = +100° C Note 1) 4A f = 1 kHz
	$\begin{array}{c} C \\ I_{GSS} \\ B_{V_{GSS}} \\ V_{GS} \\ I_{DSS} \\ V_{GS} \\ V_{GS} \\ B_{f_{S}} \\ B_{f_{S}} \\ Re_{(\gamma_{f_{S}})} \\ Re_{(\gamma_{i_{S}})} \\ \end{array}$	heracteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Saturation Drain Current Gate-Source Voltage Common-Source Forward Transconductance Common-Source Output Conductance Common-Source Output Conductance Common-Source Input	Min 25 2.0 0.5 2000	Max -2.0 -2.0 -8.0 20 -7.5 7500 200	Unit nA µA V mA V	$Test Condit$ $V_{GS} \approx -15 V, V_{DS} = 0$ $i_{G} = -10 \mu A, V_{DS} = 0$ $V_{DS} = 15 V, i_{D} = 2 nA$ $V_{DS} = 15 V, v_{GS} = 0$ $V_{DS} = 15 V, i_{D} = 200 J$	TA = +100° C Note 1) A f = 1 kHz f = 100 MHz
	$\begin{array}{c} C\\ I_{GSS}\\ S\\ F\\ A\\ A\\ F\\ C\\ S\\ $	heracteristic Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Saturation Drain Current Gate-Source Voltage Common-Source Forward Transconductance CommOn-Source Output Conductance Common-Source Output Conductance Common-Source Input Conductance	Min 25 2.0 0.5 2000	Max -2.0 -2.0 -8.0 20 -7.5 7500 200 800	Unit nA µA V mA V	$Test Condit$ $V_{GS} \approx -15 V, V_{DS} = 0$ $i_{G} = -10 \mu A, V_{DS} = 0$ $V_{DS} = 15 V, i_{D} = 2 nA$ $V_{DS} = 15 V, v_{GS} = 0$ $V_{DS} = 15 V, i_{D} = 200 J$	ions T _A = +100° C Note 1) 4A f = 1 kHz

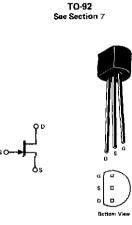
4

Sili**B** ix

Performance Curves NH See Section 5

Automatic Insertion Package

BENEFITSLow Cost


VHF/UHF Amplifiers

Mixers

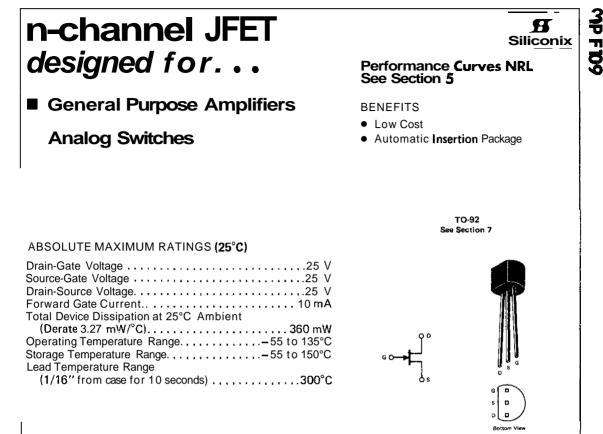
Oscillators

ABSOLUTE MAXIMUM RATINGS (25°C)

Drain-Gate Voltage
Source-Gate Voltage
Drain-Source Voltage
Forward Gate Current.
Total :e Dissipation at 25°C Ambient
(Derate 3.27 mW/°C)
Operating Temperature Range55 to 135°C
Storage Temperature Range
Lead Temperature Range
(1/16" from case for 10 seconds)

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

		Ci	haracteristic	Min	Max	Unit	Test Conditions		
1	s	IGSS	Gate Reverse Current		-1.0	пА			
2	ъ т	1988	Cate Heverse Content		-1.0	μA	$-V_{GS} = -15 V, V_{DS} = 0$	$T_{A} = +100^{\circ} C$	
3	A T	₿V _{GSS}	Gate-Source Breakdown Voltage	-25		v	I _G = −10 μA, V _{DS} ≈ 0		
4		VGS(off)	Gate-Source Cutoff Voltage	-0.5	-8.0]	V _{DS} = 15 V, I _D = 10 μA		
5	С	DSS	Saturation Drain Current	1.5	24	mA	V _{DS} = 15 V, V _{GS} = 0 (Note 1)		
6		^g fs	Common-Source Forward Transconductance	2000	7500				
7		9 _{OS}	Common-Source Output Conductance		75			f≂1kHz	
8	D	Re(y _{fs} }	Common-Source Forward Transconductance	1600	_	μmhos			
		Re(y _{os})	Common-Source Output Conductance		200		V _{DS} = 15 V, V _{GS} = 0	f = 100 MHz	
	A M I	Re(y _{is})	Common-Source Input Conductance		800]			
1	С	C _{iss}	Common-Source Input Capacitance		6.5			f = 1 MHz	
2		C _{rss}	Common Source Reverse Transfer Capacitance		2.5	рF			
3		NE	Noise Figure		2.5		$V_{DS} = 15 V, V_{GS} = 0, R_G = 1M \Omega$	f=1kHz	
4			Noise rigure		3.0	dB	V _{DS} = 15 V, V _{GS} = 0, R _G = 1K Ω	f = 100 MHz	


NOTE

conix

ភើ

1. Pulse test, pulse width = 300 μs , duty cycle $\leqslant 3\%$.

NH

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

	Characteristic				Тур	Max	Unit	Test Condition	ons	
1	s	IGSS	Gate Reverse Current	1	4.01	I 1.0	ן . הA	V _{GS} = -15 V, V _{DS} = 0		
2	T A	BVGSS	Gate-Source Breakdown Voltage	-25	-ou		v	$I_{\bar{G}} = -10 \ \mu A, V_{DS} = 0$		
3	1	VGS(off)	Gate-Source Cutoff Voltage	4.2		-8.0	1	V _{DS} = 15V. I _D = 10 µ/	۹.	
4	C	DSS	Saturation Drain Current	0.5		24	mA	V _{DS} = 15 V, V _{GS} = 0 {	Note 1)	
5		9fs	Common-Source Forward Transconductance	800		6000			6 - 1 HI-	
6	Ď	g _{os}	Common-Source OUtpUt Conductance		10	75	- μmho	N - 15 N.N 0	f = 1 kHz	
7	A M	C _{iss}	common-source Iлриt capacitance		4.5	7.0		V _{DS} = 15 V, V _{GS} = 0		
8	I C	Crss	Common-Source Reverse Transfer Capacitance		1.0	3.0	- pF		f = 1 MHz	
9		NF	Noise Figure		0.04	2.5	dB	$V_{DS} = 15 V, V_{GS} = 0,$ R _G = 1M Ω	f=1 kHz	

NOTE:

1. Pulse test PW \leq 630 ms, duty cycle \leq 10%.

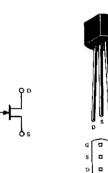
NRL

n-channel JFET designed for...

Sectomotions Curves NRL

Sili

General Purpose Amplifiers Analog Switches


BENEFITS

- Low Cost
- Automatic Insertion Package

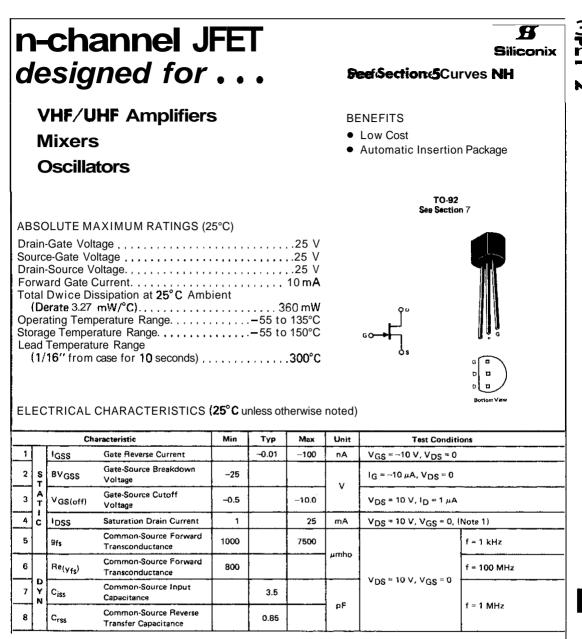
TO-92 See Section 7

ABSOLUTE MAXIMUM RATINGS (25°C)

Drain-Gate Voltage 20V
Source-Gate Voltage
Drain-Source Voltage
Forward Gate Current
Total Device Dissipation at 25°C Ambient
(Derate 3.27 mŴ/°C)
Operating Temperature Range
Storage Temperature Range
Lead Temperature Range
(1/16" from case for 10 seconds)

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic	Min	Түр	Max	Unit	Test Conditions
1	1 S Gate-Reverse Current			01	100	nA	V _{GS} = -10 V, V _{DS} = 0	
2		BVGSS	Gate-Source Breakdown Voltage	20			v	I _G ≕ −10 μA, V _{DS} = 0
3	т Ċ	VGS(off)	ate-source Cutoff Voltage	0.5		-1 0. 0	v	V _{DS} = 10 V. I _D = 1 μA
4	۰ د	IDSS Saturation Drain Current		0.5		20	mΑ	V _{DS} = 10 V, V _{GS} = 0 (Note 1)
5	Ô	gfs	Common-Source Forward Transconductance	5W			umho	f=1 kHz
6	Y N	908	Common-Source Output Conductance		10		μпіно	
7	A	Ciss	common-source Input Capacitance		4.5			$V_{DS} = 10 V. V_{GS} = 0$
8	M Common-Source Beverse		Common-Source Reverse Transfer Capacitance		10		ρF	f = 1 MHz


NRL

NOTE:

X

Silo

1. Puise test PW < 630 msec, duty cycle < 10%.

NOTE:

1. Pulse test PW = 300 µs, duty cycle < 3%.

NH

Siliconix

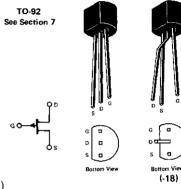
pchannel JFETs designed for...

Analog Switches

Choppers Commutators

ABSOLUTE MAXIMUM RATINGS (25°C)

Gate-Drain or Gate-Source Voltage (Note 1)
Total Device Dissipation at 25°C Ambient
(Derate 3.27 mW/°C)
Operating Temperature Range
Storage Temperature Range – 55 to 150°C
Lead Temperature Range
(1116" from case for 10 seconds)


Siliconix

Performance Curves PS 5ee Section 5

BENEFITS

 Low Insertion Loss RDS(on) = 7552 Maximum (P1086E) No Offset or Error Voltages Generated by Closed Switch

Purely Resistive

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Oh	P10	186	P10	987	Unit	Test Conditions		
			Characteristic		Max	Min	Max	Unit	1 est Conditions		
1		₿V _{GSS}	Gate-Source Breakdown Voltage	30		30		v	$t_{\rm G}$ = 1 μ A, V _{DS} = 0	uA, V _{DS} = 0	
2	Ī	IGSS	Gate Reverse Current		2		2	nA	V _{GS} = 15 V, V _{DS} = 0		
3	[Drain Cutoff Current		-10		-10	IIA	V _{DS} = -15 V, V _{GS} = 12 V (P1086E)		
4	S T	ID(off)	Drain Cutoff Current		-0.5		-0.5	μA	V _{GS} = 7 V (P1087E)	T _A = 85°C	
	Å	1 _{DGO}	Drain Reverse Current		2	_	2	nΑ	V _{DG} = -15 V, I _S = 0		
1		000		L	0.1		0.1	μA	- DG	T _A = 85°C	
	c	VGS(off)	Gate-Source Cutoff Voltage		10		5	V	V _{DS} = -15 V, I _D = -1 μA		
7		¹ DSS	Saturation Drain Current	-10		-5		mΑ	$V_{DS} = -20 V, V_{GS} = 0$		
3		V _{DS(on)}	Drain-Source ON Voltage		-0.5		-0.5	V	$V_{GS} = 0, I_D = -6 \text{ mA} (P1086E), I_D = -6 \text{ mA} (P1086E)$	3 mA (P1087	
9	[^r DS(an)	Static Drain-Source ON Resistance		75		150	Ω	1 _D = -1 mA, V _{GS} = 0		
ρŢ		rds(on)	Drain-Source ON Resistance		75		150	Ω	1 _D = 0, V _{GS} = 0	f≂1kHz	
,	D Y N	Ciss	Common-Source Input Capacitance		45		45	pF	V _{DS} = -15 V, V _{GS} = 0	f = 1 MHz	
2		C _{rss}	Common-Source Reverse Transfer Capacitance		10		10	pr	V _{DS} = 0, V _{GS} = 12 V (P1086E) V _{GS} = 7 V (P1087E)	1 – 1 (v ii (ž	
3	s	^t d(on)	Turn-ON Delay Time		15		15		V _{DD} ≈ -6 V, V _{GS{on} } ≈ 0		
4	۳	tr	Rise Time		20		75		VGS(off) ID(on)	RL	
5	T	td(off)	Turn-OFF Delay Time	[15		25	ns	P1086E 12 V6 mA	910 Ω	
6	н	te	Fall Time	1	50		100		P1087E 7V -3 mA	1.8K Ω	

NOTE

X

Silconi

1 Due to symmetrical geometry, there units may be operated with source and drain leads interchanged.

PS

0	le	esig	ned for .								ince Cu ion 5	rves NC	
		-						В	ENE	=ITS			
	L	\nalo	g Switches							-	rtion Loss		
			y Switches									est Systems	5
	(Comn	nutators								(Ρ		-
		No						•			Isolation		
	C	Chop	pers								<200 pA	1	
	h	nteai	rator Reset Swi	tch				•	High			4001)	
		5									10 ns (PN	laus I) Iold Apertu	uro Timo
								•		rss <			
(AB	s	DLUTEN	MAXIMUM RATINGS (25°	C)					-	199			
Re	ver	se Gate-	Drain or Gate-Source Volta	ae		_	.40 V	,	_	TO-			
				-					S	es Sect	1011 7 OD		
То	tal	Device D	Dissipation at 25°C Ambier	nt							Ĭ		
			7 mW/°C)						G	⊶₣	- ר		
			nperature Range								ds		
			ature Range	••••	55	10 15	00			م آه			
			n case for 10 seconds)			30	0°C			s c)	S G	
İcı			L CHARACTERISTICS (25			othan	Nico	notod	\	₀لر			
									,	Botto	m View		
			Characteristic	PN4			1092	PN4		Unit		Test Conditions	i
1		BVGSS	Gate-Source Breakdown Voltage	Min -40	Max	Min -40	Max	Min 40	Max	v	IG = -1 μA, V	/oo = 0	
2		9 635			200		200	-40	200	рА			
3		IDGO	Drain Reverse Current		400		400		400	nA	VGS = -20 V	, IS = 0	150°C
4									200	pА			
5		1							400	nA		VGS = - 6 V	150°C
6		D(off)	Drain Gutoff Current				200			ρΛ	V _{DS} = 20 V	V _{GS} = - 8 V	
7 8	S T			<u> </u>	000	L	400			nA	20		150°C
9	A T				200 400					pA nA		VGS = -12 V	150°C
10	l C	VGS(off)	Gate-Source Cutoff Voltage	-5	-10	-2	-7	-1	-5	v	V _{DS} = 20 V,	ln = 1 nA	100 0
11			Saturation Drain Current	30		15	<u> </u>	8					
		DSS	(Note 3)	30	Ì	- 15	L	8	· — —	mA	V _{DS} = 20 V,	r	
12 13		Noci N	Drain-Source ON Voltage	<u> </u>	<u>}</u>		0.2	<u>↓</u>	0.2	v	VGS = 0	$\frac{1D = 2.5 \text{ mA}}{1D = 4 \text{ mA}}$	
14		VDS(on)	oranioodice on voitage		0.2		0.2			•	*65-0	ip = 6.6 mA	
15		rDS(on)	Static Drain-Source ON Resistance		30		50		80	Ω	VGS = 0, ID		
16		^r ds(on)	D'rain-Source ON Resistance		30		50		80	Ω	VGS≠0,łD	= 0	f≑1kHz
17	D Y	Ciss	Common-Source Input Capacitance	L	16	[16		16	ρF	V _{DS} = 20 V,	VGS = 0	f=1 MHz
18	N	Crss	Common-Source Reverse Transfer Capacitance		5	[5		5		V _{DS} ≈ 0, V(35 = -20 V	
19		(diac)	Turn-ON Delay Time	1	15	[15		20		V _{DD} = 3 V,	VGS(on) = 0	
	s	^t d(on)		<u> </u>	<u> </u>	┣	-			{	-	ID(on) VGS	
20	W	tr	Rise Time	<u> </u>	10	{	20		40		PN4091 PN4092	6.6 m A - 1 4 - 18	2 V 425 S
21		¹ off	Turn-OFF Time		40		60		80		PN4093	2.5 -6	
1							VDD						NC
	DTE						₹A			IME < 1	75	SAMPLING SC RISE TIME O	4 ns
1.	Pul	sewidth = 36	00 μs, duty cyc‡e ≤ 3%			V1N ⊶	₽Ę_	VOUT	PULSE	TIME < 1 WIDTH 1			TANCE 10 M CITANCE 1.7 pF
1							۶Ť				TOR IMPEDANCE	50G	
											0	1979 Siliconi	x incorporat

n-channel JFETs

Δ

Siliconix

H Siliconix

n-channel JFETs Siliconix designed for. .. Performance Curves NP See Section 5 **General Purpose Amplifiers** 1 BENEFITS Low Cost High Input Impedance IG = 35 PA Typically Low Noise $\overline{e}_n = 5 \text{ nV} / / \overline{Hz}$ Typically @ 1 kHz TO-92 See Section 7 ABSOLUTE MAXIMUM RATINGS (25°C) Gate-Drain or Gate-Source Voltage (Note 1) - 30V Total Device Dissipation at 25°C Ambient Operating Temperature Range......-55 to 135°C Lead Temperature Range

(-18)

п

		Characterizate		PN4302		PN4303		PN4304		11.14			
			Characteristic	Min Max		Min	Max	Min	Max	Unit	Test Conditons		
1	s				1		1		-1	nΑ	V _{GS} = -10 V,		
2	T	IGSS	Gate Reverse Current (Note 2)		0.1		0.1		0.1	μA	V _{DS} = 0	T _A = 85°C	
:	A	₿VGSS	Gate-Source Breakdown Voltage	-30		-30		-30			J _G = -1 μΑ, V	DS = 0	
1	i	VGS{off}	Gate-Source Cutoff Voltage		-4.0		-6.0		10	V	V _{DS} = 20 V, I	D = 10 nA	
5	C	DSS	Saturation Drain Current (Note 3)	0.5	5.0	4.0	10	0.5	15	mΑ			
5		9fs	Common-Source Forward Transconductance (Note 3)	1000		2000		1000			V _{DS} = 20 V,	(_ A	
		gos	Common-Source Output Conductance		50		50		50	µmho		T T KHZ	
	o Y	Crss	Common-Source Reverse Transfer Capacitance		3		3		3		V _{GS} = 0		
	N A M	Ciss	Common-Source Input Capaci- tance		6		6		6	₽F	f = 1 MHa	f≂1MHz	
	с С	CDG	Drain-Gate Capacitance		2		2		2		V _{DG} = 10 V. Is = 0	f = 140 kHz	
		NF	Noise Figure		2.0		2.0		3.0	d8	V _{DS} = 10 V, V _{GS} = 0	f = 1 kHz, R _{gen} = 1.0M	
		y _{fs}	Common-Source Short Circuit Forward Transadmittance (Note 3)	700		1400		700		µmho	V _{DS} = 20 V, V _{GS} = 0	f = 10 MHz	

FLECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

NOTES:

Siliconix

1. Geometry is symmetrical. Units may be operated with source and drain leads interchanged.

2 Approximately doubles for every 10°C increase in TA

3. Pulse test duration = 2 ma

NP

_	_	_	annel J Ined for .			5		£	Pec f d	Sect	i DDe5 Cu	Sil Irves NC	i đi nix
(Cor	nn	ng Switches nutators pers					•	No (by C P H D	/ Inse Offset Closec urely	Switch Resistive olation Re	Voltages G esistance fr	
Rever Forw Fotal (D Oper Stora	se Ga ard G Devi erate ating ge Te	ate-l ate ce D 3.2 Ten	AXIMUM RATINGS (2) Drain or Gate-Source Volt Current Dissipation at 25°C Ambi 7 mW/°C) nperature Range erature Range	age . ent			i0 mA) mW 35°C			O-92 section		G D	s (-18)
			n case for 10 seconds)	• • • •		3	00°C				G O S O		
(1,	/16''	fron	n case for 10 seconds) , , - CHARACTERISTICS (2	25° C	unless	othei	rwise	PN4	393	Unit	1		
	/16''	fron	CHARACTERISTICS (2	25° C	unless 391 Max 1.0	othei	392 Max -1.0		393 Max -1.0	Unit	s 🗖	Viow Bot	
(1, ELEC	/16'' CTRI	fron CAL	CHARACTERISTICS (2	25° C	unless 391 Max	othei	rwise 1392 Max	PN4	393 Max		S D D D D D D D D D D D D D D D D D D D	View Bot Test Condition	
(1) ELE(1 2 3 4 5 6 4 7 1	/16'' CTRI IGSS	fron CAL	CHARACTERISTICS (2 Characteristic Gate Reverse Current	25° C 	391 Max 1.0 200	othei PN4 Min	392 Max -1.0	PN4 Min	393 Max -1.0	nA	s μ p. μ Bottom V GS = -20 V I G = -1 μΑ, 1	View Bot Test Condition	
(1) ELEC 1 2 3 4 5 6	/16'' CTRI IGSS BVGS	fron CAL	CHARACTERISTICS (2 Characteristic Gate Reverse Current Gate-Source Breakdown Voltage	25° C 	unless 391 Max 1.0	othei PN4 Min	1.0	PN4 Min	393 Max -1.0 -200 1.0	nA V	s μ p. μ Bottom V GS = -20 V I G = -1 μΑ, 1	$V_{IOW} = 0$ $V_{DS} = 0$ $V_{DS} = 0$ $V_{DS} = 0$ $V_{GS} = -5 V$	100°C
(1) ELEC		CAL S	CHARACTERISTICS (2 Characteristic Gate Reverse Current Gate Source Breakdown Voltage Drain Cutoff Current Gate Source Cutoff Voltage	25° C Min -40 -40	Unless 391 Max 1.0 -200 1.0 200 -10	ether Min 40	Wise 392 Max -1.0 200 1.0 200 -5	PN4 Min 40 	393 Max -1.0 200 200 3	nA V nA	s p p Bottom VGS = -20 V IG = -1 4A, V VDS = 20 V VDS = 20 V,	From Bot Test Condition $V_{DS} = 0$ $V_{DS} = 0$ $V_{GS} = -5 V$ $V_{GS} = -7 V$ $V_{GS} = -12 V$ $I_D = 1 nA$	tom View 100° C 100° C 100° C
(1) ELEC		CAL S	- CHARACTERISTICS (2 Characteristic Gate Reverse Current Gate-Source Breakdown Voltage Drain Cutoff Current	25° C Min -40	unless 391 Max 1.0 -200 1.0 200	other Min 40	WiSE 392 Max -1.0 200 1.0 200	PN4 Min 40	393 Max -1.0 -200 1.0 200 -3 30	nA V nA	s p Bottom V GS = -20 V iG = -1 μA, V V _{DS} = 20 V	$r_{rew} = 0$ $r_{rew} = 0$ $r_{res} = 0$	tom View 100° C 100° C 100° C
(1) ELEC 1 2 3 4 5 6 6 5 7 7 8 4 5 9 10 0 11	In the second se	fron CAL s	CHARACTERISTICS (2 Characteristic Gate Reverse Current Gate Source Breakdown Voltage Drain Cutoff Current Gate Source Cutoff Voltage Saturation Drain Current (Note 1)	25° C Min -40 -40	Unless 391 Max 1.0 -200 1.0 200 -10	ether Min 40	1392 Max -1.0 200 1.0 200 -5 75	PN4 Min 40 	393 Max -1.0 200 200 3	nA V nA V mA	s p Bottom V _{GS} = -20 V I _G 1 μA, · V _{DS} = 20 V, V _{DS} = 20 V, V _{DS} = 20 V,	$V_{GS} = 0$ $V_{GS} = 0$ $V_{GS} = 0$ $V_{GS} = -7 V$ $V_{GS} = -12 V$ $V_{GS} = 0$ $I_{D} = 1 \text{ nA}$ $V_{GS} = 0$	tom View 100° C 100° C 100° C
(1) ELEC		fron CAL s	CHARACTERISTICS (2 Characteristic Gate Reverse Current Gate Source Breakdown Voltage Drain Cutoff Current Gate Source Cutoff Voltage	25° C Min -40 -40	Unless 391 Max 1.0 -200 1.0 200 -10	ether Min 40	Wise 392 Max -1.0 200 1.0 200 -5	PN4 Min 40 	393 Max -1.0 -200 1.0 200 -3 30	nA V nA	s p p Bottom VGS = -20 V IG = -1 4A, V VDS = 20 V VDS = 20 V,	From Bot Test Condition $V_{DS} = 0$ $V_{DS} = 0$ $V_{GS} = -5 V$ $V_{GS} = -7 V$ $V_{GS} = -12 V$ $I_D = 1 nA$ $V_{GS} = 0$ $I_D = 3 mA$ $I_D = 6 mA$	tom View 100° C 100° C 100° C
(1) ELEC 1 2 3 4 5 6 9 10 11 11 12 13 14	In the second se	fron CAL s s	CHARACTERISTICS (2 Characteristic Gate Reverse Current Gate Source Breakdown Voltage Drain Cutoff Current Gate Source Cutoff Voltage Saturation Drain Current (Note 1)	25° C Min -40 -40	unless 391 Max 1.0 -200 1.0 200 10 150	ether Min 40	1392 Max -1.0 200 1.0 200 -5 75	PN4 Min 40 	393 Max -1.0 -200 1.0 200 -3 30	nA V nA V mA	s p Bottom V _{GS} = -20 V I _G 1 μA, ' V _{DS} = 20 V V _{DS} = 20 V, V _{DS} = 20 V, V _{DS} = 20 V,	$V_{GS} = 0$ $V_{GS} = 0$ $V_{GS} = 0$ $V_{GS} = -5 V$ $V_{GS} = -7 V$ $V_{GS} = -12 V$ $V_{GS} = 0$ $I_{D} = 1 nA$ $V_{GS} = 0$ $I_{D} = 3 mA$ $I_{D} = 6 mA$ $I_{D} = 12 mA$	tom View 100° C 100° C 100° C
(1) ELEC 1 2 3 4 5 6 9 7 10 10 11 11 12 13 14 15 16	1000 100 1000 1	fron CAL s s) off)	CHARACTERISTICS (2 Characteristic Gate Reverse Current Gate-Source Breakdown Voltage Drain Cutoff Current Gate-Source Cutoff Voltage Saturation Drain Current (Note 1) Drain-Source ON Voltage	25° C Min -40 -40	Unless 391 Max 1.0 -200 1.0 200 -10 150 0.4	ether Min 40	392 Max -1.0 200 1.0 200 -5 75 0.4	PN4 Min 40 	393 Max -1.0 -200 1.0 200 3 30 0.4 -3 30	nA V nA V mA	s p Bottom V _{GS} = -20 V I _G 1 μA, · V _{DS} = 20 V, V _{DS} = 20 V, V _{DS} = 20 V,	$V_{GS} = 0$ $V_{GS} = 0$ $V_{GS} = 0$ $V_{GS} = -5 V$ $V_{GS} = -7 V$ $V_{GS} = -12 V$ $V_{GS} = 0$ $I_{D} = 1 \text{ nA}$ $V_{GS} = 0$ $I_{D} = 1 \text{ mA}$	tom View 100° C 100° C 100° C
(1) ELEC 1 2 3 4 5 6 9 10 10 11 12 13 14 15 16 17 18 19 10 10 10 10 10 10 10 10 10 10	116" CTRII IGSS BVGS ID(off IDSS VDS(c Ciss Crss	fron CAL s s) off)	CHARACTERISTICS (2 Characteristic Gate Reverse Current Gate-Source Breakdown Voltage Drain Cutoff Current Gate-Source Cutoff Voltage Saturation Drain Current (Note 1) Drain-Source ON Voltage Static Drain-Source ON Resistance	25° C Min -40 -40	391 Max 1.0 -200 1.0 200 10 150 0.4 30 30 14	ether Min 40	392 Max -1.0 2000 1.0 2000 -5 75 0.4 60	PN4 Min 40 	393 Max -1.0 -200 1.0 200 3 30 0.4 100	nA V nA V mA V	s p p Bottom V _{GS} = -20 V I _G 1 µA, ' V _{DS} = 20 V V _{DS} = 20 V, V _{DS} = 20 V, V _{DS} = 0 V, V _{GS} = 0, I _D	$\begin{array}{c} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	100° C 100° C
(1) ELEC 1 2 3 4 5 6 5 7 1 4 10 10 10 11 12 13 14 15 16 17 18 19 20 1	116" CTRI GSS BVGS BVGS ID(off IDS6 VDS(c IGS6 VDS(c IGS6 Ciss Crss	fron CAL s s) off) b b	CHARACTERISTICS (2 Characteristic Gate Reverse Current Gate-Source Breakdown Voltage Drain Cutoff Current Gate-Source Cutoff Voltage Saturation Drain Current (Note 1) Drain-Source ON Voltage Static Drain-Source ON Resistance Drain-Source ON Resistance Common-Source Input Capacitance Common-Source Reverse Transfer Capacitance	25° C Min -40 -40	Unless 391 Max 1.0 -200 1.0 200 10 150 - 0.4 30 30 14 - 3.5	ether Min 40	WiSe 392 Max -1.0 200 1.0 200 -5 75 0.4 60 60 14 3.5	PN4 Min 40 	393 Max -1.0 -200 200 3 3 30 0.4 100 100 14 3.5	nA V nA V mA V Ω Ω	$v_{GS} = -20 v_{IG}$ $v_{DS} = -20 v_{IG}$ $v_{DS} = 20 v_{IG}$ $v_{DS} = 20 v_{IG}$ $v_{GS} = 0$ $v_{GS} = 0, v_{D}$ $v_{GS} = 0, v_{D}$ $v_{DS} = 20 v_{IG}$ $v_{S} = 0, v_{D}$ $v_{DS} = 20 v_{IG}$	$\begin{array}{c} & \mbox{J} \\ \mbox{Visw} & \mbox{Ber} \\ \hline \mbox{Test Condition} \\ \hline \mbox{Test Condition} \\ \hline \mbox{V}_{DS} = 0 \\ \hline \mbox{V}_{DS} = 0 \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{I}_{D} = 1 \ nA \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{I}_{D} = 1 \ mA \\ \hline \mbox{s} = 0 \\ \hline \mbox{V}_{GS} = -5 \ V \\ \hline \mbox{V}_{GS} = -12 \ V \ \mbox{V}_{GS} = -12 \ V \ \mbox{V}_{GS} = -12 \ V \ \mbox{V}_{GS} = -12 \ V \ \mbox{V}_{GS} = -12 \ V \ \mbox{V}_{GS} = -12 \ V \ \mbox{V}_{GS} = -12 \ V \ \mbox{V}_{GS} = -12 \ V \ \mbox{V}_{GS} = -12 \ V \ \mbox{V}_{GS} = -12 \ V \ \mbox$	tom View 100° C 100° C 100° C 100° C 100° C 100° C
(1) ELEC 1 2 3 4 5 6 5 7 7 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1	116" CTRII IGSS BVGS ID(off IDSS VDS(c Ciss Crss	(fron CAL () () () () () () () () () () () () ()	CHARACTERISTICS (2 Characteristic Gate Reverse Current Gate Source Breakdown Voltage Drain Cutoff Current Sate Source Cutoff Voltage Saturation Drain Current (Note 1) Drain Source ON Voltage Static Drain-Source ON Resistance Drain-Source Input Capacitance Common-Source Input Capacitance Common-Source Reverse Transfer	25° C Min -40 -40	391 Max 1.0 -200 1.0 200 10 150 0.4 30 30 14	ether Min 40	WiSe 392 Max -1.0 200 1.0 200 -5 75 0.4 60 60 14	PN4 Min 40 	393 Max -1.0 -200 200 3 30 0.4 100 100 14	nA V nA V mA V Ω Ω	$v_{GS} = -20 v$ $v_{GS} = -20 v$ $v_{DS} = 20 v$ $v_{DS} = 20 v$ $v_{DS} = 20 v$ $v_{OS} = 0 v$ $v_{GS} = 0, v_{D}$ $v_{DS} = 20 v$ $v_{DS} = 20 v$ $v_{DS} = 0 v$ $v_{DS} = 0 v$ $v_{DS} = 10 v$	$\begin{array}{c} & \mbox{J} \\ \mbox{Visw} & \mbox{Ber} \\ \hline \mbox{Test Condition} \\ \hline \mbox{Test Condition} \\ \hline \mbox{V}_{DS} = 0 \\ \hline \mbox{V}_{DS} = 0 \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{I}_{D} = 1 \ nA \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{I}_{D} = 12 \ mA \\ \hline \mbox{I}_{D} = 12 \ mA \\ \hline \mbox{I}_{D} = 12 \ mA \\ \hline \mbox{S} = 0 \\ \hline \mbox{V}_{GS} = -5 \ V \\ \hline \mbox{V}_{GS} = -5 \ V \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = -5 \ V \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{V}_{GS} = -5 \ V \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{V}_{GS} = -5 \ V \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{V}_{GS} = -5 \ V \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = -7 \ V \\ \hline \mbox{V}_{GS} = 0 \\ \hline \mbox{V}_{GS} = -7 \ V \ \mbox{V}_{GS} = -7 \ V \ \mbox{V}_{GS} = -7 \ V \ \mb$	som View som View 100° C 100° C 100° C 100° C 100° C 100° C 100° C 100° C 100° C

NOTE:

1 Pulse test required, pulse width = 300 μ s, duty cycle < 3%.

© 1979 Siliconix incorporated

NC

Siliconix

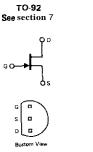
4

%m-channel JFETsmaildesigned for...

- VHF Amplifiers
- Mixers

Sectomation of Curves NH

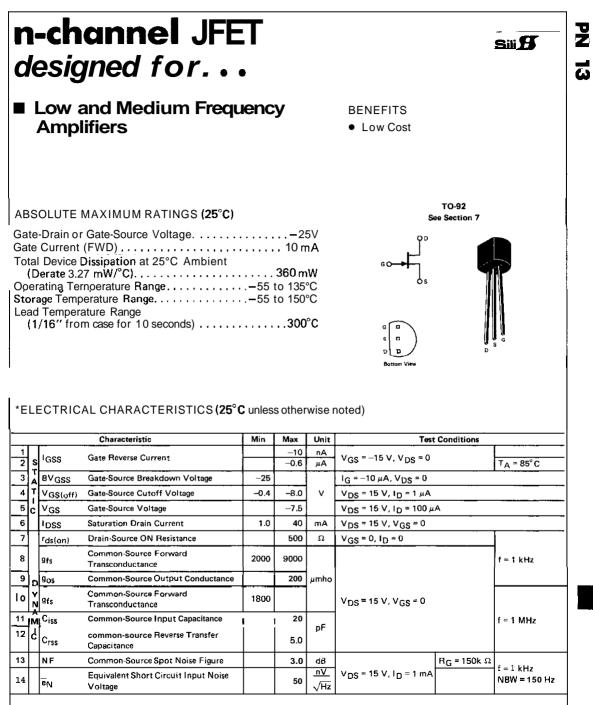
BENEFITS


 Low Noise NF = 3 dB Typical at 400 MHz

A Siliconix

• Wide Band High gfs/Ciss Ratio

ABSOLUTE MAXIMUM RATINGS (25°C)


Gate-Drain or Gate-Source Voltage30	V
Gate Current	A
Total Device Dissipation at 25°C Ambient	
(Derate 3.27 mW/°C)	W
Operating Temperature Range55 to 135	
Storage Temperature Range	°С
Lead Temperature Range	o –
(1/16" from case for 10 seconds)	°C

			Characteristic			Min	Max	Unit		Test Conditions		
1 2		IGSS	Gate Reverse Current				1.0	An	\`	VGS = -15 V, VDS = 0 V		
3	S T A T	BVGSS Gate-Source Breakdown Voltage				-30				IG = -1 μA, V _{DS} = 0 V		
4	ċ	VGS(off)	Gate-Source Cutoff Voltage	ge			-6		\	VDS = 15 V, ID ≈ 1 nA		
5		DSS	Saturation Drain Current (Note 1)			5	15	mA	<u> </u>			
6	Y Gos Common-Source Outpu A Crss Common-Source Reven	Common-Source Forward Transcondu	ctance		4500	7500	umho		f = 1			
7		Common-Source Output Conductance		50	<u>µ</u>		V _{DS} = 15 V, V _{GS} = 0 V					
8		Common-Source Reverse Transfer Cap	pacitance			0.8			05 10 1, 165 51			
9	M	Ciss	Common-Source Input Capacitance				4	ρF			f = 1 MH:	
10	C	Coss	Common-Source Output Capacitance	mmon-Source Output Capacitance								
			Characteristic	100 MHz Min Max		40 Min	0 MHz Ma	WHz Un Max		it . Test Conditions		
11	н	9 _{iss}	Common-Source Input Conductance		100	1	10	00				
12		b _{iss}	Common-Source Input Susceptance	2500			10,0	00				
13	F	g _{OSS}	Common-Source Output Conductance		75		1	00 μ	mho	VDS = 15 V, VGS = 0 V		
14	F -055 R E U _{OSS}	COMMONSOUMEO utput Susceptance		1000		40	000					
15	ป E N	g _{fs}	COMMONSOUICEForward Transconductance			4000						
16	ç	Gps	Common Source Power Gain	18		10			∃В	$V_{DS} = 15 V$, $I_D = 5 mA$		
17	1'	NF	Noise Figure		2			4	91	V_{DS} = 15 V, I _D = 5 mA, RG = 1K Ω		

Silconix

NH

*JEDEC registered data

SI iconix

n-channel JFET designed for . . .

VHF/UHF Amplifiers Mixers

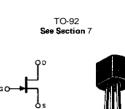
Oscillators

ABSOLUTE MAXIMUM RATINGS (25°C)	
Drain-Gate Voltage	_

Source-Gate Voltage 30V
Drain-Source Voltage
Forward Gate Current
Total Device Dissipation at 25°C Ambient
(Derate 3.27 mW/°C)
Operating Temperature Range55 to 135°C
Storage Temperature Range55 to 150°C
Lead Temperature Range
Lead Temperature Range (1/16" from case for 10 seconds)

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

		Cha	racteristic	Min	Max	Unit	Test Conditions					
1		h	Gate Reverse Current		-250	pА						
2	S	IGSS	Gate Reverse Current		-15	nA	V _{GS} = -20 V, V _{DS} = 0	T _A = +85°C				
3	T A T	BVGSS	Gate-Source Breakdown Voltage	-30		×	I _G = −1 μA, V _{DS} = 0					
4	I C	Gate-Source Cutoff Voltage	-0.5	8.0	v	V _{DS} = 15 V, I _D = 1 μA	V _{DS} = 15 V, I _D = 1 μA					
5		DSS	Saturation Drain Current	4.0	25	mА	V _{DS} - 15 V, V _{GS} = 0 (Note 1)					
6		「DS(on)	Drain-Source ON Resistance		300	n	I _D = 1 mA, V _{GS} = 0					
7		Øfs	Common-Source Forward Transconductance	4,500	10,000	00		f=1 kHz				
8		Re _{(yfs})	Common-Source Forward Transconductance	4,000		µmhos						
9	D Y	Re(yos)	Common-Source Output Conductance		150	μπικοs	V	f = 200 MHz				
0	N A	Re _{(yis})	Common-Source Input Conductance		800		V _{DS} = 15 V, V _{GS} = 0					
1	M I C	Ciss	Common-Source Input Capacitance		6.0	-		f = 1 MHz				
2	5	C _{rss}	Common-Source Reverse Transfer Capacitance		2.0	рF		T= IN1H1Z				
3		NF	Noise Figure		3.0		V_{DS} = 15 V, V_{GS} = 0, R_G = 1K Ω	f = 200 MH:				
4			Noise Figure		5.0	dB	V_{DS} = 15 V, V_{GS} = 0, R_G = 1M Ω , BW = 5 Hz	f = 10 Hz				
5		GPS	Common-Source Power Gain	15		υB	V _{DS} = 15 V, V _{GS} = 0 f = 200 f					


301/

NOTE

Siliconix

1. Pulse test PW = 300 μ s; duty cycle < 3%.

NH

Bed Genting & Curves NH

• Specified for 200 MHz Operation

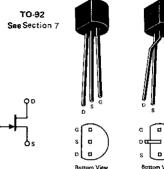
BENEFITS

n-channel JFETs designed for . . .

Analog Switches Choppers

Commutators

ABSOLUTE MAXIMUM RATINGS (25°C)


Gate-Drain or Gate-Source Voltage
Total Device Dissipation at 25°C Ambient
(Derate 3.27 mW/°C)
Operating Temperature Range
Storage Temperature Range
Lead Temperature Range
(1/16" from case for 10 seconds)

Silicanix

Performance Curves NC See Section 5

BENEFITS

- Low Insertion Loss
 R_{DS(on)} < 30 Ω (U1897E)
- No Error or Offset Voltage Generated by Closed Switch Purely Resistive

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

			Characteristic	U18	97	U18	98	U1899		Unit	Test Conditions		
				Min	Max	Min	Max	Min	Max	Unit	lest Conditions		
1		BVGSS	Gate-Source Breakdown Voltage	40		-40		-40			I _G = -1 μA, V _{DS} = 0		
2		BVDGO	Drain-Gate Breakdown Voltage	40		40		40		v	I _G = -1 μA, I _S = 0		
3		BVSGO	Source-Gate Breakdown Voltage	40		40		40			I _G = -1 μA, I _D = 0		
4		IGSS	Gate Reverse Current		-400		-400		-400		V _{GS} = -20 V, V _{DS} = 0		
5	L	DGO	Drain-Gate Leakage Current		200		200		200	pА	V _{DG} = 20 V, I _S = 0		
6 8	_	SGO	Source-Gate Leakage Current		200		200		200	рА	V _{SG} = 20 V, I _D = 0		
7]]					200		200		200		$V_{DS} = 20 V, V_{GS} = -12 V (U1897E)$		
81	ŗĹ	lD(off)	Drain Cutoff Current		10		10		10	nA	$V_{GS} = -8 V (U1898E)$ $V_{GS} = -6 V (U1899E)$ $T_A = 85^{\circ}C$		
9 6	Ľ	VGS(off)	Gate-Source Cutoff Voltage	-5.0	-10	-2.0	-7.0	-1.0	-5.0	V	V _{DS} = 20 V, I _D = 1 nA		
0		DSS	Saturation Drain Current (Note 1)	30		15		8.0		mA	V _{DS} ≈ 20 V, V _{GS} = 0		
1	,	V _{DS{on} }	Drain-Source ON Voltage		0.2		0.2		0.2	v	$V_{GS} = 0, I_D = 6.6 \text{ mA} (U1897E)$ $I_D = 4.0 \text{ mA} (U1898E),$ $I_D = 2.5 \text{ mA} (U1899E)$		
2		^r DS(on)	Static Drain-Source ON Resistance		30		50		80	Ω	I _D = 1 mA, V _{GS} = 0		
3	-	C _{DG}	Drain-Gate Capacitance		5		5		5		V _{DG} = 20 V, I _S = 0		
4	E	C _{SG}	Source-Gate Capacitance		5		5		5		V _{SG} = 20 V, I _D = 0		
5 C		C _{iss}	Common-Source Input Capacitance		16		16		16	pF	f = 1 MHz		
6		C _{rss}	Common-Source Reverse Transfer Capacitance		3.5		3.5		3.5		V _{DS} = 20 V, V _{GS} = 0		
7	1	td(on)	Turn ON Delay Time		15		15		20		Switching Time Test Conditions		
8	: [tr	Rise Time		10		20		40	ns	U1897E U1898E U1899		
9:		t _{off}	Turn-OFF Time		40		60		80		Vod 3∨ 3∨ 3∨ 3∨ VGS(on) 0		

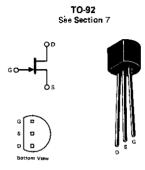
Siliconix

1897 U1898 U1899 1897-18 U1898-18 U1899-18

n-channel silicon JFET designed for . . .

VHF Amplifiers **Mixers**

ABSOLUTE MAXIMUM RATINGS (25°C)

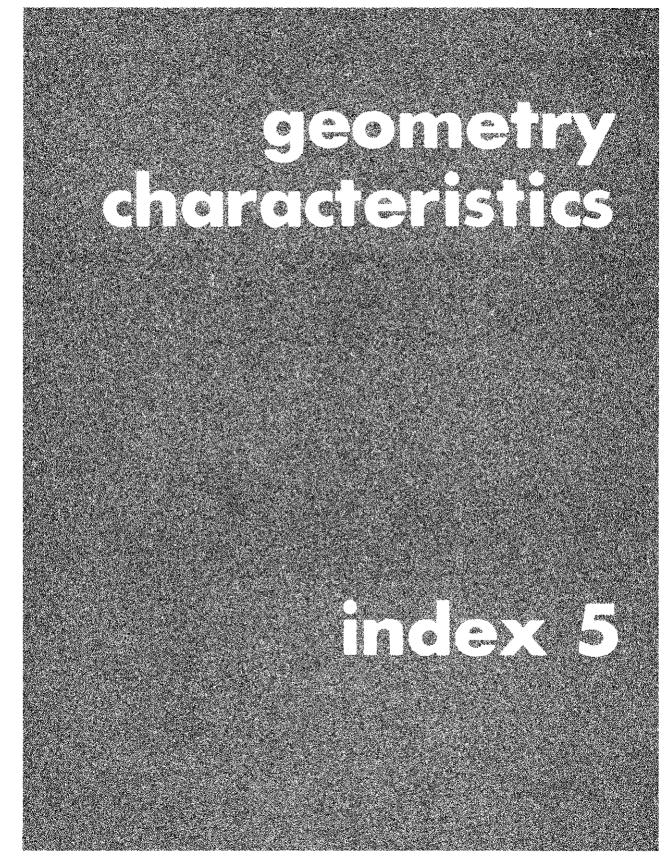

Gate-Drain or Gate-Source Voltage30V	
Forward Gate Current 10 mA	
Total Device Dissipation at 25°C Ambient	
(Derate3.27 mW/°C)	
Operating Temperature Range55 to 135°C	
Storage Temperature Range55 to 150°C	
Lead Temperature Range	
(1/16" from case for 10 seconds)	

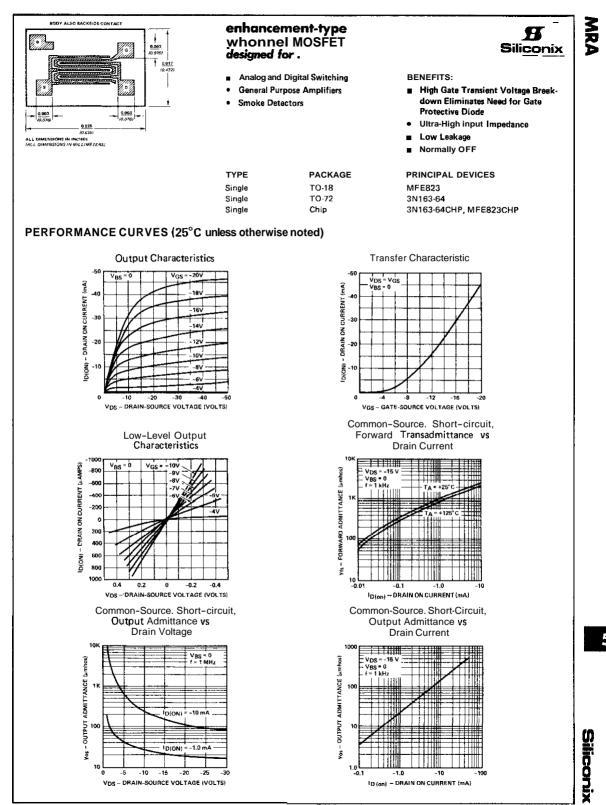
Berf Chartinge 5 Curves NH

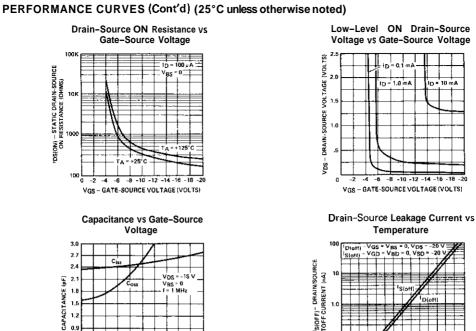
Silicanix

BENEFITS

- Low Noise NF = 3 dB Typical at 400 MHz
- Wideband High Gfs/Ciss Ratio
- Specified for Operation at 400 MHz


ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)


		Characteristic			Min	Max	Unit	Test Conditio	ns	
1		Gate Reverse Current				-100	pА			
2 5	GSS	Gate Reverse Current		-10	ΠA	V _{GS} = ~20 V, V _{DS} = 0	$T_{\rm A} = 100^{\circ}$			
3	BV _{GSS}	Gate-Source Breakdown Voltage			-30		v	l _G = -1 μA, V _{DS} = 0		
4]	VGS(off)	Gate-Source Cutoff Voltage				-6	V _	V _{DS} = 15 V, I _D = 1 nA		
5 C		Gate-Source Voltage			-1.0	-5.5	v	V_{DS} = 15 V, I _D = 500 μ A		
6	DSS	Saturation Drain Current (Note 1)			5	15	mA	V _{DS} = 15 V, V _{GS} = 0		
7 🖸	9fs	Common-Source Forward Transcondu	Note 1)	4500	7500	μmho		f = 1 kHz		
8 Y	9 _{OS}	Common-Source Output Conductance Common-Source Reverse Transfer Capa				50	μmho			
9 A	Crss			pacitance		1	pF	V _{DS} = 15 V, V _{GS} = 0		
0	Ciss	Common-Source Input Capacitance				4	pF		f = 1 MHz	
1 C	Coss	Common-Source Output Capacitance		2						
_	1	Characteristic 100 MHz				MHz	Unit	Test Conditions		
	,		Min	Max	Min	Max				
2	9iss	Common-Source Input Conductance		100		1000	μmho			
3 H	b _{iss}	Common-Source Input Susceptance		2500		10,000	μmho			
4	9 _{OSS}	Common-Source Output Conductance		75		100	μmho	V _{DS} = 15 V, V _{GS} = 0		
5 F	b _{oss}	Common-Source Output Susceptance		1000		4000	μmho	, -]		
6 E		Common-Source Forward Transcon- ductance (Note 1)			4000		μmho			
7	Gps	Common-Source Power Gain	18		10		dB	V _{DS} = 15 V, I _D = 5 mA		
8	NF	Noise Figure		2		4	dB	V _{DS} = 15 V, I _D = 5 mA, F	$R_{c} = 1K \Omega$	


NOTE:

1. Pulse test duration = 300 μ s.

NH

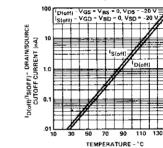
VBS=0 f=1 MHz

Ċrs

-20

-12

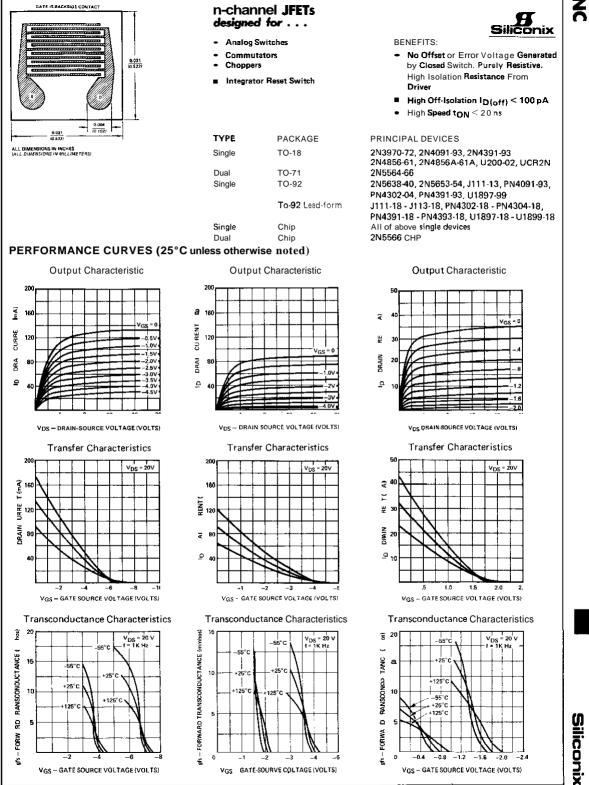
VGS -- GATE-SOURCE VOLTAGE (VOLTS)

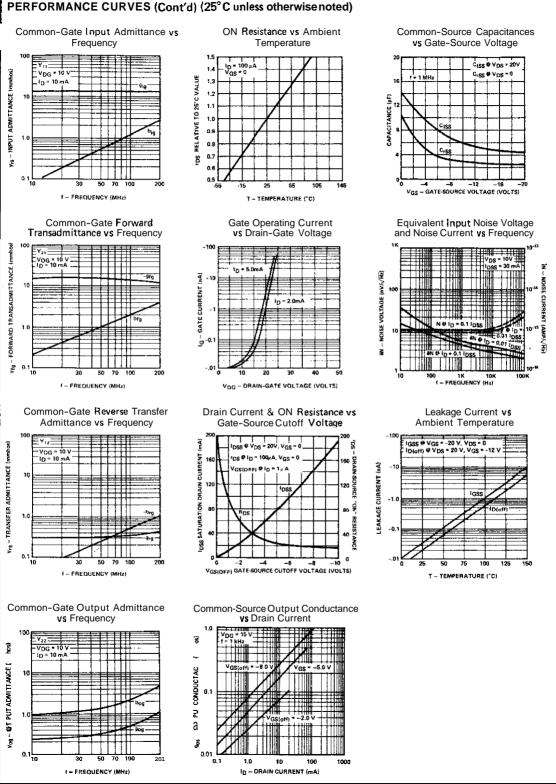

1.8

1,5

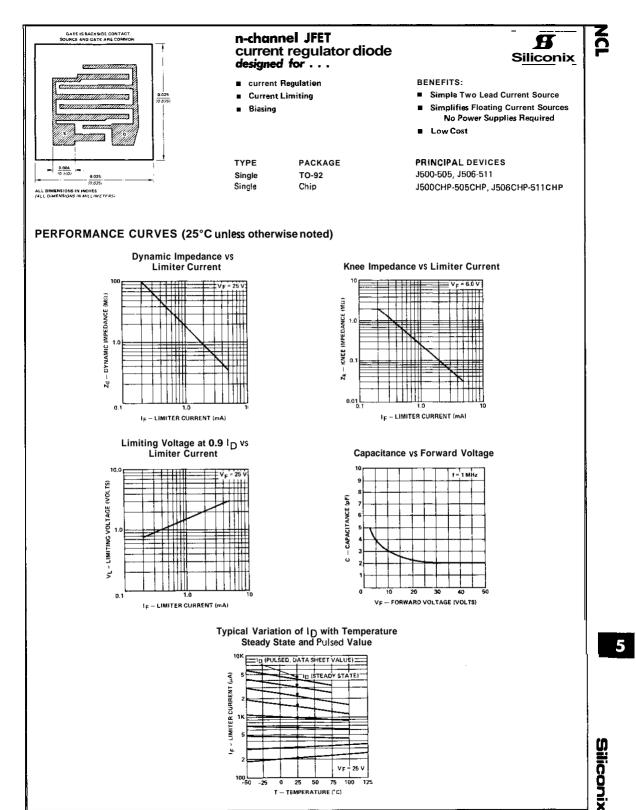
1,2 0.9

0.0 0.3


٥



150


MRA

© 1979 Siliconix incorporated

© 1979 Siliconix Incorporated

^{© 1979} Siliconix incorporated

GATE IS BACKSIDE CONTACT S AND D ARE BYMMETRICAL

0.018

10 451

ALL DIMENSIONS IN INCHES (ALL DIMENSIONS IN MILLIMETERS)

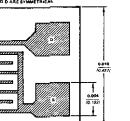
4.0

₹ 3.2 E

2.4

= -20°C

-1.0


+25°C T =

CURRENT

DRAIN

ف

G

n-channel JFET designed for . . .

TYPE

Dual

Single

Dual

Single

Sili

Low and Medium Frequency Single and Differential Amplifiers

PACKAGE

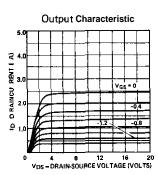
High Input Impedance Amplifiers

TO-71

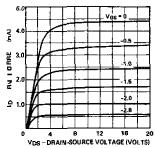
TO-72

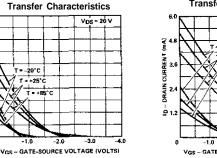
Chip Chb

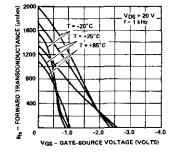

BENEFITS:


- Wide Dynamic Range IG Specified @ VDG = 20 V
- Low Capacitance Ciss < 4 pF
- Low Output Conductance

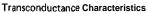
PRINCIPAL DEVICES 2N3954, 2N3954A, 2N3955, 2N3955A, 2N3956-8, 2N5452-54 2N3684-7 2N3955CHP, 2N3956CHP-8CHP, 2N5454CHP 2N3684CHP-7CHP

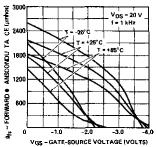

PERFORMANCE CURVES (25°C unless otherwise noted)

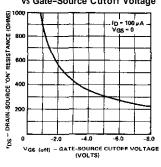



Output Characteristic

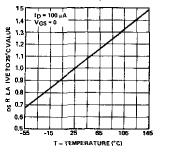
Static Drain-Source 'ON' Resistance vs Gate-Source Cutoff Voltage

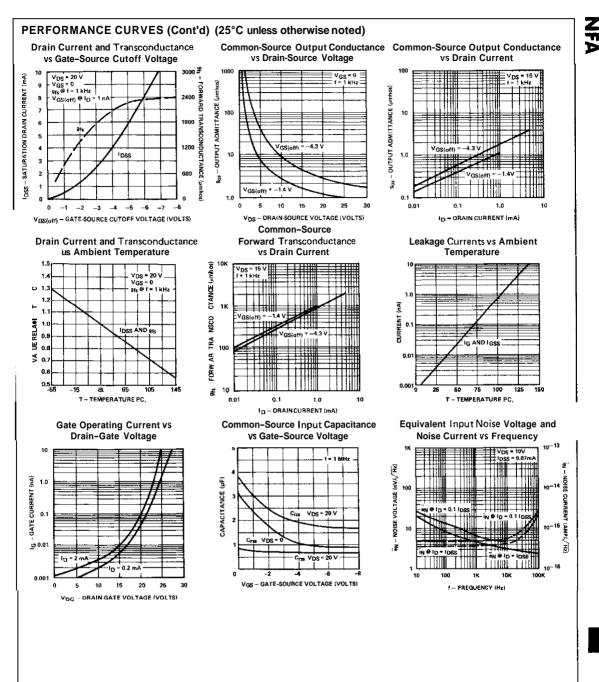


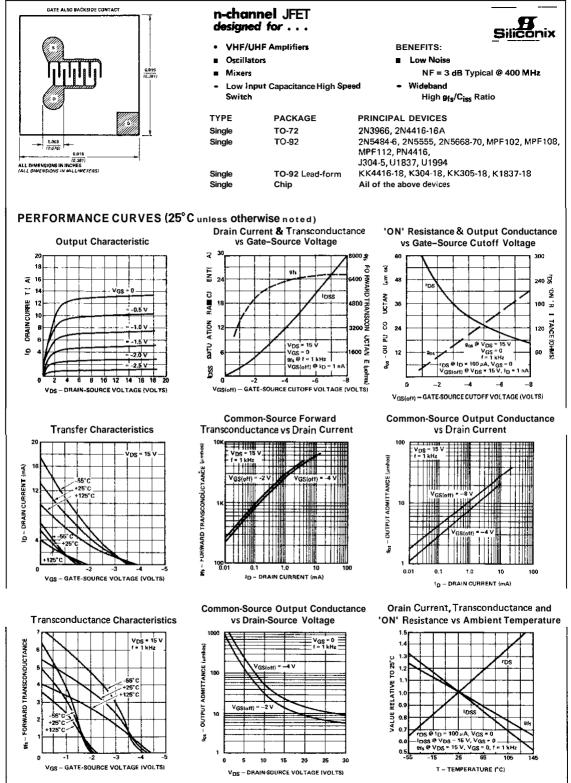

Transconductance Characteristics



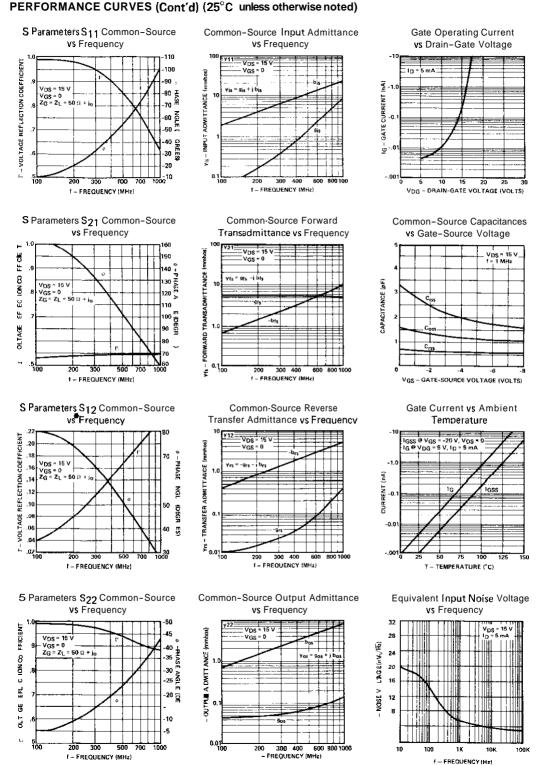
VDS = 20 V T = -20°C 25 -2.0 -3.0 4 0 - GATE-SOURCE VOLTAGE (VOLTS)


Transfer Characteristics

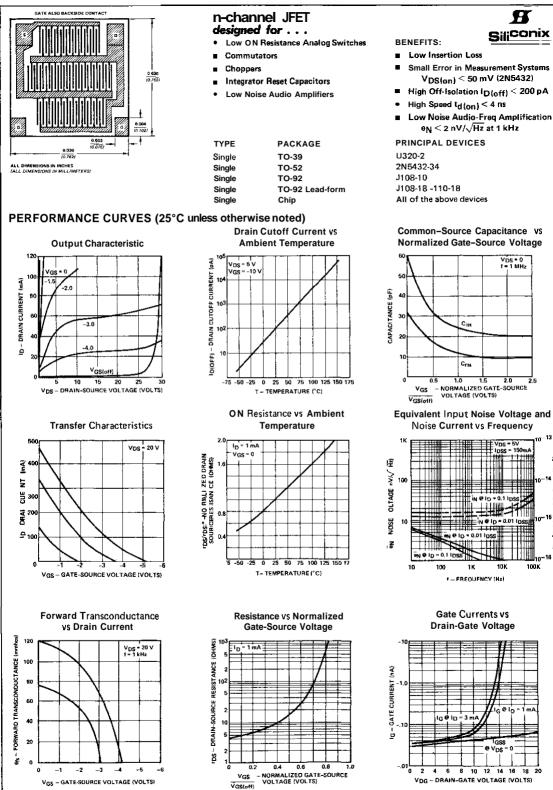



'ON' Resistance vs Ambient Temperature

Siliconix



© 1979 Siliconix incorporated


Ī

© 1979 Siliconix incorporated

Ę

Silicanix

© 1979 Siliconix Incorporated

18 20

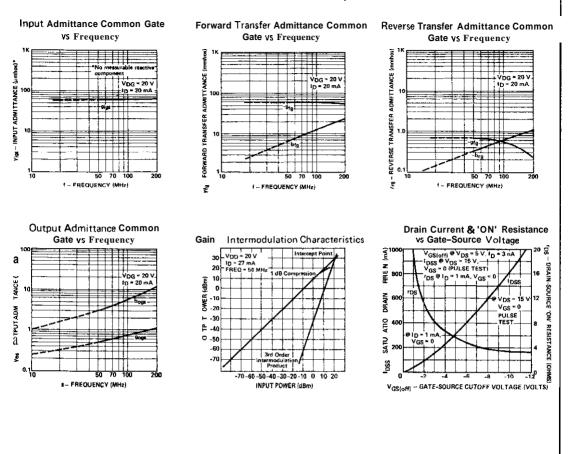
A

VDS=0 f=1MHz

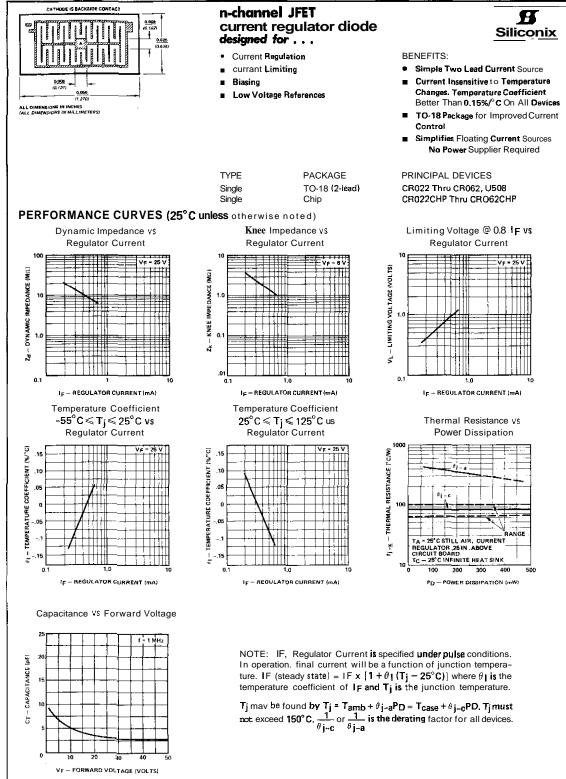
2.0 2.5

a.

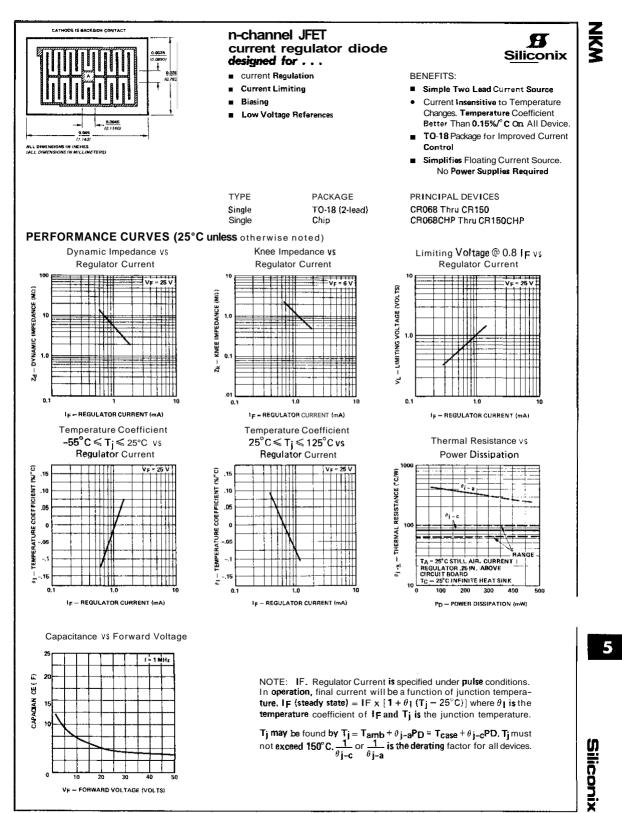
ž

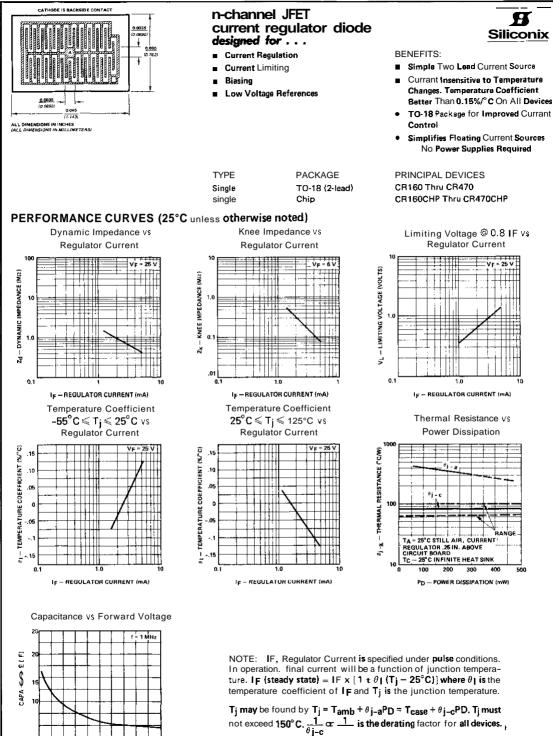

NOISE C RRE

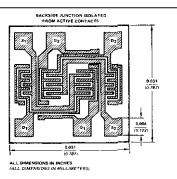
AM


18

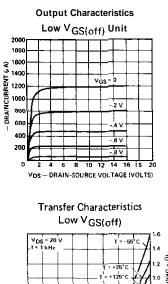
100K

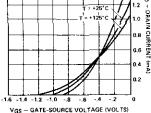

PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted)

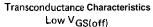

5

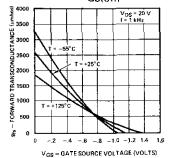

© 1979 Siliconix incorporated

10 20 30 40 Vr – FORWARD VOLTAGE (VOLTS)

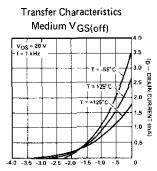


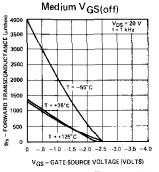

monolithic dual mhannel JFET designed for ...


- Low and Medium Frequency Amplifiers
- Impedance Converters
- Precision Instrumentation Amplifier.
- comparator.


TYPE	PACKAGE
Dual	TO-71
Dual	Chip

PERFORMANCE CURVES (25°C unless otherwise noted)

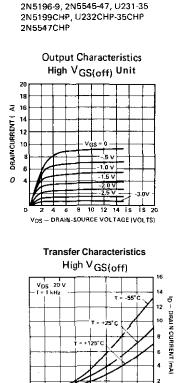



Medium V_{GS(off)} Unit 5.0 4.3 (MA) 4.0 3.5 CURREN 3.0 VGS = 0 2.5 24 27 2.0 80 1.9 4 V - 6 \ 01 1.0\ o 12 14 18 20 2 8 10 16 6 VDS - DRAIN-SOURCE VOLTAGE (VOLTS)

Output Characteristics

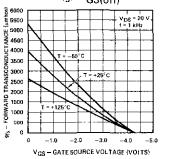
VGS ~ GATE-SOURCE VOLTAGE (VOLTS)

Transconductance Characteristics

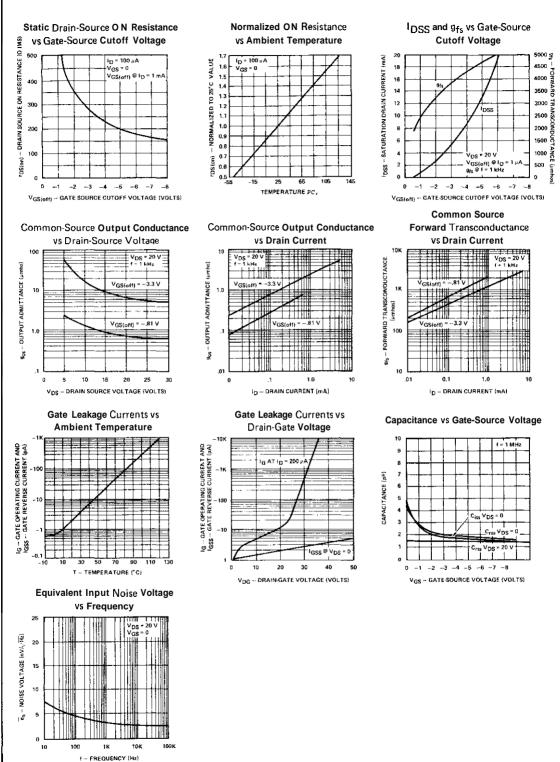


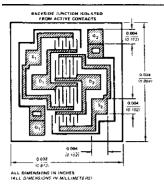
B Siliconix

BENEFITS:


- Minimum System Error and Calibration
 - 5 mV Offset Maximum (2N5196)
- Low Drift With Temperature 5 µV/°C Maximum (2N5196)

PRINCIPAL DEVICES


-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0 VGS - GATE-SOURCE VOLTAGE (VOLTS)


Transconductance Characteristics High V_{GS(off)}

© 1979 Siliconix incorporated

PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted)

monolithic dual n-channel JFET designed for...

- FET Input Amplifiers
- Low and Medium Frequency Amplifiers

PACKAGE

TO-71

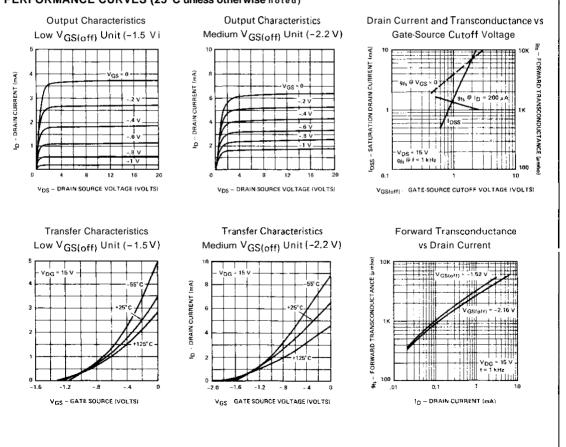
Chip

- Impedance Converters
- Precision Instrumentation Amplifies
- Comparators

TYPE

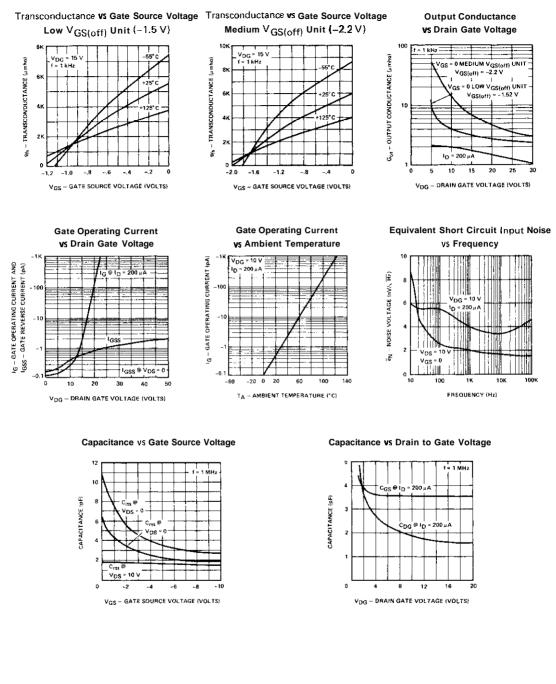
Dual

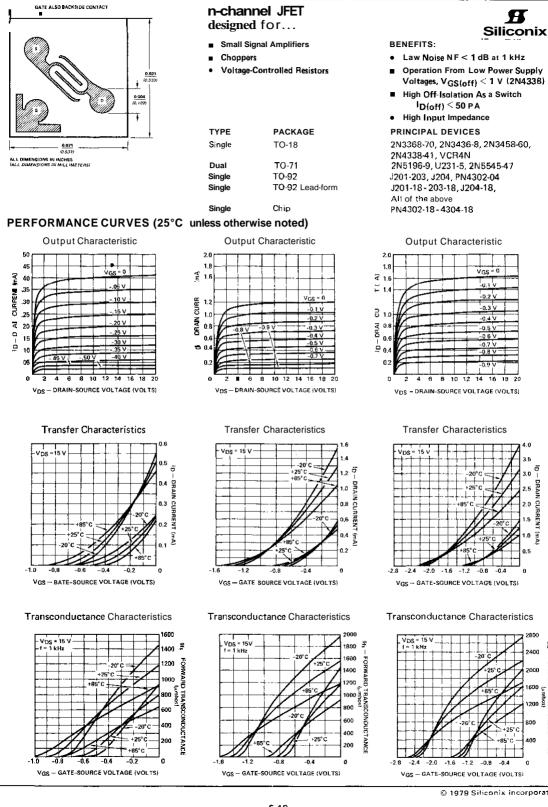
Duai


BENEFITS:

- Minimum System Error and Calibration
 - 5 m V Offset Maximum (J401) 95 dB Minimum CMRR
- Law Drift With Temperature 10 µV/°C (J401)
- Simplifies Amplifier Design Output Conductance < 2 µmho
- Low Noise ē_n = 6 nV/√Hz at 10 Hz Typical

PRINCIPAL DEVICES


2N3921-2, 2N4084-5, 2N5045-7, U401-6 2N4085CHP, 2N5046CHP-47CHP, U403CHP-06CHP


PERFORMANCE CURVES (25°C unless otherwise noted)

PERFORMANCE CURVES (Con't) (25°C unless otherwise noted)

2

2800

400

2000 MARD

600

200

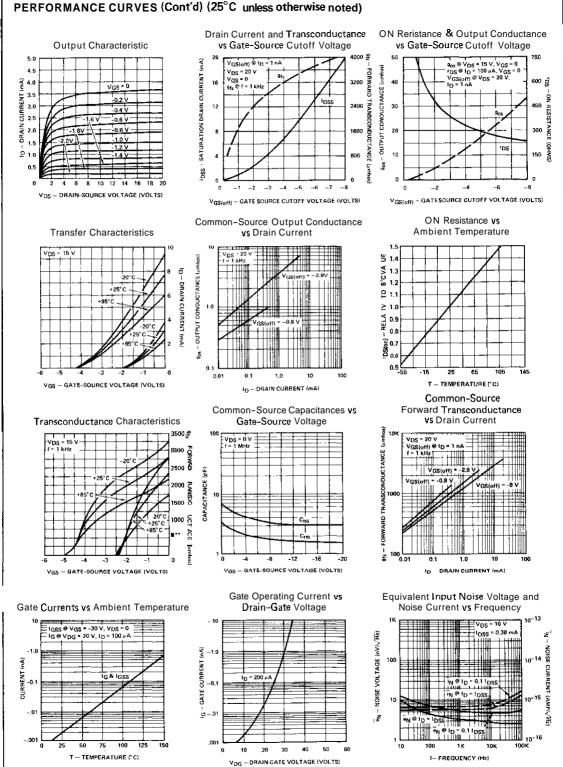
400

9ts

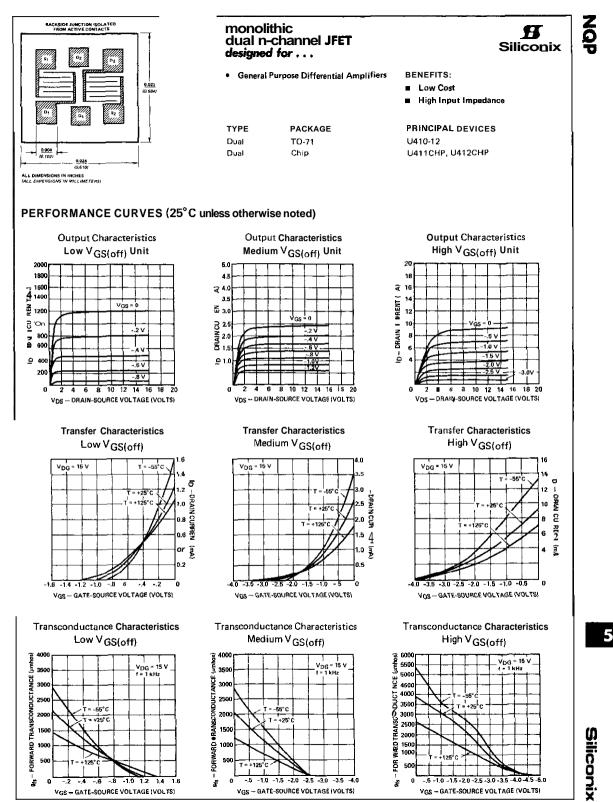
FORV

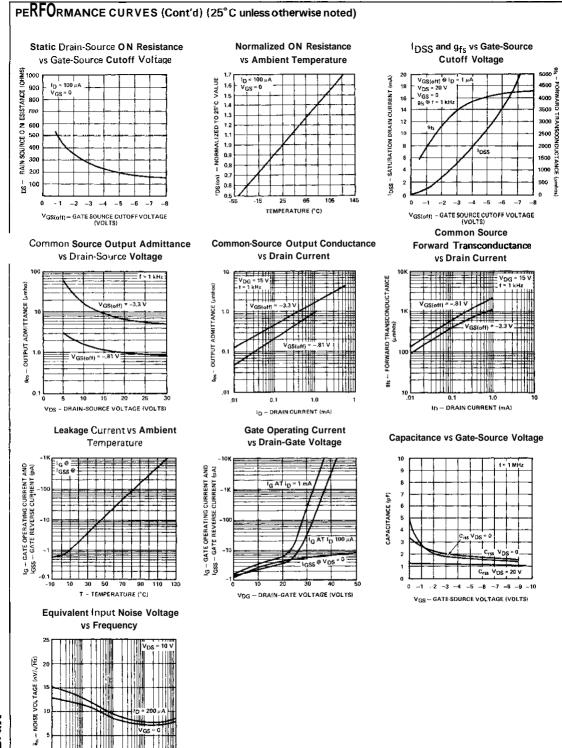
CONDUCTANCE

-0.4


Siliconix

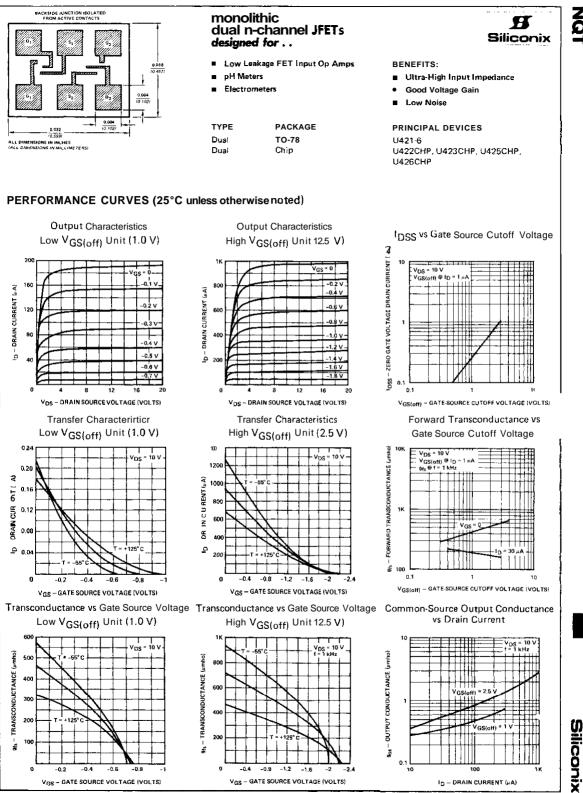
© 1979 Siliconix incorporated


-0.4 0


+25°C

A

© 1979 Siliconix incorporated



ÖZ

1000

f - FREQUENCY (Hz)

10

^{© 1979} Siliconix incorporated

PERFORMANCE CURVES (Cont'd) (25°C unless otherwise noted) g Forward Transconductance vs Output Conductance vs Capacitance vs Drain Gate Voltage Drain Current Drain to Gate Voitage 2.5 11 1_D = 30 µA f = 1 MHz ID = 30 p f = 1 kHz OUTPUT CONDUCTANCE (#mhos) GStoff c C - CAPACITANCE (pF) VGS(off 1.5 1151 100 14 1111 1 GS(off 0.5 VDG = 1 t = 1 kHz i N ĽĹ. VGS[off] = 1.0 10 12 16 20 0 _8 -12 -16 100 -4 0 4 VDG · DRAIN GATE VOLTAGE (VOLTS))D -- DRAIN CURRENT (#A) VDG - DRAIN TO GATE VOLTAGE (VOLTS) Gate Operating Current On Resistance vs Leakage Current vs Temperature vs Drain-Gate Voltage Ambient Temperature 106 400 (kd) $I_{GSS} @ V_{GS} = -20 V, V_{DS} = 0$ $I_{G} @ V_{DG} = 10 V, I_{D} = 30 \mu A$ VG5 = 0 GATE LEAKAGE CURRENT (pA) V_{DS} = 0 ¹GSS – GATE LEAKAGE CURRENT ¥ 3000 11 1.0 \ VGS(otfl = 100 u A 10 ш 5 2000 0 10 ۱n -30 µA 1 IG AND IGS

0

0.01

i BO Di

ļ

PACKAGE

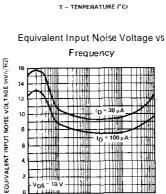
LEAKAG

-15

5 0.

TTU

1001


10K

0.01

ú

10 20 30 40

VDG - DRAIN-GATE VOLTAGE (VOLTS)

100

1K

(- FREQUENCY (Hz)

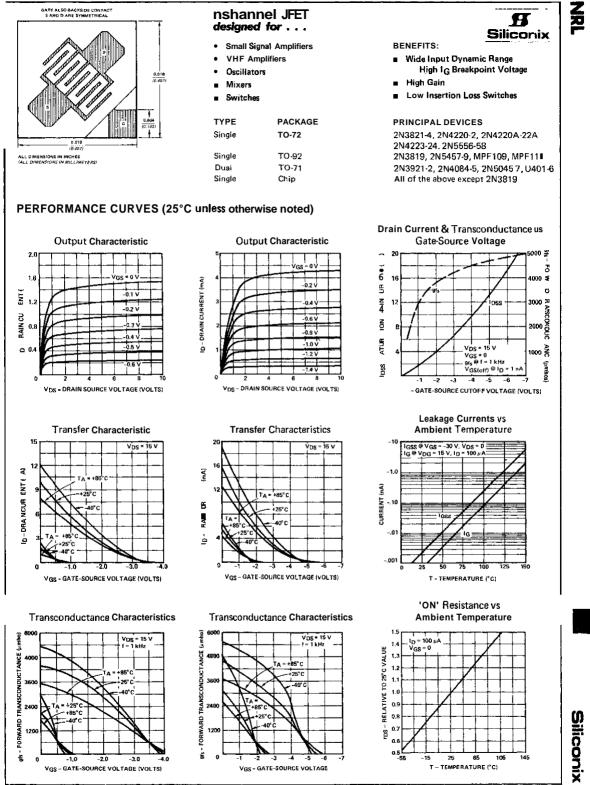
25 65 105 145

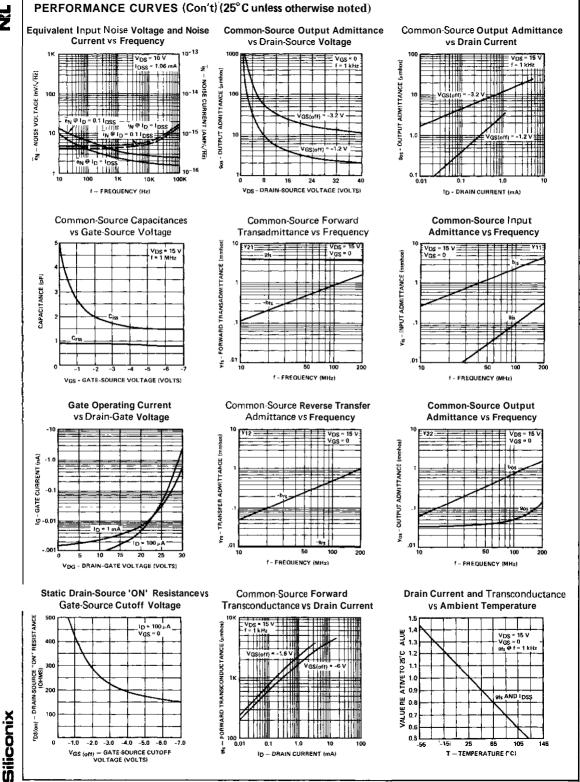
z

R(m)

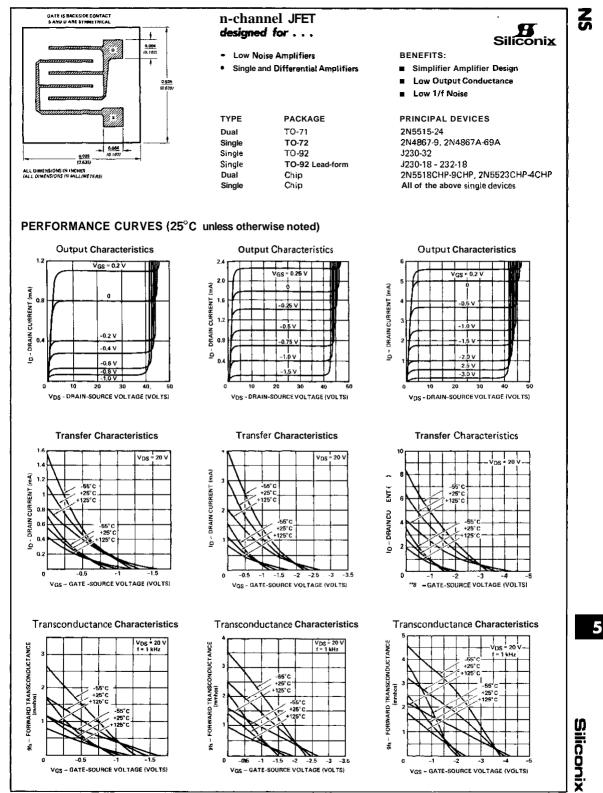
100

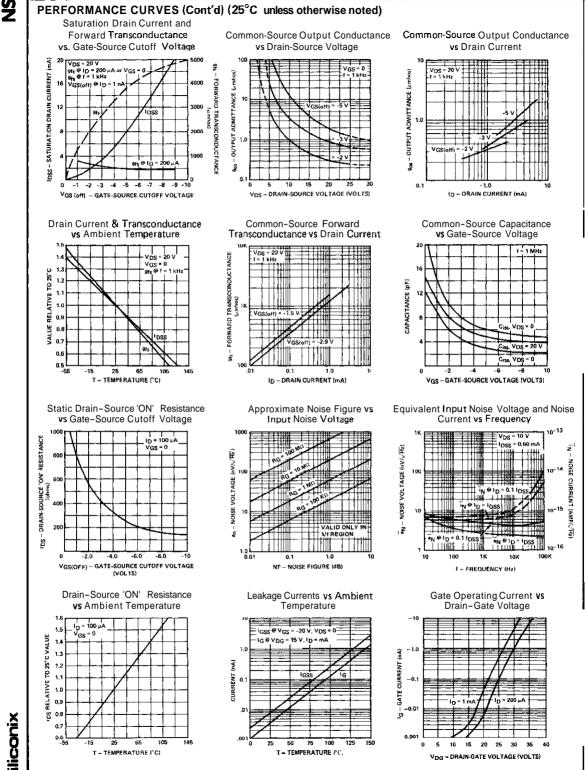
-60 -20 V_{GS(o(1)} = 2.5 \

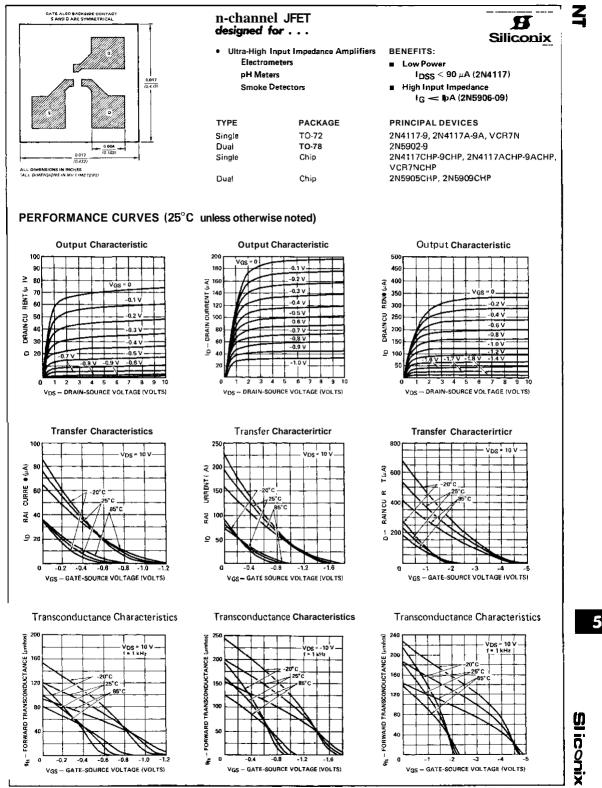

60

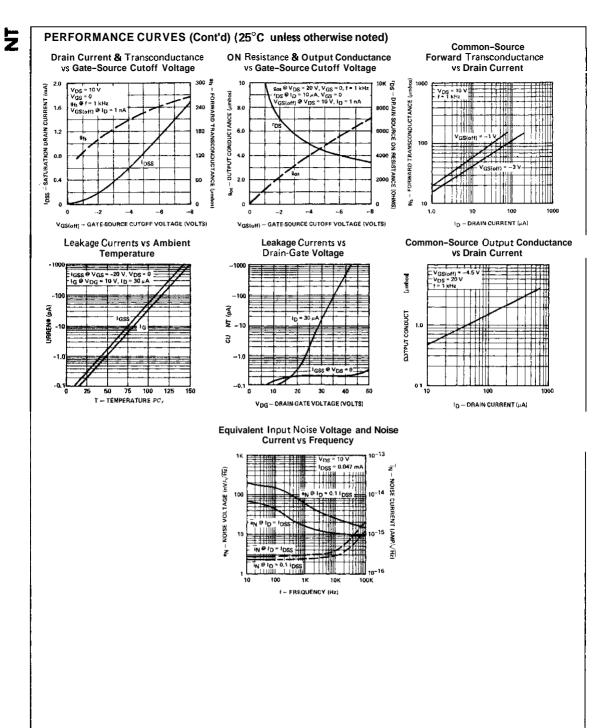

T - TEMPERATURE (" C)

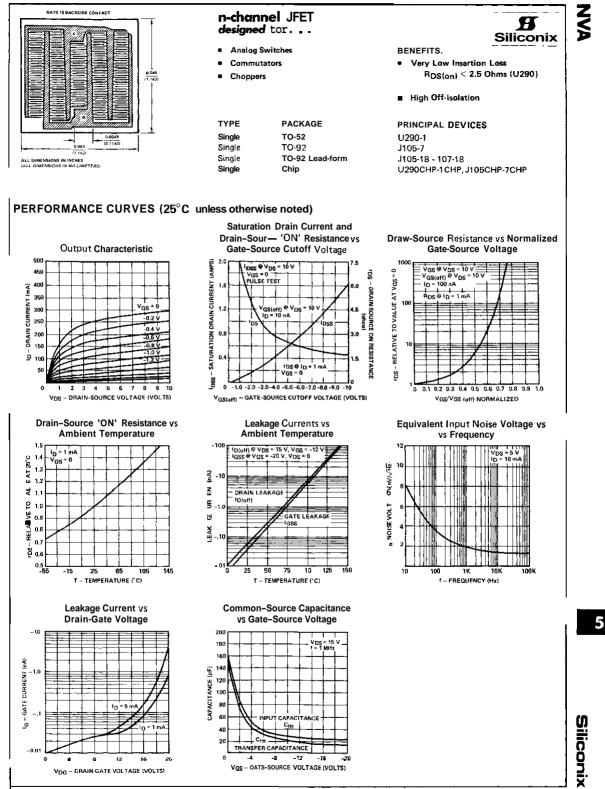
0 20


100 140 -20

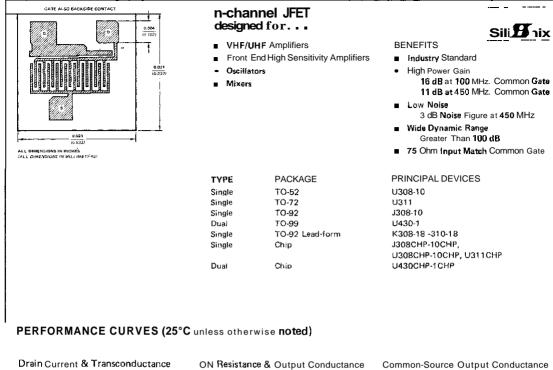

50

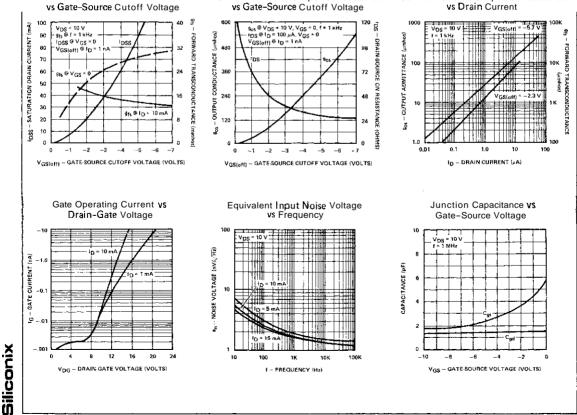


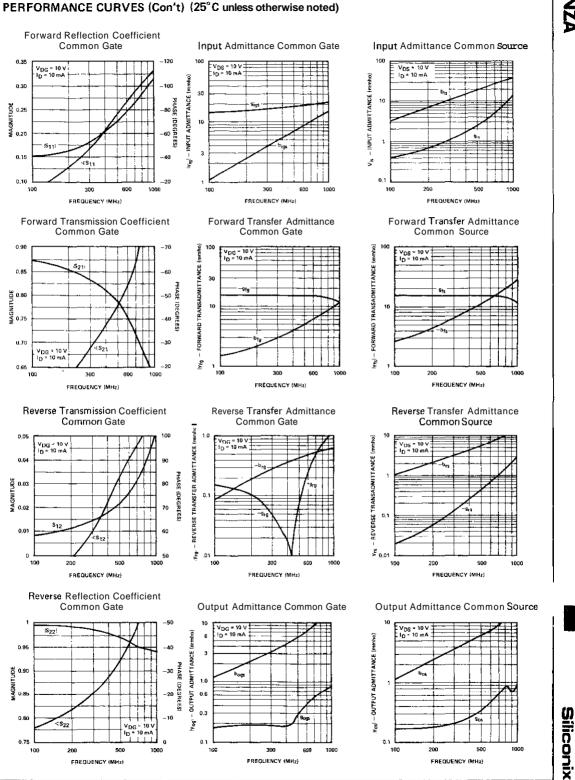

Ż

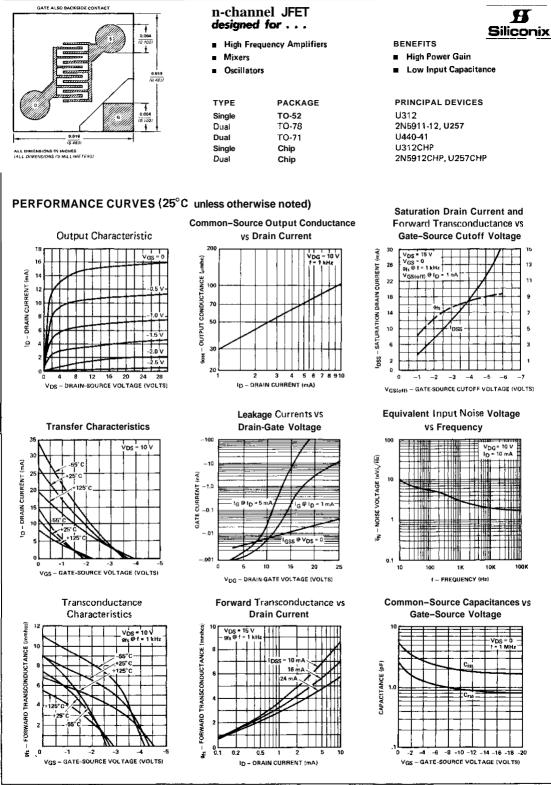


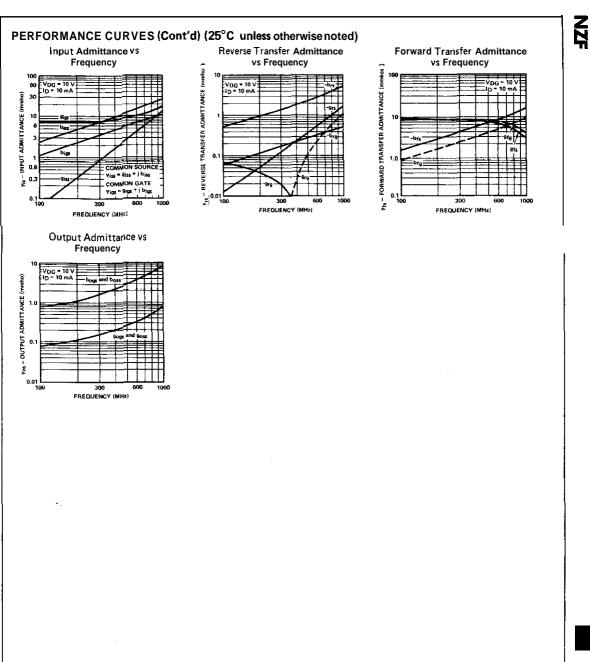
© 1979 Siliconix incorporated

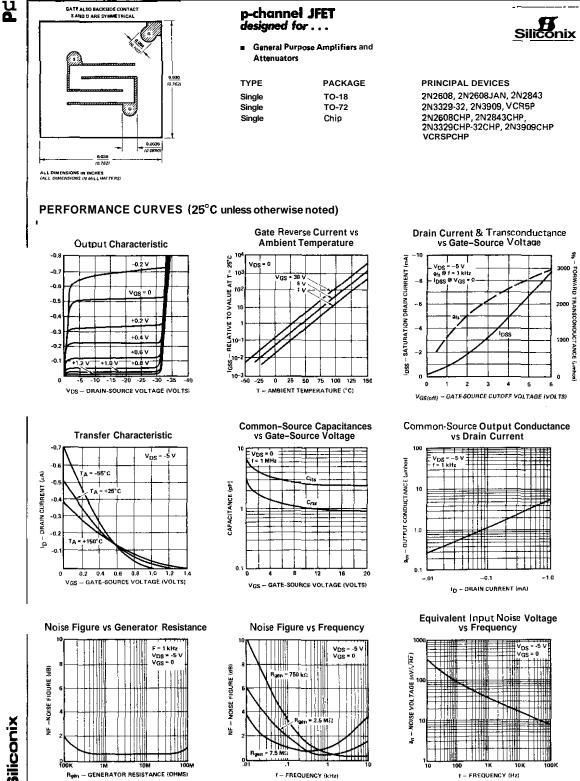


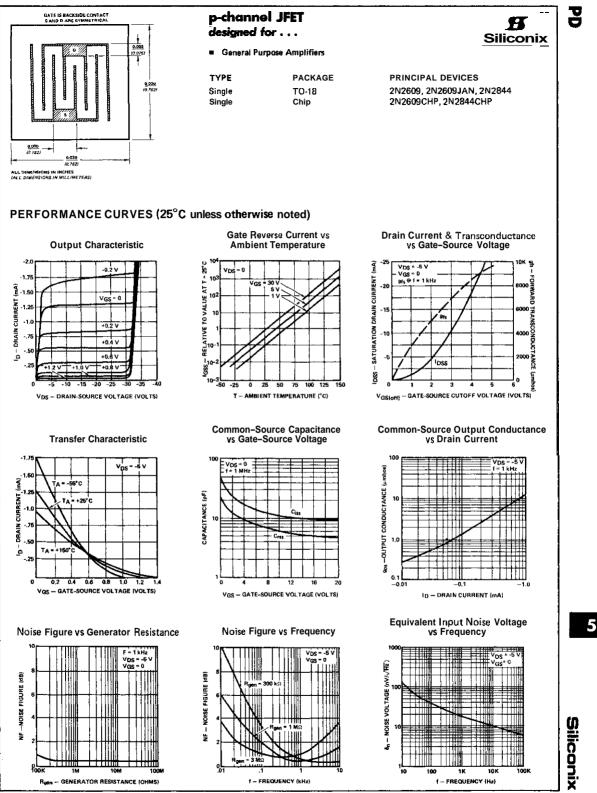


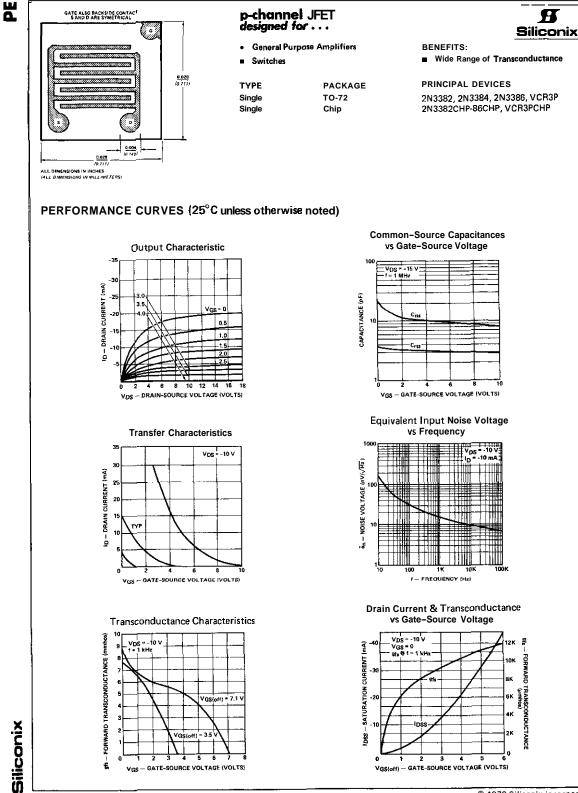

© 1979 Siliconix incorporated

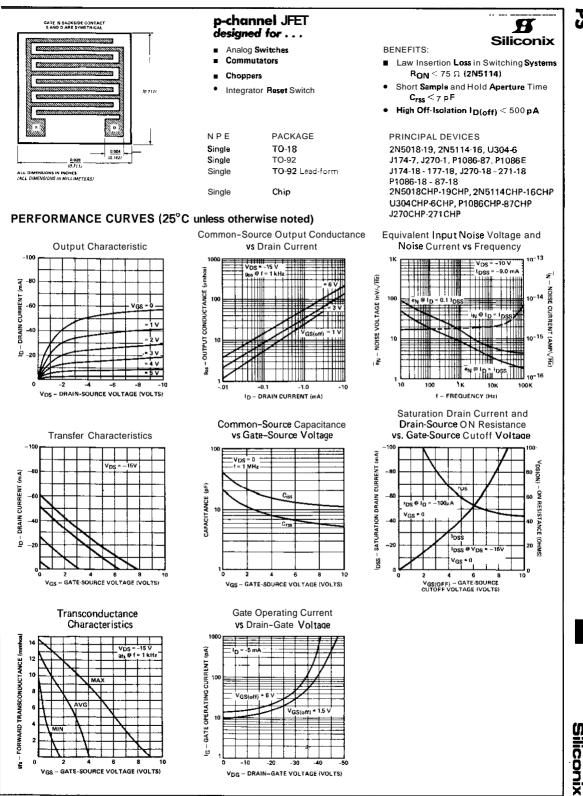




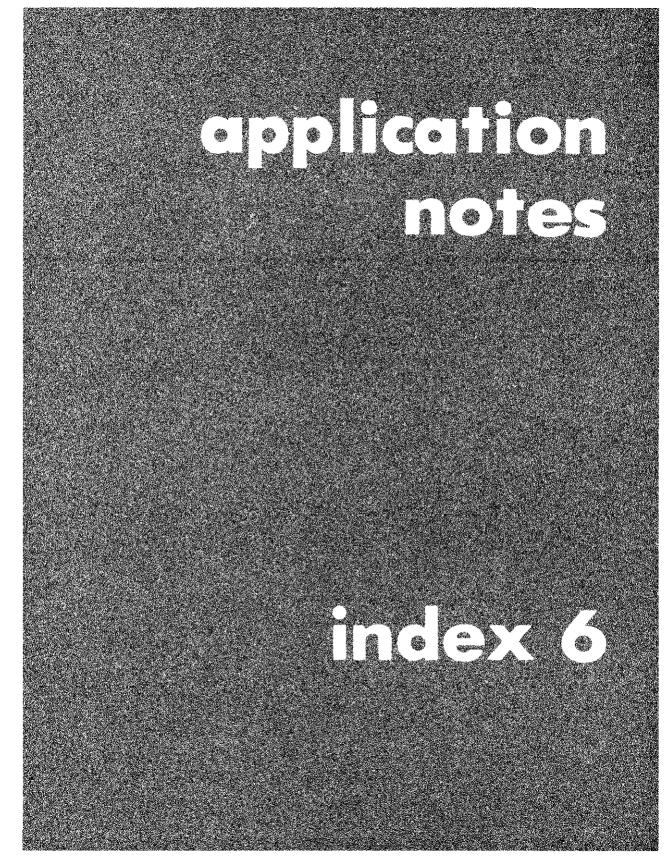








© 1979 Siliconix incorporated



5

ũ

.

.

`

APPLICATION NOTE An Introduction to FETs

A Siliconix

INTRODUCTION

The basic principle of the field-effect transistor (FET) has been known since J.E. Lilenfeld's patent of 1925. The theoretical description of a FET made by Schockley in 1952 paved the way for development of a classic electronic device which provides the designer with the means by which he can accomplish nearly every circuit function. The field-effect transistor earlier was known as a "unipolar" transistor, and the term refers to the fact that current is transported by carriers of one polarity (majority), whereas in the conventional bipolar transistor carriers of both polarities (majority and minority) are involved.

This Application Note provides an insight into the nature of the FET, and touches briefly on its basic characteristics, terminology and parameters, and typical applications.

The following list of FET applications indicates the versa tility of the FET family:

Amplifiers
Small Signal
Law Distortion
High Gain
Low Noise
Selective
D.C.
High-Frequency

Switches Current Limiters Chopper-type Analog Gate Commutator

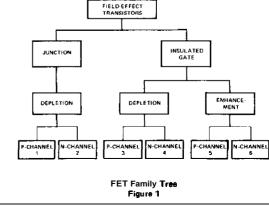
This very wide range of FET applications by no means implies

that the device will replace the more widely-known bipolar

transistor in every case. The simple fact is that FET characteristics - which are very different from those of bipolar

devices - can often make possible the design of technically

superior (and sometimes cheaper) circuits. This comment applies not only to networks employing discrete devices and conventional components such as resistors and capacitors,


but also extends to both linear and digitalintegrated circuits.

Voltage-Controlled Resistors Mixers Oscillators

In fact, FET technology today allows a greater packaging density in large-scale integrated circuits (LSI) than would ever be possible with bipular devices.

(Although there is nu industry-accepted definition of LSI, apparently when the equivalent circuit of an IC contains more than 1,000 active elements (500 gates) or is "very complex", the end product may be called LSI. With a typical LSI chip measuring less than 200 x 200 mils, this is highdensity packaging indeed.)

The family tree of FET devices (Figure I) may be divided. into two main branches, junction FETs (JFETs) and Insulated Gate FETs (or MOSFETs, metal-oxide-silicon field-effect transistors). Junction FETs are inherently depletion-mode devices, and are available in both P- and N-Channel canfigurations. MOSFETs are available in both enhancement or depletion modes, and exist as both N- and P-Channel devices, The two main FET groups depend on different phenomena, for their operation, and will be discussed separately.

6

Siliconix

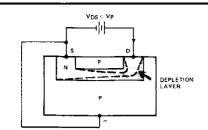
© 1979 Siliconix incorporated

Junction FETs

AN73.

In its most elementary version, this transistor consists of a piece of high-resistivity semiconductor material (usually silicon) which constitutes a channel far the majority carrier flow. The magnitude of this current is controlled by a voltage applied to a *gate*, which is a reverse-biased PN junction formed along the channel. Implicit in this description is the fundamental difference between FET and bipolar devices: when the FET junction is reverse-biased the gate current is practically zero, whereas the base current of the bipolar transistor is always some value greater than zero. The FET is a highinput resistance device, while the input resistance of the bipolar transistor is comparatively low. If the channel is doped with a donor impurity, N-type material is formed and the channel current will consist of elections. If the channel is doped with an acceptor impurity, P-type material will be formed and the channel current will consist of holes. N-Channel devices have greater conductivity than P-Channel types, since electrons have higher mobility than do holes: thus N-Channel FETs tend to be more efficient conductors than their P-Channel counterparts.

Junction FETs are particularly suited to manufacture by modern planar epitaxial processes. Figure 2 shows this process in an idealized manner. First, N-type silicon is deposited


epitaxially (single-crystai condensation surface) onto monocrystalline P-type silicon, so that crystal integrity is maintained. Then a layer of silicon dioxide is grown on the surface of the N-type layer, and the surface is etched so that an acceptor-type impurity can be diffused through into the silicon. The resulting cross-section is shown in Figure 2C, and demonstrates how a P-type annulus has been formed in the layer on N-type silicon. Figure 2D shows how a further sequence of oxide growth, etching, and diffusion can produce a channel of N-type material within the substrate.

In addition to the channel material, a FET contains two ohmic (non-rectifying) contacts, the *source* and the *drain*. These are shown in Figure 2E. Since a symmetrical geometry is shown in the idealized FET chip, it is immaterial which contact is called the source and which is called the drain; the FET will conduct current equally well in either direction and the source and drain leads are usually interchangeable.

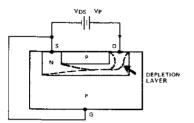
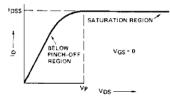
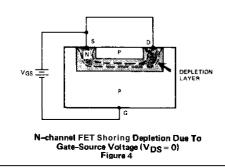

(For certain FET applications, such as amplifiers, an asymmetrical geometry is preferred for lower capacitance and improved frequency response. In these cases, the source and drain leads should not be interchanged.)

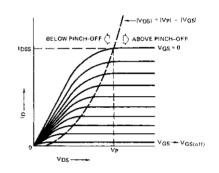
Figure 2E also shows how the N-Channel is embedded in the P-type silicon substrate, so that the gate above the channel becomes part of this substrate. Figure 3 shows how the FET functions. If the gate is connected to the source, then the applied voltage (V_{DS}) will appear between the gate and the drain. Since the PN junction is reverse-biased, little current will flow in the gate connection. The potential gradient established will form a depletion layer, where almost all the electrons present in the N-type channel will be swept away. The most depleted portion is in the high field between the gate and the drain, and the least-depleted area a between the gate and the source. Because the flow of current along the channel from the (positive) drain to the (negative) source is really a flow of free electrons from source to drain in the N-type silicon, the magnitude of this current will fall as more silicon becomes depleted of free electrons. There is a limit to the drain current (I_D) which increased V_{DS} can drive through the channel. Thir limiting current is known as IDSS (Drain-to-Source current with the gate Shorted to the source). Figure 3B shows the almost complete depletion of the channel under these conditions.

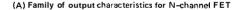

Figure 3C shows the output characteristics of an N-Channel JFET with the gate short-circuited to the source. The initial rise in I_D is related to the buildup of the depletion layer as V_{DS} increases. The curve approaches the level of the limiting current I_{DSS} when I_D begins to be **pinched** off. The physical meaning of this term leads to one definition of *pinch-off* voltage, V_P , which is the value of V_{DS} at which rhe maximum I_{DSS} flows.

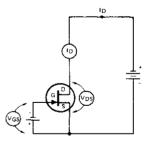
(A) N-channel FET working below saturation ($V_{GS} = 0$). (Depletion shown only in channel region).


(B) N-channel FET working in saturation retion (V_{GS} = 0)

(C) Idealized output characteristic for V_{GS} = 0,


Figure 3


In Figure 4, consider the case where $V_{DS} = 0$, and where a negative voltage V_{GS} is applied to the gate. Again, a depletion layer has built up. If a small value of V_{DS} were now applied, this depletion layer would limit the resultant channel current to a value lower than would be the case for $V_{GS} \approx 0$. In fact, at a value of $|V_{GS}| \ge |V_P|$ the channel current would be almost entirely cut off. This cutoff voltage is referred to as the gate cutoff voltage, and may be expressed by the symbol V_{PO} or by $V_{GS}(off)$. V_P has been widely used in the past, but $V_{GS}(off)$ is now more commonly accepted since it eliminates the ambiguity between gate cut-off and drain pinch-off. $V_{GS}(off)$ and V_P , strictly speaking. are equal in magnitude but opposite in polarity.



The mechanisms of Figure 3 and 4 react together to provide a family of output characteristics as shown in Figure 5A. The area below the pinchoff voltage locus is known as the triode or "below pinchoff" region; the area above pinchoff is often referred to as the pentode or saturation region. FET behavior in these regions is comparable to that of a power grid vacuum tube, and for this reason FETs operating in the saturation region may be used as excellent amplifiers. Note that in the "below pinchoff" region both V_{GS} and V_{DS} control the channel current, while in the saturation region V_{DS} has little effect and V_{GS} essentially controls I_D.

Figure 5B relates the curves of Figure 5A to the actual circuit arrangement, and shows the number of meters which may be connected to display the conditions relevant to any combination of V_{DS} and V_{GS} . Note that the direction of the arrow at the gate gives the direction of current flow for the forward-bias condition of the junction. In practice, however, it is always reverse-biased.

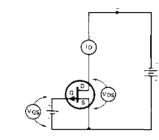
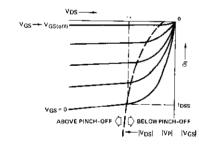

(B) Circuit arrangement for N-channel FET

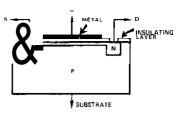
Figure 5


The P-Channel FET works in precisely the same way as does the N-Channel FET. In manufacture, the planar process is essentially reversed, with the acceptor impurity diffused first onto N-type silicon, and the donor impurity diffused later to form a second N-type region and leave a P-type chan-

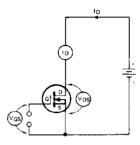
nel. In the **P-Channel** FET, the channel current is due to hole movement, rather than to electron mobility. Consequently, all the applied polarities are reversed, along with their directions and the direction of current flow. Figure 6A shows the circuit arrangement for a P-Channel FET, and Figure 6B shows the output characteristics of the device. Note that the curves are shown in another quadrant than those of the N-Channel FET, in order to stress the current directions and polarities involved.

In summary, a junction FET **consists** essentially of a channel of semiconductor material along which a current may flow whose magnitude is a function of two voltages, V_{DS} and V_{GS} . When V_{DS} is greater than V_P , tho channel current is controlled largely by V_{GS} alone, because V_{GS} is applied to a reverse-biased junction. The resulting gate current is extremely small.

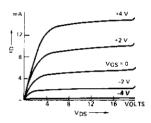
(A) Circuit arrangement for P-channel FET



(B) Family of output characteristics for P-channel FET



MOSFETs


The metal-oxide-silicon FET (MOSFET) depends for its operation on the fact that it is not actually necessary to form a semiconductor junction on the channel of a FET in order to achieve gate control of the channel current. Instead, a metallic gate may be simply isolated from the channel by a thin layer of silicon dioxide, as shown in Figure 7A. Although the bottom of the insulating layer is in contact with the P-type silicon substrate, the physical processes which occur at this interface dictate that free electrons will accumulate at the interface, spontaneously forming an N-type channel. Thus a conducting path exists between the diffused N-type source and drain regions. Further, the MOSFET will behave

 (A) Idealized cross-section through an N-channel depletion type MOSFET

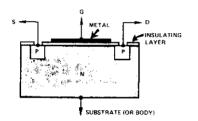
(B) Circuit arrangement for N-channel depletion MOSFET

(C) Family of output characteristics for the Siliconix 2N3631 N-channel depletion MOSFET

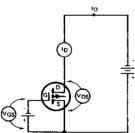
Figure 7

in a manner similar to the N-Channel junction FET when a **voltage** of the correct polarity is applied to the channel, as in Figure 7B.

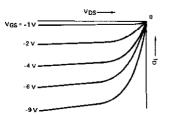
Output characteristics of **an** N-Channel MOSFET are shown in Figure 7C. Because there is no junction involved, V_{GS} can be reversed without engendering a gate current; the gate may be made either positive or negative with respect to the source. Under these circumstances, still more free electrons will be attracted to the channel region, and I_D will become greater than I_{DSS} . This mode of operation is represented by tho higher members of the family of ourput characteristics. Because the application of a negative gate voltage causes the channel to be depleted of free electrons – thus reducing I_D – the device just described is called a *depletion-mode* MOSFET.


The foregoing has established that the depletion-mode MOSFET is a "normally-ON device: when $V_{GS} = 0$, a conducting path exists between source and drain. In many circuits a "normally-OFF" device would be useful, a condition which leads to the concept of an *enhancement-mode* MOSFET. In the latter device, an increasing voltage applied to the gate will enhance channel conduction, and depletion will never occur, I_D being zero when $V_{GS} = 0$,

A P-Channel enhancement-mode MOSFET is shown in Figure 8. Here, an acceptor impurity has been diffused into an N-type substrate to form P-type source and drain regions. No conducting channel exists between the source and the drain, because no matter how the drain-source voltage is applied one of the PN junctions will always be reverse-biased. On the other hand, if a negative voltage is applied to the gate, a field will be set up in such a direction as to attract holes into the upper layer of the substrate and produce a P-type channel. A family of output characteristics for a typical MOSFET is shown in Figure 8C. The idealized cross-section illustrated in Figure 8C come about. Refer to Figure 9 for an extension of this phenomenon.


If a constant (negative) gate voltage, $(V_{GS(K)})$ is applied, then an essentially-uniform P-Channel depletion layer will be induced, as in Figure 9A. If a negative drain voltage is applied, then current, I_D , will flow through the drain. As $|V_{DS}|$ increases, I_D also increases. However, the voltage between the drain and the gate decreases, so that the thickness of the channel at the drain end is reduced as in Figure 9B. Therefore, the relationship of I_D versus V_{DS} will eventually reach a limiting value when $V_{DS} = V_{GS}$, and the channel becomes pinched off. This condition is shown in Figure 9C,

Different values of V_{GS} give rise to limiting valuer of I_{Dr} so that the characteristic family of output curves which was shown in Figure ⁸ is realized. Characteristics of depletion-mode MOSFETs also come about for the same reason, except that members of the output characteristics family also ^{exist} for V_{GS} values of zero or reversed polarity. The P-Channel enhancement-mode MOSFET is currently the most popular member of the FET family in current use, and is in fact the basic element in many LSI integrated circuits.


In principle it is possible to manufacture the remaining two members of the MOSFET family, the **P-Channel** depletion. mode and the **N-Channel** enhancement-mode devices. Be. cause of the spontaneous formation of an **N-Channel** at a **silicon/silicon-dioxide interface**, the fabrication processes **involved** become quite difficult on a volume production **basis**. Much work has **gone** into the **development** of **practical** MOSFET processes for these devices, and **N-Channel depletion-mode** types are **now** becoming generally available.

(A) Idealized cross-section through a P-channel enhancement MOSFET

(B) Circuit arrangement for P-channel enhancement MOSFET

(C) Family of output characteristics for a P-channel enhancement MOSFCT

Figure 8

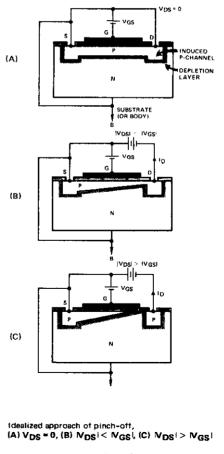


Figure 9

AN73-7

FET Characteristics

The FET enjoys certain inherent advantages over bipolar transistors because of the unique construction and method of operation of the field-effect device. These characteristics **include**:

- Low noise
- No thermal runaway
- Low distortion and negligible intermodulation products
- High input impedance at low frequencies
- Very high dynamic range (>100 dB)
- Zero temperature coefficient Q point
- Junction capacitance independent of device current

The transfer function of a FET approximates to a squarelaw response, and the second and higher-order derivatives of g_m are near zero; thus strong second and negligible higherorder harmonics are produced. Intermadulation products are extremely low.

The input impedance of a FET is simply the impedance of a reverse-biased PN junction, which is on the order of 10^{10} to $10^{12} \Omega$. In practice, the input impedance is limited by the value of the shunt gate resistor used in a self-bias common-source circuit configuration. At RF frequencies, the input impedance drop is proportional to the square of the frequency; for example, in a 2N4416 FET, the input impedance would be 22K Ω at 100 MHz. Also, the input susceptance increases linearly with frequency, since it is a simple parasitic capacitance.

The FET has very high dynamic range, in excess of 100 dB. Thus it can amplify very small signals because it produces very little noise, or it can amplify very large signals because it has negligible intermodulation distortion products. It also has a zero temperature coefficient bias paint (zero TC paint) at which changes in temperature do not change the quiescent operating point.

Junction FET capacitances are more constant over wide current variation than are the same parameters in a bipolar device. This inherent stability **allows** high-frequency (VHF through L-band) oscillators to be built which **are** far more stable than **oscillators using** low-frequency crystals and multiplier stages.

FET Terminology and Parameters

Any introduction to the nature, behavior, and applications of field-effect transistors requires that certain questions be answered on FET electrical quantities and parameters i n particular, the most important parameters, and the means by which they can be measured. The following discussion will define specific FET parameters and their associated subscript notations, and present basic test circuits and results. Major parameters include:

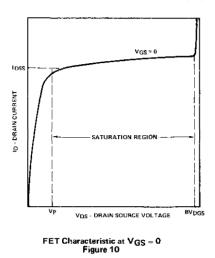
- I_{DSS} Drain current with the gate shorted to the source
- V_{GS(off)} Gate-source cutoff voltage
- I_{GSS} Gate-to-source current with the drain shorted to the source
- BV_{GSS} Gate-to-source breakdown voltage with the drain shorted to the source
- g_{fs} Common-source forward transconductance
- C_{gs} Gate-source capacitance
- C_{gd} Gate-drain capacitance

Special attention should be given to the subscript "s" because it has two different meanings and three possible uses. In FET notations, an "s" for the first α second subscript identifies the source terminal as a node point for voltage reference or current flow. However, when using triple subscript notation, an "s" far the third subscript does not refer to the FET source terminal. It is an abbreviation for "shorted", and signifies that all terminals not designated by the first two subscripts must be tied together and shorted to the common terminal, which is always the second subscript. Therefore, the term I_{GSS} refers to the gate-source current with the drain tied to the source.

Because of the typical low input and output admittance of the FET, four-pole admittance equations are commonly used to describe electrical characteristics of the FET:

$$I_1 = Y_{11} V_{11} + Y_{21} V_{22}$$
(1)

When Y_{11} , Y_{21} , Y_{12} and Y_{22} are defined as the input, reverse transfer, forward transconductance, and output admittances respectively, Equation 1 reduces to


$$i_1 = y_i v_{11} + y_r v_{22}$$

 $i_2 = y_f v_{11} + y_o v_{22}$

For a three-lead FET, 11 usually corresponds to the gatesource terminal and 22 corresponds to the drain-source terminal (i.e., the device is connected in the common-source mode). Thus

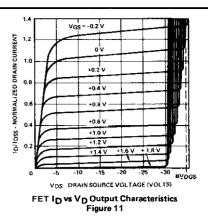
Here, the second subscript for the y parameters designates the source lead as the common or ground terminal.

IDSS - Drain Current at Zen, Gate Voltage (ID at VGS = 0)

By itself, I_{DSS} merely refers to the drain current that will flow for any applied V_{DS} with the gate shorted to the source. However, when a particular value for V_{DS} is given, equal to or greater than V_P (see Figure 10), I_{DSS} indicates the drain saturation current at zero gate voltage. Some FET data sheets label I_{DSS} for V_{DS} greater than V_P as $I_{D(\circ n)}$.

VGS(off) - Gate-Source Cutoff Voltage

The resistance of a semiconductor channel is related to its physical dimensions by $R = \rho L/A$, where

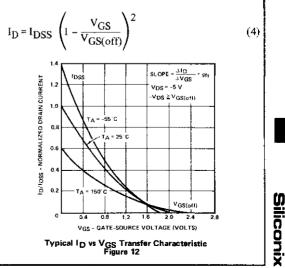

$\rho = resistivity$

L =length of the channel

 $A = W \times T = cross-sectional area of channel$

In the usual FET structure, L and W are fixed by device geometry, while channel thickness T is the distance between the depletion layers. The position of the depletion layer can be varied either by the gate-source bias voltage or by the drain-source voltage. When T is reduced to zero by any combination of V_{GS} and V_{DS} , the depletion layers from the opposite sides come in contact, and the a-c or incremental channel resistance, r_{DS} , approaches infinity. As earlier noted, this condition is referred to as "pinch-off" or "cutoff" be. cause the channel current has been reduced to a very thin sheet, and current will no longer be conducted. Further increases in V_{DS} (up to the junction reverse-bias breakdown) will cause little change in I_D . Accordingly, the pinch-off region is also referred to as the pentode or "constant-current" region.

In Figure 10, pinch-off occurs with $V_{GS} = 0$. In Figure 1I, V_{GS} controls the magnitude of the saturated I_D , with increases in V_{GS} resulting in lower valuer of constant I_D , and smaller values of V_{DS} necessary to reach the "knee" of the curve. The current scale in Figure 11 has been normalized to a specific value of I_{DSS} .

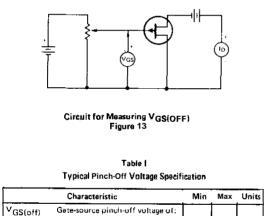


The knee of the curve is important to the circuit designer because he must know what minimum V_{DS} is needed as reach the pinch-off region with $V_{GS} \approx 0$. When appropriate bias voltage is applied to the gate, it will pinch off the channel so that no drain current can flow; V_{DS} has no effect until breakdown occurs. The specific amount of V_{GS} that produces pinch-off is known as the gate-source cutoff voltage, $V_{GS}(off)$.

VGS(off) Test Procedure

Although the magnitude of $V_{GS(off)}$ is equal to the pinchoff voltage, V_P , defined by the pinch-off knee in Figure 10, rapid curvature in the area makes it difficult to define any precise point as V_P . Taking a second derivative of V_{DS}/I_D would yield a peak corresponding to the inflection point at the knee, which approximates V_P . However, this is not a simple measurement for production quantities of devices. A better measure is to approach the cutoff point of the I_D versus V_{GS} characteristic. This is easier than trying to specify the location of the knee of the I_D versus V_{DS} output characteristic.

A typical transfer characteristic I_D versus V_{GS} is shown in Figure 12. The curve can be closely approximated by



© 1979 Siliconix incorporated

Silicon'x

Equation 4 and Figure 12 indicate that at $V_{GS} = V_{GS}(off)$, $I_D = 0$. In a practical device, this cannot be true because of leakage currents. If I_D is reduced to less than 1 percent of I_{DSS} , V_{GS} will be within 10 percent of the $V_{GS}(off)$ value indicated by Equation 4. If I_D is reduced to 0.1 percent of I_{DSS} , the indicated $V_{GS}(off)$ error will be reduced to about 3 percent. For a true indication of $V_{GS}(off)$, and a realistic picture of the parameters of Figure 12, care must be taken that leakage currents do not result in an error in the $V_{GS}(off)$ reading. Typically, at room temperature, 1 percent of I_{DSS} 1s still well above leakage currents but is low enough to give a fairly accurate value of $V_{GS}(off)$.

A typical circuit for measuring $V_{GS(off)}$ is shown in Figure 13. At $V_{GS} \approx 0$, the value of I_{DSS} can be measured. Then, by increasing V_{GS} until I_D is 0.01 percent of I_{DSS} , the value of $V_{GS(off)}$ is obtained. From a production standpoint. it is more convenient to specify I_D at some fixed value (such as I nA), rather than as a certain percentage of I_{DSS} . Thus a pinchoff voltage specification may be given as indicated in Table I

	Characteristic	WIIA	wax	Units
V _{GS(off)}	Gate-source pinch-off voltage of:			
	$V_{DS} = -5 V, I_{D} = -1 \mu A$	1	4	Volts

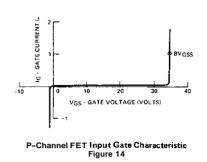
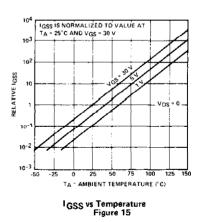

Another method which provides an indirect indication of the maximum value of $V_{GS(off)}$ is shown in Table II. The characteristic specified is $I_{D(off)}$, whereas the parameter of interest is $V_{GS} = 8$ volts. The specification does say that the maximum $V_{GS(off)}$ is approximately 8 volts, but no provision is made for stating a *minimum* $V_{GS(off)}$, as was done in Table I. Therefore, another test must be made if $V_{GS(off)}$ (min) is to be specified.

Table II Indication of Maximum V_P


Characteristic		Test Conditions	Min	Мах	Unit
¹ D(off)	Pinch-off drain current	V _{DS} = +12 V, V _{GS} = 8 V		-10	μA

IGSS - Gate-Source Cutoff Current

The input gate of a **P-Channel** FET appears as a simple PN junction; thus the input d-c input characteristic is analogous to a diode V-I curve, as is shown in Figure 14.

In the normal operating mode, with V_{GS} positive for a P-Channel device, the gate is reverse-biased to a voltage between zero and $V_{GS(off)}$. This results in a d . gate-source resistance which is typically more than 100M Ω . The gate current is both voltage- and temperature-sensitive. Figure IS shows this relationship for I_{GSS} versus temperature and V_{GS} .

If the gate-source junction becomes forward-biased, (negative voltage in a P-Channel device) or if V_{GS} exceeds the reverse-bias breakdown for the junction, the input resistance will then become very low.

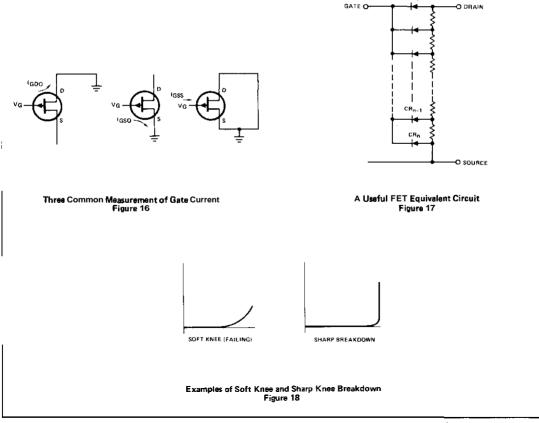
The FET is normally operated with a slight reverse bias applied to the gate-source; hence a good measure of the d-c input characteristic is to check the gate current at a value of gate-channel voltage that is below the junction break. dawn rating. In device evaluation, there are three common measurements of gate current: I_{GDO} , I_{GSO} , and the combined measurement I_{GSS} . These measurement circuits are shown in Figure 16.

The question is, should I_{GDO} and I_{GSO} be measured separately, or will **one** measurement of I_{GSS} suffice? One thing is certain: $I_{GSO} + I_{GDO} > I_{GSS}$, because the drain and the source are not completely isolated. They are, in fact, electrically connected via channel resistance. For most FETs, if V_G is greater than $V_{GS(off)}$, the difference between $(I_{GSO} + I_{GDO})$ and I_{GSS} is small; therefore, the measurement of I_{GSS} is a realistic means of controlling both I_{GDO} and I_{GSO} .

In a circuit, V_{GD} may be biased between zero and BV_{GDS} , while V_{GS} will be between zero and $V_{GS(off)}$: therefore, I_G is not necessarily the same as I_{GSS} .

BVGSS - Gate-Source Breakdown Voltage

FET input terminals have been previously described as having NP or PN junctions, depending on the channel material. As such, the junction breakdown voltage is a necessary parameter.


A useful equivalent circuit for a FET is the distributed constant network shown in Figure 17, for a P-Channel FET. If an N-Channel device is being evaluated, the diodes would **be** reversed. In mast applications, the gate-drain voltage is greater than the gate-source voltage; thus the gate-drain breakdown rating is most important. However, it is also possible to consider the gate-source junction breakdown and the apparent drain-source breakdown (i.e., in Figure 17, when a high negative voltage is applied from drain to source, CR_1 will break down while CR_n becomes forward-biased).

Some device manufacturers use a BV_{GDO} rating, which means they are only checking diode CR_1 . A better method is to use a BV_{GSS} rating (gate-source breakdown with the drain shorted to the source), because it checks both CR_1 and CR_n in addition to exposing the *weakest* breakdown path along the entire gate-channel junction. The BV_{GSS} test also allows the user to interchange source and drain lead **con**nections without worry about devise breakdown ratings.

Admittedly, a BV_{GSS} test will reject same units which might pars a BV_{GDO} test; the number rejected, however, will be insignificant compared to the advantage of providing symmetrical operation.

Test Procedures for BVGSS

Junctions may break down softly or sharply; junctions with soft **knee** breakdown are undesirable. Without examining each individual unit on a curve tracer, devices with a soft **knee** may be eliminated by selecting a low current level for breakdown measurement (see Figure 18).

gfs - Transconductance

Transconductance, g_{fs} , is a measure of the effect of gate voltage upon drain current:

$$g_{fs} = \frac{\Delta I_D}{\Delta V_{GS}}$$
, $V_{DS} = constant$ (5)

The interrelation of g_{fs} to the parameters I_{DSS} and VGS(OFF) should be noted. Equations 4, 6 and 7 describe the value of I_D and β_{fs} in a FET for any value of V_{GS} between zero and VGS(OFF)

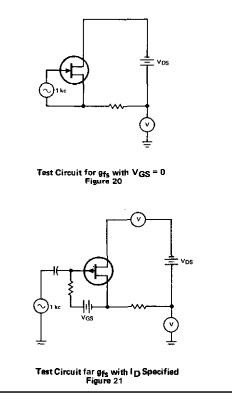
$$g_{fs} = g_{fso} \left(1 - \frac{V_{GS}}{V_{GS}(off)} \right)$$
(6)

$$g_{\rm fso} = -\frac{2I_{\rm DSS}}{V_{\rm GS(off)}}$$
(7)

where g_{fso} is the value of g_{fs} at $V_{GS} = 0$ and I_{DSS} is the value of I_D at $V_{GS} = 0$. With these equations, the value of gfs can be calculated with a fair degree of accuracy (?O percent) if I_{DSS} and V_{GS(off)} are known.

Figure 19 shows normalized curves for $I_{\mbox{\scriptsize D}}$ and $g_{\mbox{\scriptsize fs}}$ as functions of V_{GS} in a P-Channel FET. These curves were obtained from actual measurements on typical diffused channel FETs, such as the 2N2606. The curves agree very well with Equations 4 and 6 until $V_{GS(off)}$ is approached. For there curves, $V_{GS(off)}$ was assumed to be the value of V_{GS} where $I_D/I_{DSS} = 0.001$.

Specifications for gfs are shown in Tables III and IV. Note that there is a difference in the test conditions specified for the N-Channel 2N3823 and the P-Channel 2N3329. The gate voltage for the 2N3823 is established as zero. This means that g_{fs} is measured at $I_D = I_{DSS}$, as in Table III.


Table III (2N3823)

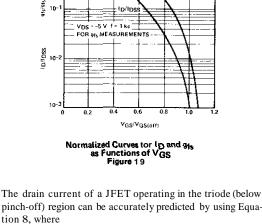

Characteristic	Test Conditions	Min	Max	Unit
g _{fs} Small-signal common- source forward transconductance	V _{DS} = 15 V, V _{GS} = 0, f = 1 kHz	3,500	6,500	µmho

Table IV (2N3329)

Characteristic		_
y _{fs} Common-source forward transfer admittance	V _{DS} = +10 V, I _D = +1 mA f = 1 kHz	μmho

The test conditions shown in Table IV specify a certain value for ID (-1 mA far the 2N3329). This means that for each unit tested, V_{GS} is adjusted until I_D equals the specified value. The conditions specified in Table III simplify testing of the gfs parameter by eliminating the necessity of adjusting V_{GS}. Figures 20 and ?I show typical test setups for the two methods.

pinch-off) region can be accurately predicted by using Equation 8, where

0.8

Siliconix

 $I_D/triode = I_{DSS}$


(8)

Junction FET Capacitances

Associated with the junction between the gate and the channel of a FET is a capacitance whose value and geometric distribution are functions of the applied voltages V_{GS} and V_{DS} . Because of the complexity of dealing with such a distributed capacitance, a simplification is made so that two lumped capacitances, C_{gs} and C_{gd} , exist between the gate and the source and drain, respectively. (A much smaller capacitance, C_{ds} , also exists between the drain and the source, stemming mainly from the device package; this header capacitance is small enough so that it can be ignored for most purposes.)

Data sheets quote C_{gs} and C_{gd} (or other capacitances from which they may be derived) for specified operating conditions. Occasionally, graphs are included which show the variations of C_{gs} and C_{gd} as the result of changing conditions of V_{DS} , V_{GS} and temperature. If these data are not presented, an estimate of inter-electrode capacitance values may be made by assuming that these values vary inversely with the square root of the bias voltage. The temperature variations will be very small, because they depend on the -2.2 mV/°C change in junction potential difference.

Assuming that the FET is properly biased – that is, that the d-c conditions are met by the external circuitry – it is possible to construct an incremental equivalent circuit from which the small-signal or a-c performance may be predicted. Such an equivalent circuit is shown in Figure 22.

Cgss = Ciss = Cgs + Cgd Coss = Cgd + Cds ~ Cqd = Crss

NOTE

The equivalent capacitance from the gate to the source, C_{gs} , is shunted by a very large input resistance, r_{gs} , with both of these parameters being characteristic of a reverse-biased junction. Similarly, the equivalent capacitance from the gate to the drain is shunted by the very large resistance r_{gd} . (For most purposes, r_{gs} and r_{gd} may be neglected, and the gate impedance of the FET treated as pure capacitance). At the drain side of the equivalent circuit the small capacitance by the incremental channel resistance, r_{ds} . This resistance is capable of wide variations, depending on bias conditions. Since the equivalent circuit is fundamentally relevant to the pinch-off or saturated condition, r_{ds} will be on the order of megohms.

The incremental **channel** current is given by the transconductance, g_{fs} , multiplied by the incremental gate voltage. For the small signal, v_{gs} , this is manifested in the equivalent circuit by the current generator $g_{fs}v_{gs}$. Notice that the conventional direction of flow of this current is such that i_d flows into the FET, in a "positive" direction.

Many circuits can be designed around the equivalent circuit for the junction FET. The actual values of g_{fs} adn r_{ds} can be measured as previously mentioned; there remains only the requirement to establish the methods of determining C_{gs} and C_{gd} .

First, assume that the FET is in operation and that the drain is connected to the source via a large capacitor, i.e., the drain and source are short-circuited to a-c. Under these circumstances, a capacitance measurement between the gate and the source will give

$$C_{gss} (or C_{iss}) = C_{gs} + C_{gd}$$
(9)

Second, assume that the gale and source are short-circuited to a-c in a similar manner. A capacitance measurement between the drain and the **source** will now give

$$C_{dss}$$
 (or C_{oss}) $\approx C_{gd}$ (10)

The alternative symbols C_{iss} and C_{oss} simply refer to measurements made at the input (gate) and the output (drain) respectively. An alternative symbol for C_{gd} is C_{rss} , which refers to the "reverse" capacitance.

In data sheets, it is customary to state (= C_{iss}) C_{Pss} and C_{dss} (= C_{oss}), C_{rss} is often given in place of C_{uss} because if $C_{ds} \ll C_{oss}$, which is usually the case, then $C_{rss} \cong C_{oss}$. Equations (9) and (10) **can** be used in those instances where it is necessary to extract C_{gs} and C_{gd} , **as** in

$$C_{gs} = C_{iss} - C_{gd} = C_{iss} - C_{rss}$$
(11)

and

$$C_{gd} = C_{rss} \tag{12}$$

Remember that all capacitance measurements should be made at the same bias levels, since the capacitances are functions of applied voltages. To indicate the order of the capacitances to be found in a junction FET, consider the values given in the data sheet for the Siliconix E202 N-channel FET. They are given as

$$C_{iss}$$
 (at $V_{DS} = 20$ V and $f = 1$ MHz) = 5 pF max.

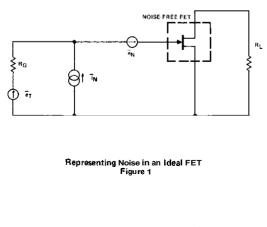
and

$$C_{rss}$$
 (at V_{DS} = 20 V and F = 1 MHz) = 2 pF max.

Hence, at a drain-source voltage of 20 V and a frequency of I MHz, $C_{gs} = 5 - 2 = 3 \text{ pF}$ maximum. Even though the FET is physically symmetrical, bias conditions have forced the capacitances to be unequal.

APPLICATION NOTE

Audio-Frequency Noise Characteristics of Junction FETs


INTRODUCTION

B Siliconix

The purpose of this application note is to identify and characterize audio frequency noise in junction field-effect transistors. Emphasis is placed on basic device characteristics rather than on end applications, since it is important far the circuit designer to know the salient noise behavior of the FET, and how those characteristics may he specified by production-oriented test parameters.

Defining FET Noise Figure

For analysis, it is convenient to represent noise in a FET by assuming that an ideal noise-free device has two external noise sources, $\overline{e_N}$ and $\overline{i_N}$. These noise sources are chosen to have the same output as would an actual noisy FET. An equivalent circuit is shown in Figure I

A noise factor (F) is a Figure of Merit of a device with respect to the resistance of a generator. To calculate a noise

factor, a source resistor R_G , with a thermal noise voltage e_T , is added to the circuit.

A noise factor (F) may be defined as

F=	Total available output noise power
Г =	Noise power at output due to thermal noise of R_{G}
	or
E =	Noise Dower output due to R_G + noise Dower output due to FET
Г	Noise power output due to R_G
	or
F = 1 +	Noise power output due to FET
I. – I I	Noise power output due to R _G
	or
F = 1 J	Gain X noise power of FET referred to input
1 - 1	Gain X noise power due to R _G
	Noise power of FET referred to input
F = 1 ·	Noise power due to R _G

The thermal noise voltage across R_{C} is⁽¹⁾

$$\overline{e_{\rm T}} = \sqrt{4k \, {\rm TR}_{\rm G} B} \tag{1}$$

where k = 1.380×10^{-23} Joules/°K (Boltzmann's Constant), T = temperature in °K, and B = bandwidth in Hz. Therefore noise power due to R_G is

$$\frac{\frac{1}{2}}{R_{G}^{T}} = \frac{4kTR}{R_{G}^{T}} = 4kTB$$

(2

The noise power of the FET referred to the input is

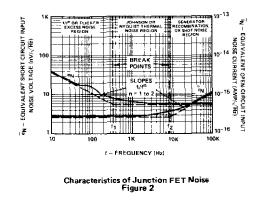
$$\frac{\overline{e}_N^2}{R_G} + i_N^2 \cdot R_G$$
(3)

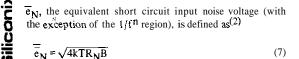
When expressions far the noise power of both the FET and RG are substituted, the noise factor becomes

$$F = 1 + \frac{\overline{e}_N^2 + \overline{i}_N^2 R_G^2}{4kTR_G B}$$
(4)

A noise figure (NF) expressed in dB indicates the presence of added noise power from the FET or another active device. The noise figure is always given with reference to a standard, specifically the generator resistance R_C:

$$NF = 10 \log_{10} [F]$$
 (5)


The noise figure of the FET is


$$NF = 10 \log_{10} \left[1 + \frac{\overline{e_N}^2 + \overline{i_N}^2 R_G^2}{4kTR_G B} \right] dB$$
(6)

When junction FET noise is expressed in terms of the noise figure (NF), an inherent disadvantage arises in that the noise figure value is dependent upon the value of the generator resistance. R_G . Therefore, the \overline{e}_N , \overline{i}_N method remains ar the best way to quantitatively express the noise characteristics of the FET itself.

Describing Junction FET Noise Characteristics

Junction FET \overline{e}_N and \overline{i}_N characteristics are frequencydependent within the audio noise spectrum, and take a form as shown in Figure 2.

 $\bar{e}_{N} = \sqrt{4kTR_{N}B}$

where $R_N\cong 0.67/g_{fs},$ the equivalent resistance for noise. The $e_N,$ except in the $1/f^n$ region, closely approximates the equivalent thermal noise voltage of the channel resistance.

In the so-called $1/f^n$ region, \overline{e}_N is expressed as

$$\overline{e}_{N} = \sqrt{4KR_{N}B(1+f_{1}/f^{n})}$$
(8)

where n varies between I and 2

and is device- and lot-oriented.

The characteristic bulge in \overline{e}_N in the $1/f^n$ region has been observed to some extent in all junction FETs submitted to test. The breakpoint or corner frequency shown as f₁ in Figure 2 is lot- and device design-oriented, and varies from about 100 Hz to 1 kHz.

As indicated in Equations (7) and (8), \overline{e}_{N} is inversely proportional to the square root of the transconductance of the FET $(e_N \propto 1/\sqrt{g_{fs}})$. e_N can be lowered by a factor of $1/\sqrt{N}$ if N devices with matched electrical characteristics are connected parallel. For example, when

$$N = 2$$
 (9)

let

$$\overline{\mathbf{e}}_{\mathbf{N}1} = \overline{\mathbf{e}}_{\mathbf{N}2} \tag{10}$$

and let

$$g_{fs1} = g_{fs2} \tag{11}$$

Thus.

 $g_{fs}TOTAL = 2 g_{fs1}$ or $2 g_{fs2}$

From Equation (7)

$$\overline{e}_{N1} = \sqrt{4kT(0.67/g_{fs1})}B$$
 (13)

and

 \overline{e}_{N} TOTAL = $\sqrt{4kT(0.67/2g_{fs1})B}$

Thus,

$$\overline{e}_{N}$$
TOTAL = $\sqrt{\frac{1}{2}} \overline{e}_{N1}$

A second way to achieve $low e_N$ is to use a device with a large gate area. Empirically, e_N is inversely proportional to the square of the gate area $(\overline{e}_N a 1/A_G^2)$, independent of gfs. This large gate area philosophy has been followed in the

(7)

design of the Siliconix 2N4867A FET, and noise performance of the device is discussed later in this Application Note. A major advantage of this type of design is that $\overline{e_N}$ is significantly lowered and $\overline{i_N}$ also remains at a low value.

The equivalent open-circuit input noise current, \bar{i}_N , with the exception of the shot noise region shown in Figure 2, is due to thermally-generated reverse current in the gate channel junction. It is defined as

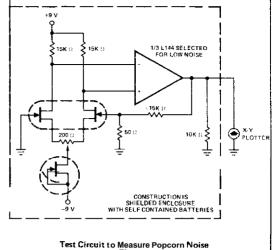
$$\overline{i}_{N} = \sqrt{2qI_{G}B}$$
(16)

where $q = 1.602 \times 10^{-19}$

coulomb (the magnitude of the electron charge), I_G is the measured DC operating gate current in amperes, and B is bandwidth in Hz. The expression is accurate only when the measured gate current is the result of bulk device conductance. It is possible fur the measured gate current tube due to conductance stemming from contamination across the leads of the semiconductor package.

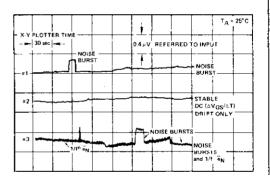
At higher frequencies, as in the shot noise region shown in Figure 2, \overline{i}_N can be approximated as being equal to the Nyquist ther ll noise current generated by a resistor:⁽³⁾

$$\vec{i}_{N} = \sqrt{\frac{4kTB}{R_{p}}}$$
 (17)


where Rp is the real part of the

gate-to-source input impedance. The breakpoint or corner frequency f_2 in Figure 2 is lot- and device design-oriented and can vary from 5 kHz to 50 kHz.

Another form of noise found in junction FETs is known as "popcorn" or burst noise; the term popcorn noise was originated in the hearing aid industry because of noise or level shifts which are present in input stages, and which resemble the sound of corn popping.


Popcorn noise is a form of random burst input noise current which remains at the same amplitude, and which is confined to frequencies of 10 Hz or lower. The suitability of a FET device is dependent on the amplitude of the burst, its duration, and its repetition rate. The origins of popcorn noise are not completely identified, but are believed to be caused by intermittent contact in aluminum-silicon interfaces and by contamination in the oxidation processes.

A test circuit to measure popcorn noise in differential junction FET amplifiers is shown in Figure 3. In practice, popcorn noise is evaluated on an engineering basis, and not on a production-line basis. No correlation between $1/f^n$ noise at 10 Hz and popcorn noise has yet been found in junction FETs. However, if the amplitude of the burst is large and occurs frequently, then $1/f^n$ noise voltage (\bar{e}_N) is masked and difficult to evaluate at 10 Hz.

The graph in Figure 4 shows "moderate" burst noise observed in a group of junction FET differential amplifiers which were measured in the test circuit.

Figure 3

Popcorn Noise in Differential Amplifiers Figure 4

Operating Point Considerations

Unlike bipolar transistors, where \overline{e}_N and \overline{i}_N characteristics vary directly with change in collector current (I_C), similar characteristics in junction FETs will vary only slightly as drain current (I_D) is varied. This is true so long as the FET is biased so that the drain-source voltage is greater than the pinch-off voltage (V_{DS} > V_p or V_{GS(off)}).

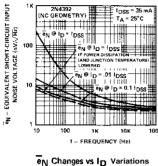
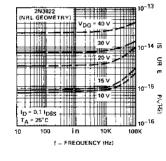
The \overline{e}_N in junction FETs will be lowest when the devices are operated at $V_{GS} = 0$ ($I_D = I_{DSS}$), where transconductance (g_{fs}) is at its highest value. This will be true only if device dissipation is maintained very low in relation to the total dissipation capability of the FET.

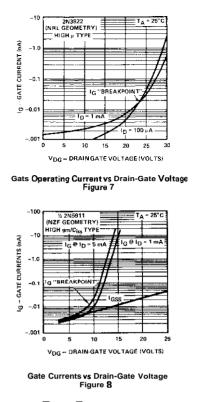
The curves in Figure 5 illustrate changes in e_N as the operating drain current (I_D) is varied. Note that the lowest e_N did not occur at $V_{GS} = 0$, because of high power dissipation and a resultant rise in junction temperature at the operating point.

đ

đ

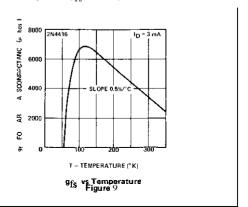
Siliconix


Figure 5

The optimum (lowest) \overline{i}_N in depletion-mode junction FETs should occur at $V_{GS} = 0$ ($I_D = I_{DSS}$). In practice, very little change will be seen in \overline{i}_N when the operating point is changed. provided that the drain-gate voltage is maintained below the gate current (I_G) breakpoint and power dissipation is kept at a low level. The curves in Figure 6 illustrate \overline{i}_N characteristics as a function of drain-gate voltage.

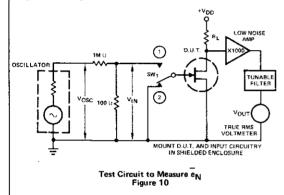
i_N Characteristics as Function of Drain-Gate Voltage Figure 6


In circuit design, particular attention must **be** paid to draingate voltage (V_{DG}) to minimize gate current (I_G) under operating conditions. The critical drain-gate voltage (I_G breakpoint voltage) can be anywhere from 8 to 40 V, depending on device design.⁽⁴⁾ Gate operating current (I_G) should not he considered equal to gate reverse current (I_{GSS}) in linear amplifier applications. I_{GSS} is only an indication of reverse-biased junction leakage under non-operating conditions. The **Curves** in Figures 7 and 8 show how I_G breakpoint is related to basic device design. Device designs with a high g_{fS}/C_{iss} ratio have low breakpoint volt. ages, typically at $V_{DG} = 10$ V, whereas high μ devices ($\mu = r_{ds} \cdot g_{fs}$). have much higher I_G breakpoints, typically $V_{DG} = 20 - 30$ V.

Characteristics of $\overline{\mathbf{e}}_{\mathbf{N}}$ and $\overline{\mathbf{i}}_{\mathbf{N}}$ at Low Temperature

Three equations presented earlier ((7). (16) and (17)) show that \overline{e}_N and \overline{i}_N are temperature dependent, \overline{e}_N and \overline{i}_N are proportional to \sqrt{T} , and both will be reduced if the temperature is lowered. In Equation (16), \overline{i}_N is proportional to $\sqrt{I_G}$; I_G will halve for each temperature drop of 10 to 11°C. \overline{e}_N is also proportional to \sqrt{R}_N , where $R_N \cong 0.67/g_{fS}$. Thus when g_{fS} is increased, which is typical of junction FETs operating at low temperature, \overline{e}_N will also lower.

In Figure 9, g_{fs} has been plotted vs temperature for a silicon junction FET, and the iow temperature limitation caused by a dropoff in g_{fs} is clearly shown.



In connection with the plot of g_{fs} vs temperature, note that the relationship can vary from approximately 0.2% to 1% per degree C. The g_{fs} slope depends upon the basic design of the FET, and upon the proximity af the drain current operating paint to I_{DZ} , the zero temperature coefficient point.

The major application for junction FETs at low temperature is in charge-sensitive amplifiers.⁽⁵⁾ For best performance in this type of application, a high g_{fs}/C_{iss} ratio is required. Recommended Siliconix FET types far such applications are the 2N4416 (NH geometry) and the U311 (NZA geometry).

Test Measurements

By definition, \overline{e}_N and \overline{i}_N are referred to the input of the device under teat. To measure \overline{e}_N , the test circuit shown in Figure 10 will prove useful.

The following procedure should be used to make the e_N test:

- Set tunable filter to required f_{low} and f_{high}. Adjust oscillator to mean center frequency (f_{mean} = [f_{low} · f_{high}]^{1/2}).
- 2. Set V_{osc} to 100 mV with Switch 1 in position (1). Compute $V_{in1} = 10^{-1} \times \frac{10^2}{10^6} = 10^{-5} \text{ V} = 10 \,\mu\text{V}.$
- 3. Measure V_{out1} . Compute overall gain as A, = $\frac{V_{out1}}{V_{in1}}$ =

$\frac{V_{out1}}{10 \,\mu V}$

4. Set Switch I to position (2) and measure V_{out2}. Compute V_{in2}, the equivalent short-circuit input noise voltage (e_N), using A from Step 3. V_{in2} = V_{out2} - e_N m volts over bandwidth f_{low} to f_{high}. An alternate method of performing the above test is to use a Quan-Tech Transistor Noise Analyzer consisting of a Model 2173 Control Unit and a Model 2181 Filter. The analyzer has provision far measuring $\overline{\mathbf{e}}_{N}$ and determining. NF with various values of R_{G} in FET and bipolar deviceswith selectable test conditions. The measuring system has a constant gain of 10,000. The analyzer records output noise at selected frequencies between 10 Hz and 100 kHz in the device under test, with the scale shown as the actual output divided by 10,000. This is then the output noise referred to the input. The equivalent bandwidth fur testing is 1 Hz.

There are certain instances where the test circuit or the Transistor Noise Analyzer are not adequate to measure $\overline{e_N}$ at certain frequencies over certain bandwidths in the $1/f^n$ region. The rms noise over a bandwidth from f_{low} to f_{high} , where there is a $1/f^n$ characteristic over the entire range, can be computed as

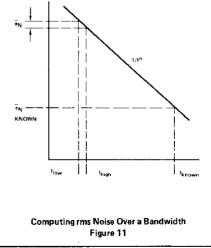

$$\overline{e}_{N} = \left[\overline{e}_{N} \text{ known}\right] \cdot \left[f_{known} \cdot \ln\left(\frac{f_{high}}{f_{low}}\right)\right]^{1/2n}$$
(18)

Figure 11 represents this equation graphically. For example, $\overline{e_N}$ known = 70 x 10⁻⁹ V/ \sqrt{Hz} at 10 Hz. How much noise is in the band from 4.5 to 5.5 Hz? The noise has a 1/f¹ characteristic over the entire range. Thus

$$\underline{e}_{N} = \left[70 \times 10^{-9} \right] \cdot \left[10 \cdot \ln\left(\frac{5.5}{4.5}\right) \right] 1/2 \quad \text{Volts}$$
(19)

$$\overline{e}_{N} = 99.16 \text{ x } 10^{-9} \text{ V} / \sqrt{\text{Hz}} @ 4.975 \text{ Hz},$$
 (20)

4.975 Hz is the mean center frequency where $f_{mean} = (f_{low} \cdot f_{high})^{1/2}$.

Siliconix

© 1979 Siliconix incorporated

 $\overline{i_N}$ measurements are difficult to implement at best. At frequencies below f_2 in Figure 2, $\overline{i_N}$ is assumed to have a constant level or "white" noise characteristic which may be correlated to gate current, I_G . From Equation (16) I_G is established as the measured bulk gate current. Because measured gate current (I_G) is the result of all conductances at the gate, the resultant gate current and the computed $\overline{i_N}$ due to bulk material can be assumed to be this value or less.

The total equivalent input noise of the FET can be approximated $by^{(6)}$

$$\overline{\mathbf{e}}_{\mathbf{n}i}^2 = \overline{\mathbf{e}}_T^2 + \overline{\mathbf{e}}_N^2 + \overline{\mathbf{i}}_N^2 \cdot \mathbf{R}_G^2$$
(21)

where $\overline{e_T}^2$ is the thermal noise of the generator resistance R_G and e_{ni}^2 is the total noise referred to the input. This approximation assumes that the equivalent noise voltage and the current generators vary independently. Equation (21) implies that $\overline{i_N}^2$ can be calculated if $\overline{e_N}^2$, $\overline{e_T}^2$ and total noise $\overline{e_{ni}}^2$ are known. The difficulty here is that in MOS or junction FETs, the R_G must be very large to detect the anticipated small value of $\overline{i_N}$. However, when R_G is very large $\overline{e_T}^2$ is much greater than $\overline{i_N}^2$. R_G^2 . For example, over a 1 Hz bandwidth at 25°C, if R_G is equal to 100 M Ω , then

$$\bar{e}_T^2 = 4kTR_G = 4 \times 1.38 \times 10^{-23} \times 2.95 \times 10^2 \times 10^8 =$$

1.63 × 10⁻¹² V/ $\sqrt{\text{Hz}}$. (22)

Anticipated iN is

$$\overline{i}_{N} \approx 10^{-15} \text{ Amperes}/\sqrt{\text{Hz}}$$
 (23)

and

$$\overline{j}_N^2 = 10^{-30} \text{ Amperes}/\sqrt{\text{Hz}}.$$
 (24)

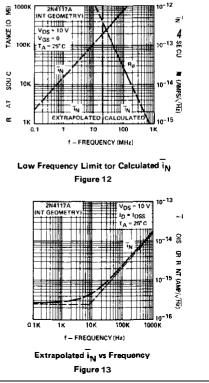
Thus

$$\overline{i}_N^2 \cdot R_G^2 = 10^{-30} \cdot 10^{16} = 10^{-14} \text{ V}/\sqrt{\text{Hz}}.$$
 (25)

Therefore, $\overline{i}_N^2 \cdot R_G^2$ is much less than \overline{e}_T^2 , which renders this method of finding \overline{i}_N impractical for most common MOS FETs or junction FETs.

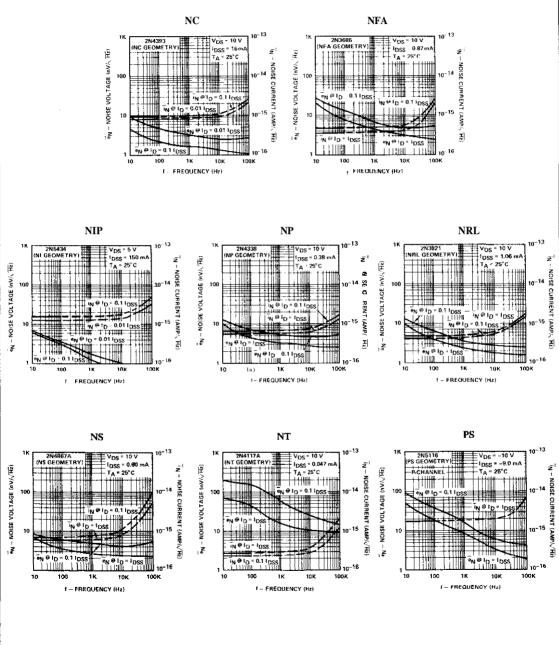
An improved method of measuring \bar{i}_N^2 is to substitute a low-loss mica capacitor for resistor R_G . The mica capacitor by definition does not have equivalent thermal noise voltage, and thus Equation (21) becomes

$$\overline{e}_{ni}^{2} = \overline{e}_{N}^{2} + \overline{i}_{N}^{2} \cdot X_{C}^{2}$$
⁽²⁶⁾


(where X_{C} = capacitive reactance)

$$\overline{i}_{N} = \frac{(\overline{e}_{ni}^{2} - \overline{e}_{N}^{2})^{1/2}}{X_{C}}$$

When a 10 pF mica capacitor was used in the evaluation circuit (up to a frequency of 100 Hz) a correlation of from 80 to 90% was obtained when compared to \overline{i}_N^2 computed from measured gate current readings.


At frequencies above 100 Hz direct computation of \bar{i}_N via the capacitor method becomes unwieldy because of the rapid decrease in capacitor reactance at these frequencies.

In calculating in at higher frequencies, an alternate method is to measure (R_p) the real part of the gate-source impedance of the FET.(7) When \bar{R}_{p} is measured at various frequencies, the equivalent short-circuit input noise current (i_N) can be computed as a function of frequency (See Equation (17)). A convenient instrument to measure $\mathbf{R}_{\mathbf{p}}$ is the Hewlett-Packard Type 250A Rx meter or equivalent. The Type 250A Rx meter can measure Rp accurately up to 200K ohms. As is shown in Figure 12, this establishes the low frequency limit of 20 MHz for in computed via direct measurement of Rp for the Siliconix FET Type 2N4117A. For frequencies between 100 Hz and 20 MHz, i_N must be extrapolated, as is shown in Figures I2 and 13. For FET types with lower R_p (such as the Siliconix 2N4393) i_N can be computed down to 2 MHz, and hence extrapolated in between 100 Hz and 100 kHz is more accurate.

AN74-4

The following are representative $\overline{e_N}$, $\overline{i_N}$ curves for Siliconix J-FET products. Of particular importance is the geometry which by its design governs the basic noise characteristics of product types derived from it.

CONCLUSION

Contemporary junction FETs have noise voltages $(\overline{e_N})$ equal to those found in low-noise bipolar transistors. Each type of device has a different operating mechanism: the FET is voltage-actuated, while the bipolar transistor is current-actuated. Hence, FETs have an inherently lower noise current $(\overline{i_N})$ and are preferred over bipolar devices in most audio-frequency applications where low-noise performance is a design requirement.

When bias points are properly selected, as described in this Application Note, the excellent low-noise characteristics of high g_{fs} junction FETs can be realized.

The curves shown in Figure 14 are representative of \overline{e}_N and \overline{i}_N performance of Silicanix junction FETs. Of particular importance in these curves is the process geometry by which the basic design of the FET governs the noise characteristics of product types derived from it. Readers are invited to refer to the Siliconix FET catalog for full geometry performance data, and for specific part numbers stemming from the generic process geometries.

In the measurement section of this Application Note, it was shown that direct $\overline{e_N}$ measurements can readily be made. $\overline{i_N}$ can be guaranteed at frequencies below 100 Hz by measuring the DC operating gate current (I_G). When I_G is

known, \overline{i}_N can be extrapolated from frequencies below 100 Hz to predict noise performance at frequencies to 100 kHz.

REFERENCES

- (1) Nyquist, H., "Thermal Agitation of Electric Charge in Conductors," Phys. Review 32 (1928), p 110.
- (2) Van der Ziel, A, "Thermal Noise in Field-Effect Transistors," Proceedings of the IRE, Vol. 50, August 1962, pp 1808-1812.
- (3) Fitchen, F.C. and Motchenbacher, C.D., LOW NOISE ELECTRONIC DESIGN, 1st Edition, John Wiley & Sons, New York, 1973, pp 103-107.
- (4) MacDonald, Charles L., "Behavior of FET Gate Current," Siliconix incorporated Application Note, April, 1969.
- (5) Radeka, V., "Field-Effect Transistors in Charge-Sensitive Amplifiers," National Academy of Sciences, National Research Council Publication 1184.
- (6) Op. cit., LOW NOISE ELECTRONIC DESIGN, pp 30-31.
- (7) Op. cit., LOW NOISE ELECTRONIC DESIGN, pp 103-107.

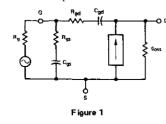
© 1979 Siliconix incorporated

APPLICATION NOTE FETs for Video Amplifiers

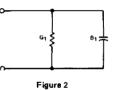
INTRODUCTION

Siliconix

The field-effect transistor lends itself well to video amplifier applications. Gain bandwidth products in excess of 250 MHz may be easily achieved using simple one or two transistor circuits. DC input resistances in the tens of megohms range may also be easily achieved while input capacitances may be significantly reduced to less than 1 pF by well known circuit techniques. Video amplifiers have applications in communications and pulse amplifying circuits and normally operate up to 100 MHz.


Behavior of FET Input Resistance

A prime FET parameter, input impedance, has a large effect in determining the frequency response of a FET video amplifier. It is not a simple RC network but one in which the real and imaginary parts are a function of frequency.


The voltage generator source resistance $R_{\underline{g}}$ and the FET input impedance Z_{in} form a frequency sensitive attenuation network. The larger the $R_{\underline{g}}$, the worse will be the frequency response, and vice versa. Examining this in greater detail, consider the input equivalent circuit of a FET connected in the common source configuration,

where

 R_{gs} and R_{gd} = bulk series gate resistance C_{gs} and C_{gd} = bulk series gate capacitance G_{oss} = output conductance

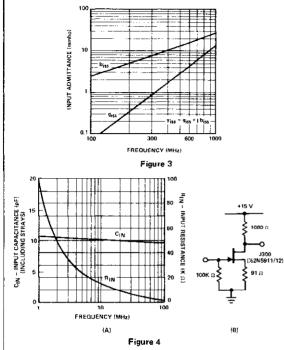
For this analysis the gate source leakage resistance has been ignored due to its high value. Redrawing the input equivalent circuit as a simple **parallel** RC combination **results** in

where

$$\frac{G_1 = \operatorname{Re} |Y_{in}|}{\frac{-\omega^2 [T_1 C_1 (1 \pm \omega^2 T_2^2) \pm T_2 C_2 (1 + \omega^2 T_1^2)]}{1 - (\omega^2 T_1 T_2)^2 + \omega^2 (T_1^2 + T_2^2)}} \quad (1)$$

and

$$B_{1} = \operatorname{Im} |Y_{in}| \\ \frac{-\omega [C_{1} (1 + \omega^{2} T_{2}^{2}) + C_{2} (1 + \omega^{2} T_{1}^{2})]}{1 - (\omega^{2} T_{1} T_{2})^{2} + \omega^{2} (T_{1}^{2} t T_{2}^{2})}$$
(2)


where

$$f_1 = C_{gd} R_{gd}$$

$$f_2 = C_{gs} R_{gs}$$
(3)

The input resistance varies inversely with the square of the frequency (see Figures 3 and 4) while the input reactance is inversely proportional to the frequency (see Figure 3).

In common-source circuits, $1/G_1$ will typically fall to < 2Kohms at 100 MHz while C1 remains substantially constant at least up to 1000 MHz. Figures 3 and 4 below exhibit these relationships.

To maintain low input capacitance, and thus a high input

impedance over a wide frequency range, feedback may be applied to most circuits. Such techniques are explored in "FET and Bipolar Cascade" section (page 5). The effect of Rg on the frequency response is shown in Figures 6, 9, 11, 13 where various amplifier configurations are investigated.

Five video amplifier circuits are considered. They are:

Shunt-Peaked Common-Source Configuration

Common-Source Configuration

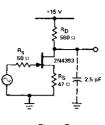


Figure 5

The 3-dB frequency ω_3 is given by:

$$\omega_3 = \frac{1}{C_T R_D}$$
(7)

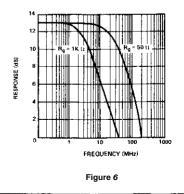
$$=\frac{1}{7 \times 10^{-12} \times 560}$$
 (8)

$$\omega_3 = 255 \times 10^6 \tag{9}$$

$$f_3 = 3YMHz$$
 (10)

The low frequency voltage gain for this configuration is given by:

$$\Lambda_{\rm V} = \frac{g_{\rm fs}R_{\rm D}}{1 + g_{\rm fs}R_{\rm S}} \tag{11}$$


$$A_V = 4.9$$
 (12)

where

$g_{fs} = 15$ mmho when $I_D = 12$ mA, the quiescen	t current
$R_{D} = 560 \text{n}$	(13)
$R_S = 47 \Omega$	(14)

Measured Performance

Figure 6 shows the frequency response of the circuit. The low-frequency gain was measured at 4.5 and the 3-dB bandwidth at 44 MHz giving a gain bandwidth product of 197 MHz. This compares with a calculated gain bandwidth of 191 MHz.

Common-Source Circuit¹ The circuit of Figure 5 features high input impedance and high voltage gain. The drain resistor is set at 560 ohms to maintain good bandwidth which, with 50-ohm generator impedance, is determined primarily by the drain load components. These are:

Circuits to Consider

Source Follower

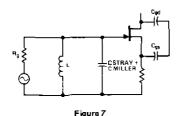
Cascode Amplifier FET and Bipolar Cascade

$$R_{D} = 560 M \tag{4}$$

$$C_{T} = C_{rd} + C_{D} + C_{S} \tag{5}$$

$$C_T = C_{gd} + C_D + C_S$$

 $C_{gd} = 2.0 \text{ pF, } C_D \text{ the VTVM probe, } 2.0 \text{ pF, and } C_S \text{ is}$


 $C_T = 2 + 2 + 3 = 7 \, \text{pF}$

6 1

(6)

Effect of Increasing Generator Impedance

If the generator resistance R_g is increased to 1K ohm, the input time constant of the FET is increased. The bandwidth of the amplifier is now determined primarily by the input time constant which consists of generator impedance ($R_g = 1K$ ohm) shunted by C_{in} (see Figure 7).

where

$$C_{in} = \left(1 + \frac{g_{fS}R_D}{1 + g_{fS}R_S}\right)C_{gd} + \left(1 - \frac{g_{fS}R_S}{1 + g_{fS}R_S}\right)C_{gs} + Strays$$

$$= (5.9 \times 3.5) + (0.6 \times 10) + 3. \tag{15}$$

$$C_{in} = 30 \,\mathrm{pF} \tag{10}$$

where

$$C_{gd} = 3.5 \text{ pF}$$
 (17)

$$C_{ps} = 10 \, \text{pF} \tag{18}$$

The corresponding 3-dB frequency is given by:

$$\omega_3 = \frac{I}{C_{in}R_g}$$
(19)

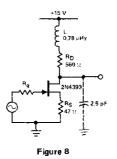
$$=\frac{1}{30 \times 10^{-12} \times 10^3} = \frac{10^9}{30}$$
(20)

$$f_3 = 5.3 \text{ MHz}$$
 (21)

which agrees closely with the measured bandwidth as shown in Figure 6.

Shunt-Peaked Common-Source Circuit

The frequency response of the resistance-loaded commonsource circuit may **be** significantly extended by shunt peaking at the gate and/or drain. Consider first the gate circuit. Here an inductor may be connected in shunt with the gate and set to such a value that it forms a tuned circuit with the FET input capacitance. The frequency of resonance is determined by:


$$f_{\rm O} = \frac{1}{2 \pi \sqrt{\rm LC_{in}}}$$
(22)

where

$$C_{in} = C_{iss} + C_{Stray} + C_{Miller}$$
(23)

The response αf an input signal of frequency f_0 will then be boosted to an extent depending on the loaded Q of the tuned circuit; the loaded Q in turn is dependent on the unloaded Q of inductor L, R_g and the FET input resistance.

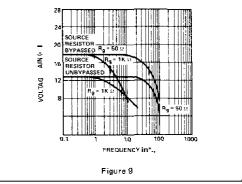
Next consider shunt peaking in the drain circuit. In Figure 8 the inductor L is set to such a value that a low Q tuned circuit is formed; the resonating capacitance C is the parallel combination of C_{gd} plus stray and load capacitances. for a flat response, the LC circuit is tuned to the 3-dB frequency of the resistance loaded circuit of Figure 5. (See Appendix.)

The required value of L is:

$$L = \frac{R_D^2 C}{2}, \text{ and for the circuit in Figure 8.}$$
(24)

where

$$R_{\rm D} = 560 \,\Omega \tag{26}$$


$$C = C_{gd} + C_{Stray} + C_{VTVM PROBE}$$
(27)

$$C = 1.2 + 1.3 + 2.5 = 5 \,\mathrm{pF} \tag{28}$$

Due to the low circuit Q (about 5), the value of L is not critical.

The 3-dB bandwidth shown in Figure 9 now extends to 67 MHz giving a gain bandwidth product of:

$$67 \times 4.2 = 281 \text{ MHz}$$
 (29)

Siliconix

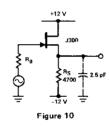
 $(-\infty)$

N70-2

© 1979 Siliconix incorporated

When R_S is bypassed by a 0.1 capacitor, the low frequency voltage gain is given simply by:

$$A_{\rm V} = g_{\rm fs} R_{\rm D} \tag{30}$$


 $= 15 \times 10^{-3} \times 560 \tag{31}$

$$= 8.4 (18.5 \,\mathrm{dB})$$
 (32)

The gain bandwidth product tends to remain constant whether R_S is bypassed or not and this effect is shown in Figure 9.

Source-Follower Circuit²

A J300 is used in the FET source-follower circuit, Figure 10, because of its low input capacitance and high g_{fs} which remains high at the frequency range of interest. A source follower exhibits a high input impedance and low output impedance. The real part of the output impedance is the reciprocal of g_{fs} which is independent of frequency up to about 600 MHz. The input capacitance is $C_{gd} + C_{gs} (I - A_V)$ which. In this case, is approximately 1.5 pF maximum. The input capacitance is also independent of frequency and independent of load when the load is larger than the output resistance R_0 .

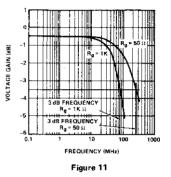
The frequency response is dependent mainly on the generator internal impedance. For example, when R_g is increased to 1K ohm the bandwidth falls to 80 MHz. In this particular circuit, the low-frequency voltage gain is 0.94.

The input resistance is proportional to $1/f^2$ as explained in the section, "Behavior of Input Resistance," and at some high frequency will go negative, particularly if the source resistor is large. For example, with the circuit in Figure 10, the input resistance is high at 10 MHz but in the negative resistance region at 100 MHz. However, when R_S is 1000 ohms, the input resistance is real at this frequency.

The voltage gain of a source follower is given by:

$$A_V = \frac{g_{f_S} R_S}{1 + g_{f_S} R_S}$$
(33)

Thus A_V is almost independent of R_S when R_S is large. Using typical values for the J300 (or $\frac{1}{2}$ 2N5912) in Figure 10, the drain current is 3 mA, g_{fs} is 5 mmho and R_S 4700 ohms,

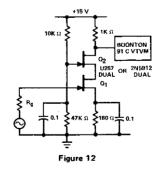

 $A_{V} = 0.96$

ļ

which is near the measured value of 0.94. Measured performance is shown in Figure 11. The output resistance of this source follower is given by:

$$R_{0} = \frac{1}{g_{f_{S}}} = \frac{1}{5 \times 10^{-3}} = 200 \,\Omega \tag{34}$$

and in this circuit, R_0 was measured at 165 ohms. The source follower is a useful versatile circuit which may be used as an impedance converter, level shifter, buffer stage. or as an input circuit to an op amp or feedback amplifier.

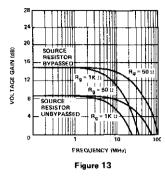


Cascode Circuit

The cascode circuit has applications as a buffer amplifier for use with high stability oscillators or in low level power am. plifiers² mainly due to its low reverse transfer characteristics. The advantages and considerations of this configuration, Figure 12, are similar to those listed for the commonsource circuit. An extra advantage exists in the cascode circuit, namely the low input capacitance:

$$C_{in} = C_{\sigma s} + (1 - A_V) C_{d\sigma}$$
(35)

$$C_{in} = C_{iss} + C_{gd}$$
(36)


where A_V is the voltage gain from Q_1 gate to Q_1 drain which is essentially unity. C_{iss} for the U257 dual FET is 5 pF and C_{dg} is 1 pF, therefore

 $C_{in} = 5 \pm 1 = 6 \text{ pF}$, excluding strays of 4 pF

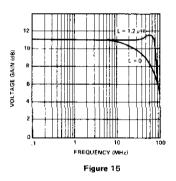
Thus Miller effect is minimized and a good gain bandwidth product is achieved.

Biliconix

Figure 13 shows **cascode** frequency response. The voltage gain at low frequency is 15 dB (\times 5.6) and the bandwidth is 24.5 MHz with a generator impedance of 50 ohms. Gain bandwidth product is 137 MHz.

FET and Bipolar Cascade

The FET and bipolar transistor combination of Figure 14 makes a good video amplifier because the FET input provides the voltage gain thus obtaining a superior gain bandwidth product. The feedback capacitor a-c couples the emitter lo the drain. The a-c voltage at the gate is nearly equal to that at the source. This source voltage is d-c coupled to the bale.

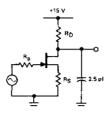

This produces an a-c voltage at the emitter whose amplitude is **almost equal** to that at **the** base. Thus **at** the FET, $\mathbf{v_g} \cong \mathbf{v_s} \cong \mathbf{v_d}$ and all three signals are in phase. In this way Miller effect capacitance is largely eliminated.

The frequency response of this circuit is controlled hy the output time constant if f_t of the transistor is much greater than the amplifier bandwidth. In the circuit shown the a-c load is 2.5 pF.

CONCLUSION

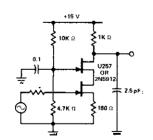
The input resistance of a FET is inversely proportional to the frequency squared, while the input capacitance remains constant to at least 1000 MHz.

Several video amplifier configurations are considered. The common-source circuit is considered first: in the example, the low frequency gain is 4.5 and the 30-dB bandwidth 44 MHz (gain bandwidth 197 MHz). By shunt peaking in the drain circuit, gain bandwidth is increased to 260 MHz. The simple source-follower circuit gives a gain near unity with GBW almost 300 MHz and an output resistance of $1/g_{fs}$. The cascode circuit features a low input capacitance and GBW of 137 MHz. The circuit featuring the best gain bandwidth is the FET and bipolar combination. A gain of II dB and bandwidth of 90 MHz is achieved.

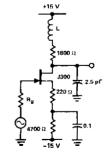


APPENDIX

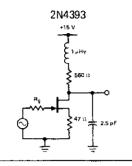
Selection of Video Amplifier Designs with Performance Summary


Note. All output voltages measured with Boonton 91C VTVM.

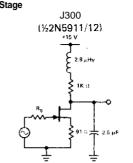
Common Source Stage


Device	R.g Ω	R _S Bypassed	R _S Ω	Ρ. Ω	Gain	dB	C _{in} pF	BW MHz	GBW MHz
2N4393	50		47	560	4.5	13.0		44	197
	50	x	47	560	7.5	17.5		40	300
	1K		47	560	4.5	13.0		5.0	22
	1K	×	47	560	7.5	17.5		3.5	26
1300	50		91	1K	3.8	11.6	11.0	27.5	103
1/2	50	x	91	1K	6.3	16.0	14.5	30.0	189
2N5912	1K		91	1K	3.8	11.6	11.0	9.5	36
	1K	x	91	1K	6,3	16.0	14.5	6.5	41
2N4416	50		120	1.5K	3.9	11.8	11.5	25	98
	50	x	120	1.5K	6.2	15.8	13	19	118
	1K		120	1.5K	3,9	11.8	11.5	8	31
	1K	x	120	1.5K	6.2	15.8	13	7	44

Cascode

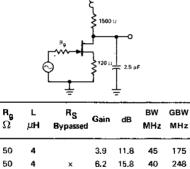

	Bypasse	pF	MHz	MH:		
50		2.7	8.5		27	73
50	×	5.6	15	11.5	27	151
1K		27	8.5	9	9.5	73
1K	x	5.6	15	11.5	9.0	51

Common-Source Circuit



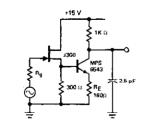
					MHz	MHz	
50		3.5			20	70	
1K	0	3.5	11	2	11	38.5	
50		3,5	11		37	130	
_1ĸ	15	3.5	11	2	17	60	

Shunt-Peaked Common-Source Stage



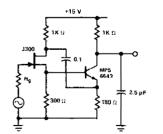
R _S Bypassed	Gain	dB	BW MHz	GBW MHz	1
	4.2	12.5	66	277	
×	7.5	17.5	54	405	ł
	4.2	12.5	6,0	25	
×	7.5	17.5	3.5	26	
	Bypassed ×	4,2 x 7,5 4,2	4,2 12,5 4,2 12,5 4,2 12,5	S Gain dB MHz Bypassed 4.2 12.5 66 x 7.5 17.5 54 4.2 12.5 6.0	S Gain dB MH MHz MHz 4,2 12.5 66 277 x 7.5 17.5 54 405 4,2 12.5 6,0 25

R g Ω	R _S Bypassed	Gain	dB	BW MHz	GBW MHz
50		3.9	11.8	67	262


Common-Drain Common-Emitter Stage

6.2

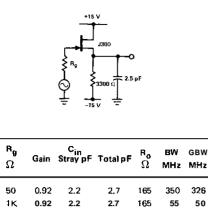
х


15.8

45 279

50 5

Rg Ω	R _E Bypassed ((0.1 µF)	Gain	d8	С _{in} pF	BW MHz	GBW MHz
50		3	9,5	2.0	39	117
50	×	25	28	2.0	21	525
1K		з	9.5	2.0	13	39
1K	x	25	28	2,0	11	275


R _g Ω	Gain	dB	C _{in} pF	BW MHz	GBW MHz
50	5.6	15	1.0	32	179
1K	5.6	15	1.0	15	84

6

Siliconix

© 1979 Siliconix incorporated

Source-Follower Circuit

Derivation of Input Admittance Terms

Note, Ro

where

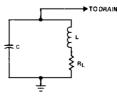
$$R_{1} = R_{gs} \quad C_{1} = C_{gs} \quad (1)$$

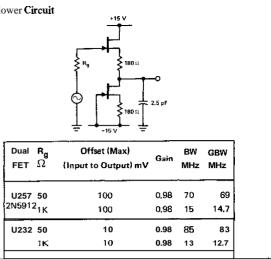
$$R_{2} = R_{gd} \quad C_{2} = C_{gd} \quad (2)$$

$$r_{in} \quad c_{1} \quad c_{2}$$

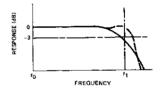
$$r_{in} \quad c_{1} \quad c_{2}$$

output resistance of the source follower.


$$Y_{in} = \frac{sC_1}{R_1C_1 s + 1} + \frac{sC_2}{R_2C_2 s + 1}$$
(3)


$$\frac{-\omega^2 C_1 C_2 (R_1 + R_2) + s(C_1 + C_2)}{(1 - \omega^2 R_1 R_2 C_1 C_2) + s(C_1 R_1 + C_2 R_2)}$$
(4)

Derivation of Shunt Peaking Formula


The equivalent circuit of the drain load is shown in the Figure below. The total impedance seen by the drain is given by:

$$Z = \left[\frac{R_{\rm L}^2 + \omega^2 L^2}{(1 - \omega^2 L C)^2 + \omega^2 C^2 R_{\rm L}^2}\right]^{\frac{1}{2}}$$
(5)

The response below shows the "normal" 3-dB frequency without peaking $-f_1$. It is now required to raise the response at f1 by 3 dB to achieve a maximally flat response. Therefore, under these conditions the total impedance seen by the drain at f1 must equal the impedance seen by the drain at f_0 . Also at f_1 , $X_C = R_L$. Substituting for X_C in Equation 5:

$$R_{L}^{2} = \frac{R_{L}^{2} + \omega^{2}L^{2}}{\left(1 - \frac{\omega L}{R_{L}}^{2} + 1\right)}$$

$$R_{L}^{2} - 2\omega L R_{L} + \omega^{2} L^{2} + R_{L}^{2} = R_{L}^{2} + \omega^{2} L^{2}$$
(7)

$$R_{\rm L}^2 = 2\omega L R_{\rm L} \tag{8}$$

$$R_{\rm L} = 2\omega L \tag{9}$$

$$L = \frac{R_L}{4\pi f_1}$$
(10)

and

$$f_1 = \frac{1}{2\pi R_L C}$$
, $L = \frac{R_L^2 C}{2}$ (11)

REFERENCES

- 1. Sherwin, J.S., "Liberate Your FET Amplifier," Electronic Design, May 1970.
- 2. Siliconix Application Tip. "FET Cascode Circuits Reduce Feedback Capacitance," August 1970.

APPLICATION NOTE FETs in **Balanced Mixers**

Ed Oxner

INTRODUCTION

Siliconix

When high-performance, high-frequency junction field-effect transistors (JFETs) are used in the design of active balanced mixers, the resulting FET mixer circuit demonstrates clearly superior characteristics when compared to its popular passive counterpart employing hot-carrier diodes. Comparison of several types of mixers is made in Table 1. The advantages and disadvantages of semiconductor devices currently used in various mixer circuits are shown in Table II.

Why an Active Mixer?

Active mixing suggests high-level mixing capability. High level mixing in turn infers that active mixers outperform passive mixer circuits in terms of wide dynamic range and large-signal handling capability. Additionally, the active mixer offers improved conversion efficiency over the passive mixer, permitting relaxation of the IF amplifier gain requirements arid even possible elimination of the customary RF amplifier front end.

Initial evaluation of the active FET mixer will imply a disadvantage because of local oscillator drive requirements; bipolar devices in low-level mixers require very little drive power. However, in high-level mixing this disadvantage is overcome in that drive requirements at such mixing levels are generally the same, no matter whether bipolar or FET devices are used.

Why FETs for Balanced Mixers?

The performance priorities of modern communication systems have stringent requirements for wide dynamic range. suppression of intermodulation products, and the effects of cross-modulation. All of the foregoing parameters must be considered before noise figure and gain arc taken into account

Since FETs have inherent transfer characteristics approximating a square-law response, their third-order intermodulation distortion products are generally much smaller than

	MIXER TYPE						
Characteristic	Single-Ended	Single Balanced	Double Balanced				
Bandwidth	Several decades possible	Decade	Decade				
Relative IM Density	1.0	0.5	0.25				
Interport Isolation	Little	10-20 dB	>30 dB				
Relative L.O. Power	0 dB	+3 dB	+6 dB				

Table I

DEVICE	ADVANTAGES	DISADVANTAGES
Bipolar Transistor	Low Noise Figure High Gain Low D.C. Power	High IM Easy Overload Subject to Burnout
Diode	Low Noise Figure High Power Handting High Burn-out Level	High L.O. Drive Interface to I.F. Conversion Lori
JFET	Low Noise Figure Conversion Gain Excellent IM products Square Law Characteristic Excellent Overload High Burn-out Level	Optimum Conversion Gain not possible at Optimum Square Law Response Level High L.O. Power
Dual-Gate MOS FET	Low IM Distortion AGC Square Law Characteristic	High Noise Figure Poor Burnout Level Unstable

Table II

6

those of bipolar transistors. Harmonic distortion and crossmodulation effects are third-order-dependent, and thus are mmatly, reduced when FETs are used in active balanced

A secondary advantage derives from available conversion gain, so that the FET mixer becomes simultaneously equivalent to both a demodulator and a preamplifier.

First Order Balanced Mixer Theory

Essential details of balanced mixer operation, including signal conversion and local oscillator noise rejection, are best illustrated by signal flow vector diagrams (Figure I).

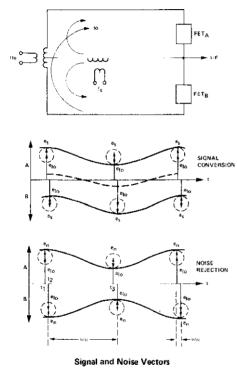


Figure 1

Energy conversion into the intermediate frequency (IF) parsband is the major concern in mixer operation. In the following analysis, both the signal and noise vectors are shown progressing (rotating) at the IF rare (ω_{ift}); the resulting wave occurs through vector addition.

The analysis of local oscillator noise rejection (Figure I) assumes, for simplicity of explanation, that noise is coherent. Thus at some point in time (t_1) the noise component (e_n) is 'in phase'' with the local oscillator vector (e_{10}) and FET "A" (the rectifying element) is ON: the JFET mixer acts as a switch, with the local oscillator acting as the switch drive signal. One-half cycle later, at time t_2 , the signal flow is reversed for both the local oscillator vector and the noise component, FET "A" is OFF and FET " Bis ON. Moving

ahead an additional one-half of the IF cycle, FET "A" is again ON, but the noise component has advanced 180° (ω_{ift}) through the coupling structure, and is now "out of phase". The process continually repeats itself.

The end result of this averaging (detection) is the cancellation of the noise which originated in the local oscillator, providing that the miner balance is precise,(1)

The analysis of the conversion of the signal to the IF pass band is similar, but the signal is injected into the coupling structure at the equipotential tap. Thus at time t_2 , the signal vector (e,) is "out of phase" with the local oscillator vector, e_{lo} . The resulting envelope develops a cyclic progression at the IF rate, since the signal is "demodulated" by the mixing action of the FETs.

A schematic of a *prototype* balanced miner is shown in Figure 2. Design criteria. in order of priority, include the following:

- (I) Intermodulation and Cross-Modulation
- (?) Conversion Gain
- (3) Noise Figure
- (4) Selecting the Proper FET
- (5) Local Oscillator Injection
- (6) Designing the Input Transformer
- (7) Designing the IF Network

Intermodulation and Cross-Modulation

A basic aim in mixer design is to avoid the effects of intermodulation product distortion and crossmodulation. Pan of the problem may be resolved by using a balanced mixer circuit.

The active transfer function of the FET is represented by a voltage-controlled current source. Fur both crossmodulation and intermodulation, the amount of distortion is proportional to the amplitude of the gate-source voltage. Since input power is proportional to input voltage, and inversely proportional to input impedance, the best FET IM and cross-modulation performance is obtained in the commongate configuration where the impedance is lowest.⁽²⁾

When JFETs are used as active mixer elements, it is important that the devices be operated in their square-law region. Operation in the FET square-law region will occur with the device in the depletion mode. Considerable distortion will result if the FET is operated in the enhancement mode (positive, for an N-channel FET); by analogy, the problems encountered are similar to those which arise when positive drive 1s placed on the grid of a vacuum tube.

Square-law region operation emphasizes the importance of establishing proper drive levels for both quiescent bias and the local oscillator. The maximum conversion transconductance, g_m is achieved at about 80% of the FET gate cutoff voltage, $V_{GS(off)}$, and amounts to about 25% of the forward transconductance, g_{fs} , of the FET when used as an amplifier.

Z

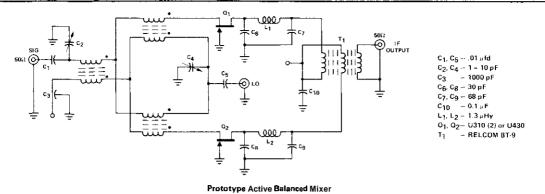
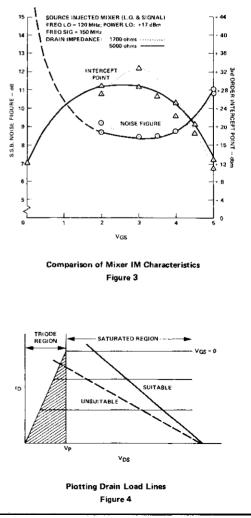


Figure 2

Since conversion gain (or loss) must be considered. it is common to equate voltage gain A_n as:

 $A_{v} = g_{c}R_{L} \tag{1}$


where $g_{\rm C}$ is the conversion transconductance and $R_{\rm L}$ is the FET drain load,

An attempt to achieve maximum conversion gain by indiscriminately increasing the drain load resistance will adversely affect any design priority concerning distortion -. particularly intermodulation product distortion,

Distortion takes different forms in mixers. Most obvious is that distortion which will occur if the FET is driven into the enhancement mode, as noted earlier. A more pernicious form is drain load distortion. And finally, there is the socalled "varactor effect."

The most frequent cause of poor mixer performance stems from signal overloading in the drain circuit. Excessive drain load impedance degrades the intermodulation characteristics and produces unwanted crossmodulation signals.⁽³⁾ A characteristic of the FET balanced mixer is that the correct drain load impedance is inversely proportional to the value of the conversion transconductance. Figure 3 shows the improvement in IM characteristics obtained in the prototype miner with the drain load impedance reduced to 1700Ω from 5000Ω . Specifically, the dynamic load line must be plotted so that the signal peaks of the instantaneous peak-topeak output voltage are not permitted to enter into the nonsaturated ("triode") region of the FET. Suitable and unsuitable drain load lines are shown in Figure 4. Load impedance Selection is quantified in Equations 18 through 20.

Distortion from the "varactor effect" is of secondary importance, and arises from an excessive peak voltage signal swing, where the changing drain-to-source voltage can cause a change in parasitic capacitance, C_{rss} , and give rise to harmonic ~. (A) FET tends to be voltage-dependent when the drain voltage falls appreciably below 6 volts. If the source voltage (from the power supply) is also low and the drain load impedance is high. then distortion will develop. However, if proper steps are taken to prevent drain load distortion, the varactor effect will also be inhibited.

Conversion Gain

In a FET, forward transconductance is defined as⁽⁵⁾

$$g_{fs} = \frac{dI_D}{dV_{gs}}$$
(2)

and conversion transconductance is defined $as^{(6)}$

$$g_{c} = \frac{dID(\omega i)}{dV_{gg}(\omega r)}$$
(3)

where ωi = the intermediate frequency and ωr = the signal frequency.

The effects of time-varying local oscillator voltage, V_2 , and the much smaller signal voltage, V_1 , must be considered:

$$\mathbf{v}_{gs} = \mathbf{V}_1 \cos \omega_1 \mathbf{t} + \mathbf{V}_2 \cos \omega_2 \mathbf{t} \tag{4}$$

For square law operation(7)

$$V_2 + V_{GS} \leq V_{GS(off)} \tag{5}$$

Drain current is approximately defined by ⁽⁸⁾

$$I_{D} = I_{DSS} \left[1 - \frac{V_{GS}}{V_{GS(off)}} \right]^{2}$$
(6)
or (9)

$$I_{\rm D} \approx \frac{g_{\rm fso} \, V_{\rm GS}(\rm off)}{2} \left[i - \frac{v_{\rm gs}}{V_{\rm GS}(\rm off)} \right]^2 \tag{7}$$

ог

$$I_{D} \approx \frac{g_{fso}}{2V_{GS(off)}} \qquad \left[V_{GS(off)} - v_{gs} \right]^{2}$$
(8)

then (10)

$$I_D \approx \frac{g_{fso}}{2V_{GS(off)}}$$
 (complex Taylor expansion) (9)

which can be reduced to

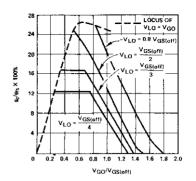
$$I_{D(IF)} \approx \frac{g_{fso}}{2V_{GS(off)}} V_1 V_2 \cos(\omega_1 - \omega_2)t$$
(10)

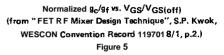
and the conversion transductance is

$$g_{c} = \frac{g_{fso}}{2V_{GS(off)}} |V_{2}|$$
(11)

Equation 11 suggests that g_c increaser without limit as V_2 increaser without limit. However, to avoid operation of the FET in the "triode" region, the peak-to-peak swing of V_2 should not exceed $V_{GS(off)}$.

Thus

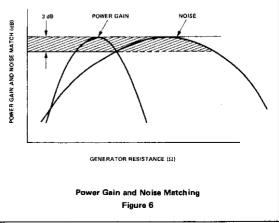

$$2 V_2 \text{ peak} \leq V_{\text{GS(off)}} \tag{12}$$


Siliconix

$$V_2 \text{ peak} \leq \frac{V_{GS(off)}}{2}$$

(13)

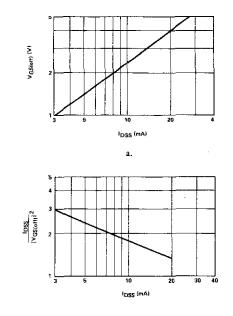
Figure 5 shows plots of normalized conversion transconductance, g_c/g_{fs} versus normalized quicscent bias, $V_{GS}/V_{GS(off)}$, for different oscillator injections.



Noise Figure

Like the common-gate FET amplifier, the common-gate FET balanced mixer is sensitive to generator resistance, R_{g} .⁽¹¹⁾ A change of a decade in R_{g} can produce a noise figure variation of as much as 3 dB.

In the design of the prototype FET active balanced mixer, the generator resistance of the FETs is established by the hybrid coupling transformer. Two important criteria for the FETs in the circuit are high forward transconductance, and a value of power-match source admittance, g_{igs} , which closely matches the output admittance of the coupling trans. former. In the common-gate configuration, match points for optimum power gain and noise do not occur at the same value of generator resistance (Figure 6). Optimum noise match can only be achieved at the sacrifice of bandwidth.


How to Select the Proper FET

Conversion efficiency is determined by conversion trans conductance, g_c , which in turn is directly related to such FET parameters are zero-bias saturation current, I_{DSS} , and the gate cutoff voltage, $V_{GS(off)}$:

$$g_{c} = \frac{I_{\text{DSS}}}{V_{\text{GS(off)}}} |V_{2}|$$
(14)

$$\approx \frac{g_{\rm fso}}{2V_{\rm GS}({\rm off})}$$
(15)

Equation 15 appears to indicate that FETs with high I_{DSS} are to be preferred. However, I_{DSS} and $V_{GS(off)}$ are related, and Figures 7A and 7B show that devices from a family selected for high I_{DSS} do not provide high conversion transconductance, but actually produce a lower value of g_c .

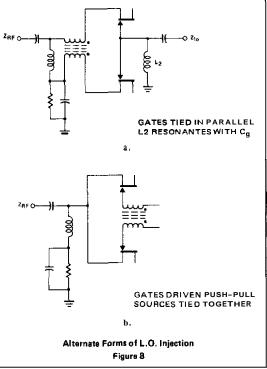
Bert mixer performance is achieved with "matched pairs" of JFETs. Basic considerations in selecting FETs for this application are gate cutoff voltage, $V_{GS(off)}$, for good conversion transconductance, and zero-bias saturation current, I_{DSS} , for dynamic range. A match to 10% is generally adequate. Among currently available devices, the Siliconix U310 and the dual U431 offer excellent performance in both categories; common-gate forward transconductance is 20,000 μ mhos max at $V_{DS} = 10$ V, $I_D = 10$ mA, and f = 1 kHz.

There is, of course, the possibility that FET cast is a major consideration in evaluating the active balanced mixer approach – the familiar price/performance tradeoff. If this is the case, there are a number of other Siliconix FETs which will provide suitable alternatives to the U310. Remember,

however, that conversion transconductance, g_c , can never be more than 25% of forward transconductance. Thus as tradeoff considerations begin, the first sacrifice to be made will be the degree of achievable conversion gain. Intermodulation performance willfollow with the third tradeoffbeing available noise figure. Table III lists a number of possible alternatives to the U310.

Typical Characteristic	DEVICE TYPE				
	U310*	2N5912	2N4416'	2N3823	
g _m	14K	6K	5K	3.5K	
DSS	40 mA	15 mA	10 m A	10 mA	

'Similar devices are also available in plastic packager:


U310 (J310) 2N5397 (K300-18)

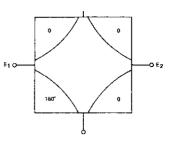
2N4416 (2N5486, K304-18)

Local Oscillator Injection

Low IM distortion products and noise figure, plus best conversion gain, will be achieved if the voltage swing of the local oscillator across the gate-to-source junction is held to the values presented in Figure 5. V_{LO} is expressed in terms of peak-to-peak voltage, while $V_{GS(off)}$ is a d.c. voltage.

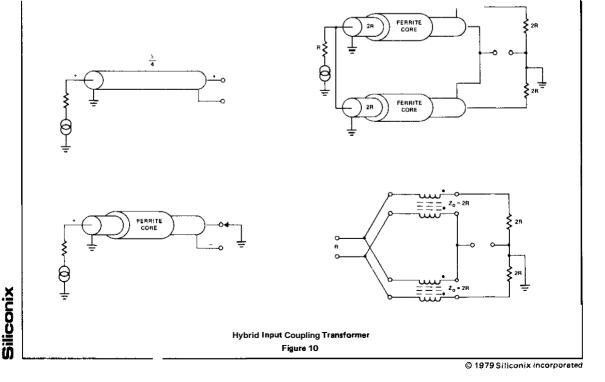
Local oscillator injection can be made either through a bruteforce drive into the IFET source through the hybrid input transformer, or through a direct-coupled circuit to the IFET gates where less drive will be required for the desired voltage swing, Two circuits to obtain direct gate coupling are suggested in Figure 8.

AN72-1


The source-injection method is used in the design of the present mixer to maintain the inherent stability of a common-gate circuit. A minor disadvantage with the directdrive method is that the required gate-ro-source voltage swing requires considerable local oscillator input power. For source injection through the transformer. best mixer performance 18 obtained with a local oscillator drive level of ± 12 to ± 17 dBm across a 50-ohm load.

Conversely, direct coupling to the FET gates occurs at a higher impedance level and less local oscillator drive power is requited. The functional tradeoff resulting when the gates are tied together is that shunt susceptance requires some form of conjugate matching, and thus brings about an undesirable reduction of instantaneous miner bandwidth.

Designing the Input Transformer


Five criteria are Important to the design of the hybrid input coupling transformer for best mixer performance. The impedance transformer must

- (1) Consist of four single-ended terminals, for the local oscillator. the input signal and FETs A and B
- (2) Offer a match between either input to a symmetrical balanced load
- (3) Provide as much isolation as possible between the signal and local oscillator ports (Figure '))
- (4) Maintain a differential phase of 180° across the symmetrical balanced loads
- (5) Introduce the least possible amount of loss

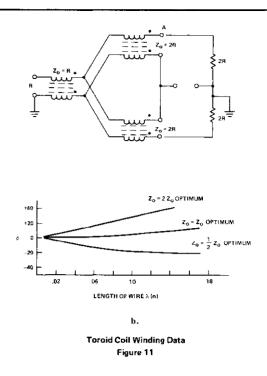
4-Port Hybrid with Phase and Isolation Figure 9

A transformer using ferrite cores and meeting there five requirements is derived from elementary transmission-line theory (Figure 10). Transmission line transformers have a low-frequency cutoff determined by the falloff of primary reactance as frequency is decreased. This reactance is determined by the series inductance of the transmission line conductors. On the other hand, high-frequency performance is enhanced by minimizing the physical length of the transmission line. Minimizing overall line length while maintain ing suitable reactance can be accomplished by using a high-permeability core material such as a ferrite. ⁽¹²⁾ The transformer constructed for the balanced FET mixer closely resembles the balanced 4-port unsymmetrical 180° hybrid device described by Ruthroff. ⁽¹³⁾

Although Ruthroff does not discuss the method of determining the winding length of bifilar wire, a solution is offered by Pitzalis.⁽¹⁴⁾ The Pitzalis definitions for wire length are as follows (Figure 11):

$$\max \text{ length} = \frac{7200n}{f_{\text{upper}}} \text{ (inches)} \tag{16}$$

min length =
$$\frac{20 \text{ R}_{\text{L}}}{(1 + \mu/\mu_0) \text{ f}_{\text{lower}}}$$
 (inches) (17)


where R_L = the load impedance, μ/μ_0 = the relative permeability of the ferrite at the lower frequency, and n = a fraction31 wavelength determined by the amount of allowable phase error.

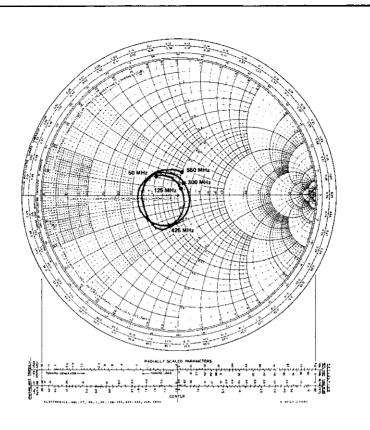
Selection of the ferrite core material is determined mainly by performance requirements. A prime consideration for wideband performance is the temperature coefficient of the ferrite, which must have a low loss tangent over the required temperature range, i.e., high Q.

In addition, an important design factor involves the relative permeability of the core, since inductance of a conductor is proportional to the permeability of the surrounding medium.⁽¹⁵⁾ A high permeability material placed close to the transmission line conductors acts upon the external fringe field present, appreciably magnifying the inductance and

providing a lower cutoff frequency. Power transferred from input to output is coupled directly through the dielectric medium separating the transmission line condcutors; thus a relatively small cross-section of ferrite material can operate in an unsaturated state at impressively high power levels. For the FET balanced miner, ferrite core material with a permeability of 40 provides satisfactory operation from 50 to 250 MHZ. Figure 11 also demonstrates that a lower transmission line impedance, Z₀, is to be preferred over a higher Z₀. Both 50-ohm and 100-ohm transmission lines are required for the mixer transformer; twisted pairs will provide satisfactory results. A characteristic impedance of 45 Ω is obtained from 3 turns-per-inch of Belden No. 24 AWG enamel wire, while 3½ turns-per-inch of No. 24 (7X32) Belden plastic covered wire provide ohms. Each core is wound with 2 inches of the proper twisted pair, with min/max lengths calculated from Pitzalus' data (Formulae 16, 17).

As with all broadband transformers, the coil has an inherent parasitic inductance which must be capacitor-compensated $(C_2, C_4, Figure 2)$.⁽¹⁶⁾ A trim capacitor is required at the two input terminals, and is adjusted only once to optimize the differential phase shift across the symmetrical balanced FETs. Phase match of the hybrid structure may be tracked to within ± 2 degrees (about 180°) to 250 MHz. Effective resistance transformation is useful from 50 to 550 MHz (Figure 12) – but phase track beyond 250 MHz may show too much deterioration.

Designing the IF Network


The IF network performs two important functions in the FET balanced mixer circuit. It provides for optimum match between the FETs and the IF amplifier, and it effectively bypasses the circuit RF components (signal and local

In network design, it is essential that the RF and local oscillator signals be sufficiently isolated from the intermediate frequency signal to maintain rejection levels of at least 20 dB. If this isolation is not maintained, conversion gain and noise figure are degraded.

The simplest technique for design of the IF network is to use the well-known pi (π) match structure from each FET drain to a common balanced output transformer network.⁽¹⁷⁾ This pi match technique is especially suitable for a narrow-band intermediate frequency output, serving three useful functions. First, it serves to achieve the proper drain load match between the FETs and the IF structure. Second, it provides the very necessary isolation of the intermediate frequency signal. And third, it serves as a simple filter to provide a monotonic decrease in impedance as frequency departs from the IF center frequency, f₀, (18, 19) This third function, shown in Figure 13, prevents the drain load impedance from skyrocketing out of control and giving rise to distortion products.

Selection of the dynamic drain impedance value in the IF network is a critical point in design of the structure. Intermodulation product distortion and crossmodulation will be

AN72-1

 $50\Omega - 200\Omega$ Balun Figure 12

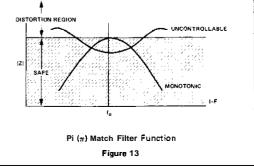
both affected by the instantaneous peak-to-peak output voltage of the FETs, if the value of the dynamic drain impedance allows these signal peaks to enter either the pinch-off voltage or breakdown voltage regions of the transistors.⁽²⁰⁾ If the impedance is too high, the dynamic range of the miner will be severely limited; if the impedance is too low, useful conversion gain will be sacrificed.

A first-order approximation to establish the proper load impedance may be obtained when

$$R_{L} = \frac{V_{DD} - 2 V_{GS(off)}}{i_{d}}$$
(18)

where

$$i_{d} = I_{DSS} \left[I - \frac{v_{gs}}{V_{GS(off)}} \right]^2$$
(19)


and

Silconk

$$v_{gs} = V_{GS} + V_1 \sin \omega_1 t$$

For the U310 FET, the optimum drain load impedance it established at slightly less than 2000 ohms, with sufficient local oscillator drive arid gate bias determined from the conversion transconductance curve in Figure 5.

The output IF coupling structure is an 800-ohm CT to 50 ohm trifilar-wound transformer (Reicom BT-9 or equivalent) The pi (n) match into this transformer provided a dynamic drain load impedance of 1700 ohms on each FET; excellent

© 1979 Siliconix incorporated

(20)

IM performance was obtained. Value of operating. Q was established at 10 as the best compromise to insure that the tolerance of the pi match components would permit the IF output to peak within the allowable bandwidth at the associated IF amplifier. A Q of more than 10 would result in a greatly restricted bandwidth, while a Q of less than 10 would result in excessively high capacitance, excessively low inductance, and unsatisfactory filter performance.

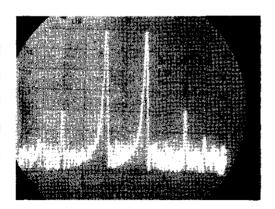
Mixer Performance

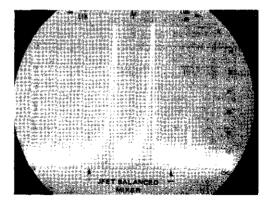
Tests of the operational prototype FET balanced mixer demonstrated that the active mixer has several characteristics superior to those of passive mixer counterparts. There comparisons are made in Table IV (measurements of all three mixers were made under laboratory conditions).

Insertion loss measurements on the IF network amounted to 3 dB in the center of the passband, while insertion loss on the hybrid assembly measured 1.2 dB. The network exhibited a Q of 10. Gain and noise figures were measured over the full 50250 MHz bandwidth, with a single-sideband noise figure ranging from 7.2 dB at 50 MHz to 8.6 dB at 250 MHz. Conversion gain was a flat +2.5 dB.

Two-tone third-order intermodulation is expressed in terms of the intercept point.⁽²¹⁾ With two signals 300 kHz apart, the balanced mixer suppressed third-order products -89 dB with both signals at -10 dBm, representing an intercept point of +32 dBm.

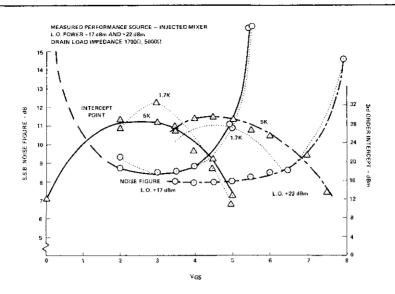
Table IV

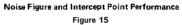

50250 MHz Mixer Performance Comparison


Characteristic	JFET	Schottky	Bipolar
Intermodulation Intercept Point	132 dBm	+28 dBm	+12dBmt
Dynamic Range	100 dB	100 dB	80 dB†
Desensitization Level (the level for an unwanted signal when the desired signal first experiences compression)	+8.5 dBm	+3 dBm	+1 dBmt
Conversion Gain	+2.5 dB*	-6 dB	+18 dB
Single-sideband Noise Figure @ 50 MHz	7. <u>2 dB</u>	<u>6.5 dB</u>	6.0 dB

[†]Estimated *Conservative minimum

Figure 14 shows a comparison of third-order 1M products emanating from both the JFET balanced mixer and a typical low-level double-balanced diode mixer, under similar operating conditions. Noise figure and intercept point are shown at various bias and local oscillator drive levels in Figure 15.


The performance of the active miner is clearly superior to that of the diode mixers, contributing overall system gain in areas critical to telecommunications practice, and reducing associated amplifier requirements.



Siliconix

Comparison of 3rd Order IM Products Figure 14

CONCLUSION

The reason for using the three-core bifilar transformer (Figure 11A) in this tutorial article stemmed from the relative analytical simplicity of such a design. An alternative transformer is the single-core trifilar-wound design. The definitions for wire lengths (Equations 16 and 17) are equally applicable to trifilar as they are for bifilar.

REFERENCES

- (1) Found, R.V., MICROWAVE MIXERS, MIT Rad. Lab. Series, Vol. 16, Figure 6.14, p. 274 (1948).
- (2) "Iligh-Frequency JFET Characterization and Applications," J.B. Compton, DESIGN ELECTRONICS, March, 1970.
- (3) "Tire Solid State Receiver," W. Sabin, QST, July 1970, pp. 35-43.
- (4) Penfield, P., and Rafuse, R., VARACTOR APPLICA-TIONS, MIT Press, Cambridge, Mass., (1962), pp. 73ff.
- (5) "Non-Linear Distortion and Mixing Processes in FETS," J.S. Vogel, Proc. of IEEE, Vol. 55, Nu. 12 1967, pp. 2109-2116.
- (6) "UHF FET Mixer of High Dynamic Range," ECOM-0503-P005-G821 (1969). (Available from U.S. Army
- (7) Op cit., ECOM-0503-P005-G821.

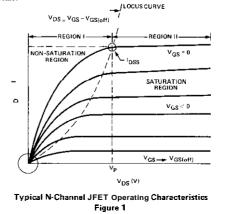
- (8) J. Watson, INTRODUCTION TO FIELD-EFFECT TRANSISTORS, Siliconix, Inc., Santa Clara, Ca., 95054 (1970). p. 18.
- (9) Op. cit., ECOM-0503-P005-G821.
- (10) Op. cit., "Non-Linear Distortion and Mixing Processes in FETs," p. 2112.
- (11) Op. cit., "High-Frequency JFET Characterization."
- (12) O. Pitzalis and T. Couse, "Broadband Transformer Design for RF Transistor Power Amplifiers," ECOM-2989. July 1968. Aisa in Proc. Electronic Component Conference (1968).
- (13) "Same Broadband Transformers," C.L. Ruthroff, Proc. IRE, Vol. 47, Aug. 1969, pp. 1337-1342 (Figure 7(b).
- (14) Op. cit., ECOM-2989, July 1968.
- (IS) Op. cit., ECOM 2989, p. 6.
- (16) Op. cit., ECOM 2989, p. 7.
- (17) ARRL HANDBOOK, American Radio Relay League. Newington, Colin. (1970) p. 49.
- (18) "Reactive Loads The Big Miner Menace," P. Will. MICROWAVES, April 1971, pp. 38-42.
- (19) Op. cit., "The Solid State Receiver."
- (20) "Distortion in FET Amplifiers," J. Sherwin, ELEC-TRONICS, Dec. 12, 1966.
- (21) "Don't Guess The Spurious Level," F.C. McVay ELECTRONIC DESIGN, Feb. 1,1967, pp. 70-73.

APPLICATION NOTE

FETs As Voltage-Controlled Resistors

INTRODUCTION

Siliconix

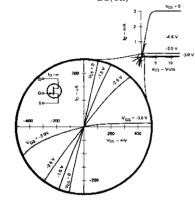

The Nature of VCRs

A voltage-controlled resistor (VCR) may be defined as a three-terminal variable resistor where the resistance value between two of the terminals is controlled by a voltage potential applied to the third.

A junction field-effect ^{transistor} (JFET) may be defined as a field-controlled majority carrier device where ^{the} conductance in the channel between the ^{source} and the drain is modulated by a transverse electric field. The field is controlled by a combination of gate-source bias voltage, V_{GS} , and the net drain-source voltage, V_{DS} .

Under certain operating conditions, the resistance of the drain-source channel is a function of the gate-source voltage alone and the JFET will behave as an almost pure ohmic resistor.⁽¹⁾ Maximum drain-source current, I_{DSS} , and minimum resistance, $r_{DS(on)}$, will exist when the gate-source voltage is equal to zero volts ($V_{GS} = 0$). If the gate voltage is increased (negatively for N-Channel JFETs and positively for P-Channel) the resistance will also increase. When the drain current is reduced to a point where the FET is no longer conductive, the maximum resistance is reached. The voltage at this point is referred to as the pinchoff or cutoff voltage and is symbolized by $V_{GS} = V_{GS(off)}$. Thus the device functions as a voltage-controlled resistor.

Figure 1 details typical operating characteristics of an N-Channel JFET. Must amplification or switching operations of FETs occur in the constant-current (saturated) region, shown as Region II. A close inspection of Region 1 (the unsaturated or pre-pinchoff area) reveals that the effective slope indicative of conductance across the channel from drain to source is different for each value of gate-source bias voltage.⁽²⁾ The slope is relatively constant over a range of applied drain voltages. so long as the gate voltage is also constant and the drain voltage is low.


6

<u>S</u> iconix

Resistance Properties of FETs

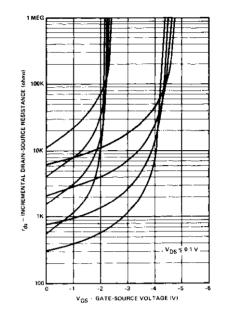
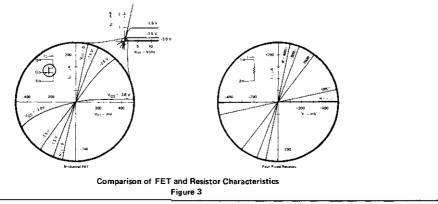
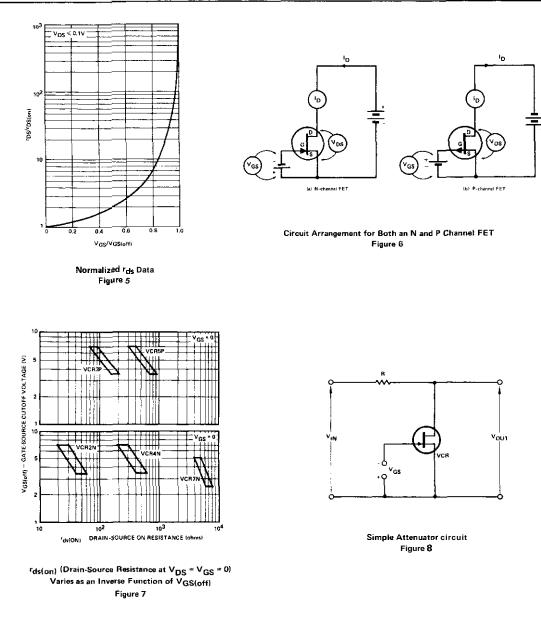

The unique resistance-controlling properties of FETs can be deduced from Figure 2, which is an expanded-scale plot of the encircled area in the lower left-hand corner of Figure 1. The output characteristics all pass through the origin, near which they become almost straight lines so that the incremental value of channel resistance, r_{dsy} is essentially the same as that of d.c. resistance, r_{DS} , and is a function of V_{GS} .⁽³⁾

Figure 2 shows extension of the operating characteristics into the thirdquadrant for a typical N-Channel JFET. While such devices are normally operated with a positive drain-source voltage, small negative values of V_{DS} are possible. This is because the gate-channel PN junction must be slightly forward-biased before any significant amount of gate current flows. The slope of the V_{GS} bias line is equal to $\Delta I_D / \Delta V_{DS} = 1/r_{DS}$. This value is controlled by the amount of voltage applied to the gate. Minimum r_{DS} , usually expressed as $r_{DS(on)}$, occurs at $V_{GS} = 0$ and is dictated by the geometry of the FET. A device with a channel of small cross-sectionai area will exhibit a high $r_{DS(on)}$ and a law I_{DSS} . Thus a FET with high I_{DSS} should be chosen where design requirements indicate the need for a low $r_{DS(on)}$.

N-Channel JFET Output Characteristic Enlarged Around $V_{DS}\,{=}\,0$ Figure 2


Figure 3 extends the r_{ds} characteristics of a FET to a comparison with the performance of 4 fined resistors. Note the pronounced similarity between the two types of devices. Typical r_{DS} curves for several Siliconix N-channel JFETs are plotted in Figure 4.⁽⁴⁾ The graphs are usefulinestimating r_{DS} values at any given value of V_{GS}. All quantities given in Figure 4 are for typical units, so some variation should be expected for the full range of production devices. It is therefor deisrable to convert Figure 4 to a normalized plot. This



Incremental Drain-Source Resistance for Typical N-Channel FETs Figure 4

has been done in Figure 5. The resistance is normalized to its specific value at $V_{GS} = 0$ V. The dynamic range of r_{DS} is shown as greater than 100:1, although for best control of r_{DS} a range of 10:1 is normally used.

Siliconix offers a family of FETs specifically intended for use as voltage-controlled resistors. The devices are available in both N-Channel and P-Channel configurations (Figures 6A and 68) and have $r_{DS(on)}$ valuer ranging from 20 Ω to 4,000 Ω (Figure 7).

Applications for VCRs

The FET is ideal for use as a voltage-controlled resistor in applications requiring high reliability, minimum component size, and circuit simplicity. The FET VCR will conveniently replace numerous elements of conventional resistance control systems, such as servomotors, potentiometers, idler pulleys, and associated linkage. FET power consumption is minimal, packages are very small, and cost comparisons with conventional control schemes are most favorable.

A simple application of a FET VCR is shown in Figure 8 the circuit for a voltage divider attenuator.(5)

The output voltage is

$$\text{"OUT} = \frac{\text{min} \text{ }^{\text{T}} \text{DS}}{\text{R} + \text{mod}}$$
(1)

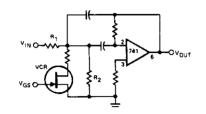
It is assumed that the output voltage is not so large as to push the VCR out of the linear resistance region, and that the r_{DS} is not shunted by the load.

The lowest value which v_{OUT} can assume is

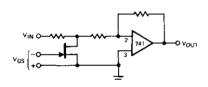
$$v_{OUT(min)} = \frac{V_{in} r_{DS}(on)}{R + r_{DS}(on)}$$

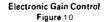
6

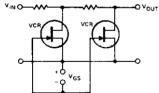
The highest value is

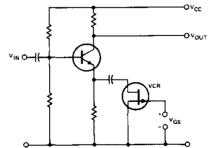

◀

 $v_{OUT(max)} = v_{in}$

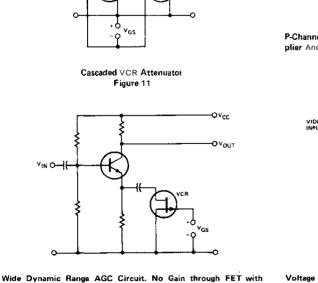

since r_{DS} can be extremeley large.

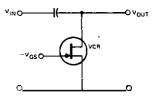

(3)

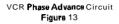

A number of other FET VCR applications are shown in Figures 9-16.

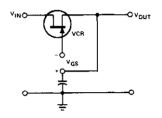


Voltage-Tuned Filter Octave Range with Lowest Frequency at JFET VGS(off) and Tuned by R2. Upper Frequency is Controlled by R1 Figure 9

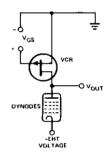


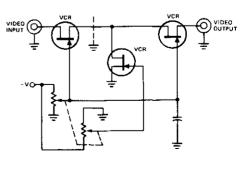


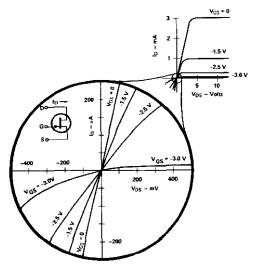

Distortion Proportional to Input Signal Level


Figure 12

Siliconix






P-Channel VCR Photomultiplier Load. Required Low Photomultiplier Anode Current (Usually < 1 μ A) Implies that VCR will Always Perform in Linear Region Near origin Figure 15

Voltage Controlled Variable Gain Amplifier. The Tee Attenuator Provides for Optimum Dynamic Linear Range Attenuation Figure 16

Signal Distortion: Causes

Figure 17A repeats the FET output characteristic curves of Figure 2, to show that the bias liner bend down as V_{DS} increases in a positive direction toward the pinch-off voltage of the FET. The bending of the bias lines results in a change in r_{DS} , and hence the distortionencountered in VCR circuits; note that the distortion occurs in both the first and third quadrants. Distortion results because the channel depletion layer increases as V_{DS} reduces the drain current, so that a pinch-off conditionis reached when $V_{DS} = V_{GS} - V_{GS(off)}$. Figure 17B shows how the current has an opposite effect

N-Channel JFET Output Characteristic Enlarged Around $V_{DS} = 0$ Figure 17A

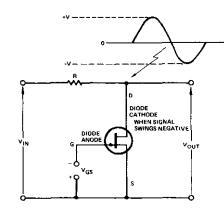
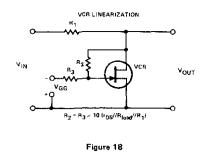



Figure 17B

in the third quadrant, rising negatively with an increasingly negative V_{DS} . This is due to the forward conduction of the gate-to-channel iunction when the drain signal exceeds the negative gate bias voltage.

Reducing Signal Distortion

The majority of VCR applications require that signal distortion be kept to a minimum. Also, numerous applications require large signal handling capability. A simple feedback technique may be used to reduce distortion while permitting large signal handling capability; a small amount of drain signal is coupled to the gate through a resistor divider network, as shown in Figure 18.

The application of a part of the positive drain signal to the gate causes the channel depletion layer to decrease, with a corresponding increase in drain current. Increasing the drain current for a given drain voltage tends to linearize the V_{GS} bias curves. On the negative half-cycle, a small negative voltage is coupled to the gate to reduce the amount of drain-gate forward bias. This in turn reduces the drain current and linearizes the bias lines. Now the channel resistance is dependent on the DC gate control voltage and not on the drain signal, unless the $V_{DS} = V_{GS} - V_{GS(off)}$ locus is approached. Resistors R_2 and R_3 in Figure 18 couple the drain signal to the gate; the resistor values are equal, so that symmetrical voltage-current characteristics are produced in both quadrants. The resistors must be sufficiently large to provide minimum loading to the circuit:

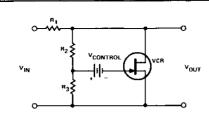
$$R_2 = R_3 \ge 10 [R_1 ||r_{ds}(max) ||R_L]$$
(4)

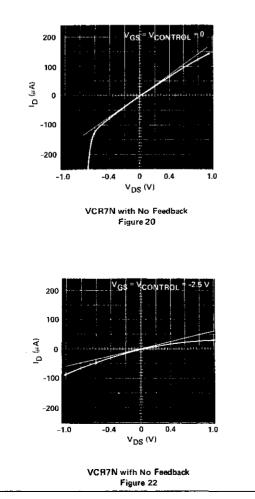
Typically, 470K Ω resistors will work well for most applications. R_1 is selected so that the ratio of $r_{DS(on)} ||R_L$ to $[(r_{DS(on)} ||R_L) t R_1]$ gives the desired output voltage, or:

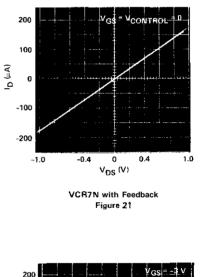
$$e_{0} = e_{1} - \frac{r_{DS(on)} ||R_{L}|}{(r_{DS(on)} ||R_{L}| + R_{1})}$$
(5)

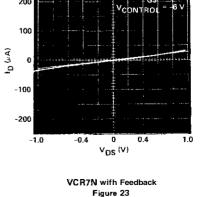
The feedback technique used in Figure 18 requires that the gate control voltage, V_{GG} , be twice as large as V_{GS} in Figure 17B for the same r_{DS} value. Use of a floating supply between the resistor junction and the FET gate will overcome this problem. The circuit is shown in Figure 19, and allows the gate control voltage to be the same value as that voltage used without a feedback circuit, while preserving the advantages to be gained through the feedback technique.

Appendix A to thin **Application Note** is an analytical approximation of VCR FET distortion characteristics. both calculated and measured.



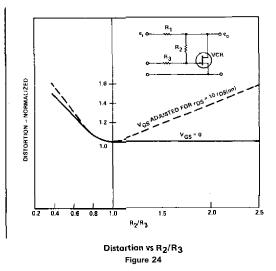

Figure 19


Experimental Results


Figures 20 through 23 show low voltage output characteristic curves for a typical Siliconix N-Channel voltage-controlled resistor, VCR7N. Bias conditions are shown both with and without feedback. Figure 20 shows a two-volt peak-to-peak signal on the $V_{GS} = 0$ V bias curve, with the VCR operating in the first and third quadrants. The VCR is operated without feedback. The forward-biased gate-drain PN junction may be seen at approximately -0.6 V, and bending of the bias curve is apparent in the third quadrant. The photo also demonstrates the comparison between a fixed resistor (the linear line superimposed on the bias curve) and the distortion apparent in the VCR without feedback compensation; the VCR signal is unusable with the indicated amount of distortion.

In Figure 21, the same VCR7N FET is shown operating with the addition of the feedback resistors. Distortion has been reduced to lens than 0.570, and the characteristics of the VCR are now closely comparable to those of a fixed resistor.

In Figures 22 and 23, the same VCR FET characteristics are shown, with V_{GS} adjusted for higher r_{DS} . No feedback network is employed in Figure 22, and measured distortion 1s greater than 8%. In Figure 23, the feedback resistors have been added and distortion has been reduced to less than 0.5%.



Silicanix

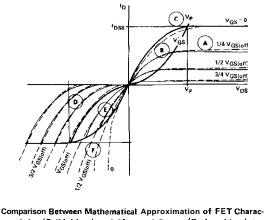
Some degree of non-linearity will be experienced in both the first and third quadrants as V_{GS} approaches the FET cut-off voltage. For this reason, it is important that the feedback resistors be of equal value so that the non-linearitier likewise will be equal in both quadrants. Figure 24 shows a curve of distortion vs R_2/R_3 , in both quadrants.

Distortion resulting from changes in temperature are also minimized by the feedback resistor technique. r_{DS} will change with temperature in an inverse manner to the behavior of FET drain current. Table I presents the result of VCR laboratory performance tests of distortion vs temperature. The VCR7N again was employed. Signal level was 2 V peak-to-peak.

Table I

Temperature	Without Feedback		With Feedback	
	'DS ='OS (an)	rDS = 10 rDS(on)	rDS=rDS(an)	rDS = 10 rDS(on)
				<0.5%
+ 25	>10%	>5%	<0.5%	<0.5%
- 55	3.9%	3,2%	<0.5%	<0.5%

SUMMARY


This Application Note has presented a brief description of the use of junction field-effect transistors as voltage-controlled resistors, including details of operation, characteristics. limitations. and applications. The VCR is capable of operation as a symmetrical resistor with no DC bias voltage in the signal loop, an ideal characteristic for many applications.

Where large signal-handling capability and minimum distortion are system requirements, *the* feedback neutralization technique for VCRs is an important tool in achieving either or both ends. It has also been shown that FETs withhigh pinch-off voltage require larger drain-to-source voltages to produce drain current saturation. Therefore, FETs with high $V_{GS(off)}$ will have a larger dynamic range in terms of applied signal amplitude, while maintaining a linear resistance. It is advantageous to select FETs with high $V_{GS(off)}$ (compatible with the desired r_{DS} value) if large signal levels are to be encountered.

APPENDIX A – From proceedings of the IEEE, October, 1968, pp. 1718-1719.

Abstract – An analytical approximation of FET characteristics for positive and negative voltages is presented. The distortion in an application as a controlled attenuator is calculated, and a method of reducing distortion by a factor of more than 50 is described.

Controlled resistors are used in oscillators, controlled amplifiers. and attenuators.^(6,7) The possible control range is much larger fur field-effect transistors (FET) than for other elements with comparable time constants (e.g., diodes). The signal-to-noise ratio is considerably improved.

acteristics (Solid Lines) and Measured Curves (Broken Lines) for a Typical N-Channel JFET Figure 25

Figure 25 shows idealized and real FET characteristics. In region A (above pinch-off) I_D is independent of V_{DS} :⁽⁸⁾

$$^{I}D = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$
(1)

Region B, where $V_{DS} < (V_{GS} - V_P)$, is the so-called triode region. (In the following discussion all the signs (+, -) will be valid for N-Channel FETs.) The characteristics can be

Slic orb

AN3-

Siliconix

approximated by a quadratic function, of which the maximation is a second point (the origin) arc known. The approxi-

$$I_{D} = I_{DSS} \left[\left(1 - \frac{V_{GS}}{V_{P}} \right)^{2} - \left(1 - \frac{V_{GS} - V_{DS}}{V_{P}} \right)^{2} \right]$$
$$= \frac{2I_{DSS}}{\left(- P - I \right)^{2}} \left(V_{GS} - V_{P} - \frac{V_{DS}}{2} \right)$$
(2)

This is the same function that can be found by a simple analysis based on semiconductor theory. The less negative of the two voltages across the junction (V_{GS}, V_{GD}) controls the channel conductance. Under the condition that the FET is symmetrical (drain and source interchangeable), the following consideration is true. If V_{GD} were the controlling voltage and $V_{DS} < 0$, $I_D < 0$, then the characteristics would be the same as in the first quadrant:

$$-I_{D} = -\frac{2I_{DSS}}{V^{2}p} \quad V_{DS} \quad \left(V_{GD} - V_{P} + \frac{V_{DS}}{2}\right)$$
(3)

Since the controlling voltage for both regions (B and E) is $V_{\mbox{GS}},$

$$V_{GD} = V_{GS} - V_{DS}$$
(4)

Substituting (4) into (3), we get (2); the same approximation can be used in B and E. The limits of region E where (2) is valid are $V_{GD} = 0$ and $V_{GD} = V_P$. The characteristics in region D can be found from (1) with the same consideration:

$$I_{D} = -I_{DSS} \left(1 - \frac{V_{GS} - V_{DS}}{V_{P}} \right)^{2}$$
(5)

The mathematical approximation is compared with the measured characteristic in Figure 25. In the regions C and F the junction is forward biased. The characteristics are dependent on the internal resistance of the gate voltage source since gate current flows.

The FET as a controlled resistor works in region B and E. The higher the resistance, the more non-linear are the characteristics. For most applications this is undesirable. Based on the simple approximation (2), the relation between distortion, control range, and maximum to minimum attenuation will be described for a simple voltage divider [Figure 26(a)]. Most applications can be based on thissimple example. The conductance in any point of region B or E is

$$G_{DS} = \frac{I_D}{V_{DS}} = -\frac{2I_{DSS}}{V_P} \left(1 - \frac{V_{GS}}{V_P}\right)$$
$$-\frac{I_{DSS}}{(V_P)^2} V_{DS} = g_{DS} + \frac{g_{DSS}V_{DS}}{2V_P}$$
(6)

where g_{DS} is the differential conductance at the origin; when $V_{GS} = 0$, then $g_{DS} = g_{DSS}$. The attenuation for the circuit of Figure 26(a) is

$$\frac{V_2}{V_1} = \frac{1}{1 + R_{gDS}}$$

$$= \left[\frac{1 + R_{gDS}}{+ \frac{R_{gDSS} V_1}{2V_P \left(1 + R_{gDS} v \frac{2R_{gDS} V_1}{2V_P \left(1 + R_{gDS}\right)}\right)} \right]^{-1}$$

$$v_1 \circ \frac{n}{V_1 \circ \frac{n}{V_1} \circ \frac{n}{V_2}} \circ \frac{v_2}{V_2}$$

$$v_1 \circ \frac{n}{V_1 \circ \frac{n}{V_1} \circ \frac{n}{V_2}} \circ \frac{v_2}{V_2}$$

$$v_1 \circ \frac{n}{V_1 \circ \frac{n}{V_2} \circ \frac{n}{V_2}} \circ \frac{v_2}{V_2}$$

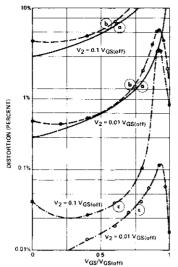
(a) Controlled JFET Attenuator. (b) Controlled Attenuator with "Feedback" Making Characteristics Linear and Symmetrical Figure 26

To reduce (7) to a more tractable form, the following inequality is introduced:

$$\frac{V_1 R_{gDSS}}{2V_P [1 + R_{gDS}]^2} << 1$$

so that (7) can now be approximated by the expansion

$$V_{2} = \frac{V_{1}}{1 + g_{DS}R} \left(1 - \frac{Rg_{DS}V_{1}}{2V_{P} \left[1 + Rg_{DS} \right]^{2}} + \ldots \right)$$
(8)


Only the second harmonic will be considered for the distortion since the third is much smaller. For small distortion (d \ll 1 and Rg_{DSS} \gg 1),

$$d = \frac{V_1 R_{\text{gDSS}}}{4 |V_{\text{P}}| [1 + R_{\text{gDS}}]^2}$$
(9)

If V2 is held constant,

$$d = \frac{V_2 R_{gDS}}{4 |V_P| [1 + R_{gDS}]} \approx \frac{V_2}{4 |V_P - V_{GS}|}$$
(10)

© 1979 Siliconix incorporated

Distortion as a Function of $V_{GS}/V_{GS}(off)$ for Two Different $V_2/V_{GS}(off)$. (a) Theoretical for Figure 26(a). (b) Measured with Circuit of Figure 26(a). (c) Measured with Circuit of Figure 26(b) Figure 27

Figure 27 shows a comparison of measured and calculated distortion. If V_{GS} approaches V_P , the above restrictions are violated; the expression for the distortion can no longer be applied. If V_{DS} <0, V_{GS} = 0, then the FET works in region F; the distortion will be higher than predicted. From (10) we get for a prescribed maximum distortion a maximum amplitude as a function of V_{GS} :

$$V_{2max} = 4d_{max} |V_P - V_{GS}| \tag{11}$$

For a given d_{max} and V_{2max} the ratio of minimum to maximum attenuation is

$$\frac{A_{\min}}{A_{\max}} = m = \frac{1 + R_{gDSS}}{1 + R_{gDSS} \frac{V_{2\max}}{4d_{\max}|V_{P}|}} \approx \frac{4d_{\max}|V_{P}|}{V_{2\max}}$$
(12)

valid only for m > 1. Note that the maximum distortion is reached only for minimum attenuation. Examples:

$$d_{max} = 10 \text{ percent } V_{2max} = 0.001 \text{ V}_{\mathbf{P}} \text{ m} = 400$$

$$d_{max} = 1 \text{ percent } V_{2max} = 0.01 \text{ V}_{\mathbf{P}} \text{ m} = 4$$

Although these relations are only first-order approximations, they give a good estimate of FET attenuator characteristics. The maximum amplitude is proportional to V_P . FETs with high V_P are desirable for attenuator applications. Unfortunately, the majority of commercially available FETs are made with low V_P for use in amplifiers.

There are several means of reducing distortion. By connecting two identical FETs in antiparallel or antiseries, nonlinearities can be cancelled out to a certain extent. A better linearization is possible by using one FET with "feedback". It has been shown above that the characteristics would be symmetrical if V_{GD} were the control voltage in the third quadrant. By adding $0.5 V_{DS}$ to the control voltage, the two voltage V_{GS} and V_{GD} interchange when V_{DS} changes sign:

$$V_{GS} = V_{H} + 0.5 V_{DS}$$

$$V_{GD} = V_{H} - 0.5 V_{DS}$$
(13)

then (13) used in (2) giver

$$I_{\rm D} = \frac{2I_{\rm DSS}}{V^2 p} V_{\rm DS} (V_{\rm H} - V_{\rm P})$$
(14)

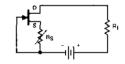
The resulting characteristic is linear and symmetrical in B and E. The improvement in distortion performance can be seen in Figure 27. A distortion of 12 percent for $V_2 = 0.1$ V_p at $V_{GS} = 0.8$ V_p is reduced through linearization to 0.1 percent. Figure 26(b) shows a possible circuit. The frequency range of the controlled signal must be much higher than that of the controlled signal V_H to keep the direct interference of V_H on V_2 small. R_3 is set for minimum distortion. If V_2 and V_H are in the same frequency range, a high impedance amplifier must be used. V_2 is at the input; the output is connected to the FET gate. The amplification is approximately 0.5 (adjustable). The control voltage is introduced through a second input so that no direct interference with V_2 occurs.

REFERENCES

- J. Watson, INTRODUCTION TO FIELD-EFFECT TRANSISTORS, Siliconix, Inc. Santa Clara, Calif. 95054 (1970), p. 58.
- (2) "FETs As Voltage-Variable Resistors," Carl D. Todd, ELECTRONIC DESIGN, Sept. 13, 1965, pp. 66-69.
- (3) Op. cit., AN INTRODUCTION TO FIELD-EF-FECT TRANSISTORS, p. 22.
- (4) "FETs As Voltage-Controlled Resistors," Siliconix. inc., Santa Clara, Calif., 1966.
- (5) Op. cit., AN INTRODUCTION TO FIELD-EF-FECT TRANSISTORS, p. 61.
- (6) W. Gosling, "Voltage Controlled Attenuators Using Field-Effect Transistors," IEEE Trans Audio, Vol. AU-13, pp. 112-120, Sept.-Oct., 1965.
- (7) J.S. Sherwin, "Voltage Controlled Resistors (FET)," Solid State Design, pp. 12.14, Aug. 1965.
- (8) L.J. Sevin, "Field-Effect Transistors," New York, McGraw-Hill, 1965.

AN73-

Siiconia


.

DESIGN IDEA The FET Constant Current Source

INTRODUCTION

Siliconix

The combination of low associated operating voltage and high output impedance make the FET attractive as a canstant current source. An adjustable current source may be built with a FET, a variable resistor and a small battery, Figure I. Far good thermal stability, the FET should be biased near the zero T.C. point.¹

Field-Enact Transistor Current Source Figure 1

Whenever the FET is operated in the saturated region, its output conductance is very low. This occurs whenever the drain-source voltage V_{DS} is significantly greater than the cut-offvoltage $V_{GS(off)}$. The FET may be biased to operate as a constant current source at any current below its saturation current I_{DSS} .

For a given device where I_{DSS} and $V_{GS(off)}$ are known, the approximate V_{GS} required for a given I_D is

$$V_{GS} = V_{GS(off)} \left[i - \left(\frac{I_D}{I_{DSS}} \right)^{1/k} \right]$$
(1)

where k can vary from 1.7 to 2.0, depending upon device geometry. The series resistor $\mathbf{R}_{\mathbf{S}}$ required between source and gate is

$$R_{S} = \frac{V_{GS}}{I_{D}}$$
(2)

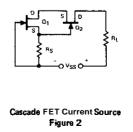
A change in supply voltage, or change in load impedance, will change I_D by only a small factor because of the low output conductance g_{OSS} .

$$\Delta I_{D} = \Delta V_{DS} g_{OSS}$$

The value of g_{OSS} is an important consideration in the accuracy of a constant current source. As g_{OSS} may range from less than 1 μ mho to more than 50 μ mho according to the FET type, the dynamic impedance can be greater than 1 megohm to less than 20K. This corresponds to a current stability range of 1 μ A to 50 μ A per volt. The value of g_{OSS} depends also on the operating point, being highest at I_{DSS} and at low V_{DS}. Output conductance g_{OSS} decreases approximately linearly with I_D, becoming less as the FET is biased toward cut-off. The relationship is

$$\frac{I_{\rm D}}{I_{\rm DSS}} = \frac{g_{\rm oss}}{g'_{\rm oss}} \tag{4}$$

where


$$g_{OSS} = g'_{OSS} \tag{5}$$

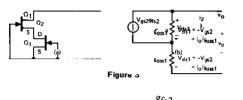
when

$$V_{\rm GS} = 0 \tag{6}$$

So as $V_{GS} \rightarrow V_{GS(off)}$, $g_{oss} \rightarrow zero$. For best regulation, I_D must be considerably less than I_{DSS} .

It is possible to achieve much lower g_{OSS} per unit I_D by cascading two FETs as shown in Figure 2.

Siliconix


© 1979 Siliconix incorporated

(3)

1-1

Now, I_D is regulated by Q_1 and $V_{DS1} = -V_{GS2}$. The d-c value of I_D is controlled by R_S and Q_1 . However, Q_1 and Q_2 both affect current stability. The circuit output conductance is derived as follows:

Figure 2 in redrawn in Figure 3 for the condition $V_{GS1} = 0$.

$$i_0 = i_2 + v_{gs2}g_{fs2} = v_{ds2}g_{oss2} - i_0 \frac{\epsilon_{fs2}}{g_{oss3}}$$
 (7)

$$i_{0} = \frac{v_{ds2}s_{oss2}s_{oss1}}{s_{oss1} + s_{fs2}}$$
(8)

$$v_o = v_{ds1} + v_{ds2} = v_{ds2} + \frac{v_o}{g_{oss1}}$$
 (9)

$$v_{0} = v_{ds2} \frac{g_{0ss1} + g_{0ss2} + g_{fs2}}{g_{0ss1} + g_{fs2}}$$
(10)

$$g_{0} = \frac{i_{0}}{v_{0}} = \frac{g_{0ss1}g_{0ss2}}{g_{0ss1} + g_{0ss2} + g_{fs2}}$$
(11)

$$If g_{OSS1} = g_{OSS2} \tag{12}$$

$$g_0 = \frac{g_{OSS}}{2 + g_{fS}/g_{OSS}}$$
(13)

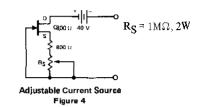
When

Si looniy

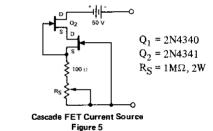
$$R_S \neq 0$$
 as in Figure 2 (14)

$$g_{O} = \frac{g_{OSS}^{2}}{2g_{OSS} + g_{fS} + R_{S}(g_{fS}^{2} + g_{OSS}g_{fS} + g_{OSS}^{2})}$$
(15)

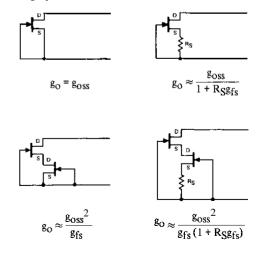
$$\approx \frac{g_{OSS}^2}{g_{fs}(1 + R_S g_{fs})}$$
(16)


In either case ($R_S = 0$ or $R_S \neq 0$), the circuit output conductance is considerably less than the g_{OSS} of a single FET.

In designing any cascaded FET current source, both FETs must be operated with adequate drain-gate voltage $V_{\mbox{DG}}$. That is,


$$V_{DG} > V_{GS(off)}$$
, preferably $V_{DG} > 2 V_{GS(off)}$ (17)

If $V_{DG} \le 2 V_{GS(off)}$, the g_{oss} will be significantly increased, and circuit g_o will deteriorate. For example: A 2N4340 has typical $g_{oss} = 4 \ \mu$ mho at $V_{DS} = -20 \ V$ and $V_{GS} = 0$. At $V_{DS} \approx -V_{GS(off)} = 2 \ V$, $g_{oss} \approx 100 \ pmho$.


The best FETs for current sources are those having long gates and consequently very low g_{OSS} . The Siliconix 2N4869 exhibits typical $g_{OSS} = 1$ pmho at $V_{DS} = 20$ V. A single 2N4869 in fhemirfour ArtEighrmA with the hemirfour and the second states and the second states are
greater than 2 megohms.

The cascade circuit of Figure 5 provides a current adjustable from 2 μ A to 1 mA with internal resistance greater than 10 megohms.

For each circuit discussed, g_{OSS} is represented by the following equations:

REFERENCES

 "Biasing FETs for Zero DC Drift," Evans, L., Electrotechnology, August 1964.

DESIGN IDEA

Wideband UHF Amplifier with High-Performance FETs

Ed Oxner

introduction

Silico

A new freedom in UHF amplifier design is possible with high-performance "Super FETs" such as the Siliconix U310 Junction FET. Typical advantages include a closely-matched 75 ohm input for extremely low return loss in cable systems, and high spurious response rejection with the 3rd order IM intercept measured at $+29 \, \text{dB}.^{(1)}$

Additionally, the high common-gate forward transconductance of the U310 (20,000 μ mho maximum) makes it possible to design an amplifier with wide bandwidth and good gain, since the figure of merit (g_m/C) of the FET is 2.35 x 10⁹ typical – higher than any other known UHF Junction FET. The amplifier circuit in Figure 1 is designed for 225 MHz center frequency, 1 dB bandwidth of 50 MHz, low input VSWK in a 75-ohm system, and 24 dB gain. Three stages of U310 FETE are used, in a straight forward design.

Typical parameters are taken from the U310 data sheer:

Forward Transconductance		14 mmhos
Input Admittance at 225 MHz	gigs	13 mmhos
	bigs	4 mmhos
Output Admittance at 225 MHz	gogs	0.27 mmhos
	b _{ogs}	2.6 mmhos

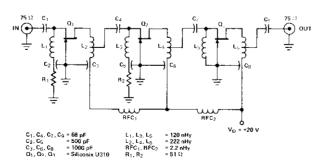


Figure 1

Input match is simplified because the FET input (real) impedance is nearly 77 ohms. A coupling capacitor is used in the amplifier, rather than a tuned circuit, and thus the values may be determined:

$$R_{s}\sqrt{\frac{R_{ig}}{R_{s}} - 1} = X_{s} = 75\sqrt{\frac{77}{75} - 1} = 11.85 \Omega$$

$$C_{s} = \frac{1}{\omega X_{s}} \approx 68 \text{ pF}$$

$$X\mathbf{p} = \frac{R_{s}R_{p}}{X_{s}} = \frac{75 \text{ x } 77}{11.85} = 488 \Omega$$

$$C_{P} = 1.47 \text{ pF}$$

$$C_{T} = 4.4 \text{ pF} (C_{T} = C_{P} + C_{igs})$$

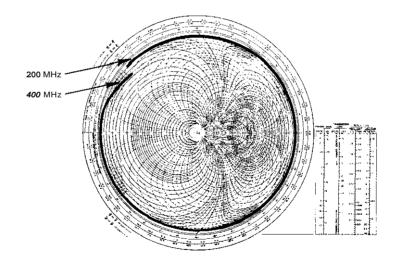
$$L_{s} = \frac{1}{\omega^{2}C_{T}} = 120 \text{ nHy}$$

Three cascaded synchronous single-tuned stages are used to **achieve** the desired gain, and thus stage bandwidth and Q are determined:(2)

$$\frac{B/W}{f} = \frac{1}{Q} \sqrt{\left(\frac{E_0}{E}\right)^2 - 1}$$

where:

$$\frac{\text{Bandwidth of 3 Stages}^{(3)}}{\text{Bandwidth of 1 Stage}} = \sqrt{2^{1/3}} - 1$$


and

$$\left(\frac{E_0}{E}\right) = 1.122 (1 \text{ dB})$$

giving

Figure 2 shows that the measured input VSWR in the 75ohm system indicated an available bandwidth considerably greater than that required for the amplifier design criteria. B/W(1 dB) = 98 MHz

Q = 1.15

Blanchard Chsn (Inverted Circle Impedance Chart) Figure 2

With a FET output impedance of 3700 ohms shunted by approximately 2.5 pF (with 0.5 pF allowed for stray capacitance), the total parallel resistance necessary to obtain the desired bandwidth is:

$$Q = \omega CR_t$$

$$R_t = \frac{1.15}{1.415 \times 10^9 \times 2.5 \times 10^{-12}} = 330 \,\Omega$$

The tank circuit impedance appearing in shunt with the FET, is therefore calculated to be about 365 ohms. From this, the inductance is:

$$L = \frac{R}{\omega Q} = \frac{365}{\omega 1.15} = 222 \text{ nHy}$$

with a turns ratio of 2.3:1 to match to 75 ohms. Since each stage is designed for 75 ohm input and output, three cascaded stages complete the amplifier design.

The computed voltage gain per stage is approximately $g_{fs} R_{t/n}$ or 2.22 (7 dB). Measured gain for all three stages is 24 dB. The U310 FET in the final stage operates at I_{DSS} , and thus accounts for the higher measured gain. The gain/bandwidth response of the amplifier is shown in Figure 3.

The 3rd order spurious intercept point is plotted graphically in Figure 4.⁽⁴⁾ The importance of a high intercept point becomes apparent in a crowded high-level area of the spectrum where signal purity is of utmost priority.

REFERENCES

- "Don't Guess the Spurious Level," ELECTRONIC DESIGN, February 1, 1967, pp. 70-73.
- (2) REFERENCE DATA FOR RADIO ENGINEERS, 4th ed., p. 242, ITT Corp., New York, N.Y.
- (3) Valley and Wallman, VACUUM TUBE AMPLI-FIERS, MIT Rnd. Lab. Series, Vol. 18, pp. 172-173.

Figure 4

(4) Op. cit., "Don't Guess the Spurious Level."

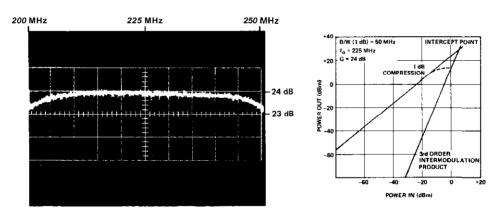


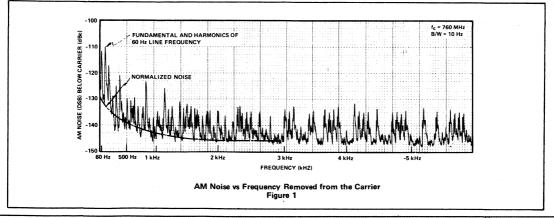
Figure 3

DESIGN IDEA

High-Performance FETs In Low-Noise VHF Oscillators

Ed Oxner

Most communications receivers are limited in their dynamic range because of saturation in the early stages of RF amplifiers or mixers. However, some receiver designs are available which overcome this limitation by using parametric amplifiers and converters to achieve spectacular increases in dynamic range. There still remain certain limitations in dynamic range which cannot be remedied by parametric devices. In these cases, the problem lies in the heterodyning of noise sidebands which appear on the receiver local oscillator, entering the passband through strong interfering signals.

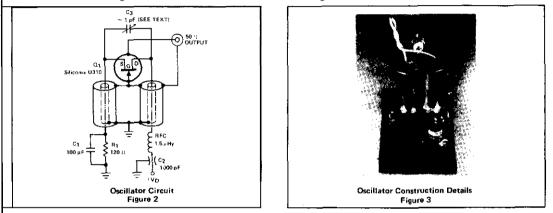

Common Types of Noise

Although noise is often difficult to characterize because of its random or nondeterministic nature, it is possible to differentiate various forms of noise through an understanding of the Gaussian distribution of noise about an RF carrier. Briefly stated, the three major forms of noise are (1) low-frequency noise (1/f); (2) thermal noise (4kTRB); and "shot" noise (i_n) . Further, these types of noise can be identified from their relationship to the main RF carrier. For example, low-frequency noise predominates very close to the carrier, and falls to insignificant levels when it is displaced more than 250 Hz from the carrier. Low-frequency noise is associated with surface contamination and other irregularities, such as gate current leakage.

Thermal noise plays the predominant role in the region from the 1/f decay point to approximately 20 kHz from the carrier, and is commonly associated with equivalent resistance where the rms value of noise voltage of the Thevenin generator becomes the classic (4kTBR)^{1/2}. Noise appearing beyond the 20 kHz is known as Shot noise, and is directly attributable to noise current. Because of the typically uniform distribution of shot noise it is also referred to as "white noise."

Origins of Oscillator AM Noise

Although an oscillator tends to produce a wave that is nearly sinusoidal, there are other fluctuations present. When the energy in the frequency domain close to the carrier is observed on a spectrum analyzer, noise appears as a modulation phenomenon. This observation would be greatly enhanced if the noise contribution was coherent and consisted of discrete sideband frequencies. Without a doubt, the major component of AM noise is the contribution of low-frequency noise (1/f). Both thermal and shot noise are relatively insignificant segments of AM noise when compared to 1/f. A graph of AM noise vs frequency removed is shown in Figure 1.



6

Design of a VHF Oscillator

The important design considerations for best oscillator performance include using a FET with high forward transconductance, maintaining the gate at ground potential, and keeping a high unloaded tank Q. The high transconductance is necessary to reduce the effective noise resistance. The grounded gate reduces the noise voltage contributions to those of the gate leakage current and the series gate resistance. The high tank circuit Q selves as an effective filter fur the sideband noise energy.

The oscillator design is somewhat extraordinary for a circuit employing a FET. The FET chosen was the Siliconix U310, which has a forward transconductance value higher than 18 mmho at zero bias (VGS = 0). The oscillator basically consists of two coaxial resonators, one for the FET source and the other for the drain. Oscillation isestablished by capacity coupling between the two resonators; output coupling is derived from the magnetic coupling which exists at the open ends of the resonators. Optimum resonator Q in achieved by designing the coaxial resonators for a characteristic impedance of 75 ohms. The oscillator circuit is show in Figure 2, and construction details are shown in Figure 3

The technique to establish the proper resonator length for the desired frequency is somewhat tricky, and requires a first-order approximation of the anticipated capacitive fringing which derives from both the FET and the feedback network. A short circuited coaxial transmission line is theoretically resonant at a quarter-wave length of the resonating frequency, except for the effects of fringe field capacitisnce. At resonance

$$\mathbf{X}_{\mathbf{L}} = \mathbf{X}_{\mathbf{C}} \tag{1}$$

If the fringe capacitance is known, X_C can be calculated as

$$X_{\rm C} = \frac{1}{\omega \rm C}.$$
 (2)

From this, the resonator length can be determined as

$$X_{\rm C} = \tan 01 \tag{3}$$

In making these calculations, a Smith chart is invaluable, as is shown in the following illustration:

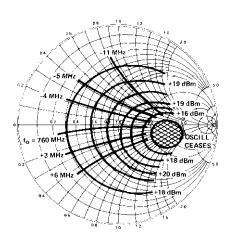
Frequency of oscillation	= 760 MHz
FET bigs (from data sheet)	= 16 mmho
Capacitance from bigs	C _{gs} = 3.4 pF
Allow for stray capacitance	
the feedback network	$\underline{C_s} = 1.5 \text{ pF}$
	4.9 pF

Thus $X_{C} = j 0.57$ (normalized to 75 Ω)

Locate 0.57 on the Smith chart. The wavelength toward the load = 0.081λ . Since a wavelength at 760 MHz is 39.5 cm., then the resonator cavity length is simply

39.5 x 0.081 = 3.20 cm (1.26 inches)

(4)


In the completed FET coaxial oscillator circuit, the output **coupling loop** consists of a single turn made fast to the cavity by the BNC flange and the FET itself. Although the feedback network appears somewhat crude, it can be replaced by a small trimmer capacitor for similar operation.

Conclusions

Measured performance of the oscillator is shown in Table IA: AM noise measurements in a 10 Hz bandwidth are shown in Table IB.

Oscillator N		L E IA Performa	ance @ 2	5°C	TABLE IB AM Noise Measurement Frequency Displaced From Carrier	dBc
VDD(V)	+10	+15	+20	+25	50 Hz	-130
ID(mA)	15	16.2	18.2	21	500 Hz	-139
Pout (dBm)	+6.6	+15.2	+18.3	+20	1 kHz	-143.5
Frequency (MHz)	725	742.7	754.7	762.9	5 kHz	-146

The **Reike** diagram shown in Figure 4 makes possible the accurate prediction of expected power output and operating frequency with the oscillator feeding directly into a mismatched load. Expansion of the **Reike** diagram to show frequency us transmission line length (in degrees) will allow prediction of the long-line effect on oscillator stability.

Reike Diagram Figure 4

·

.

.

TECHNICAL ARTICLE FET Biasing

James Sherwin

INTRODUCTION

Siliconix

Engineers often design FET amplifiers that **are** unnecessarily sensitive to device characteristics because they may not be familiar with proper biasing methods.

One way to obtain consistent circuit performance in spite of wide device variations is to use a combination of **constant**voltage and self biasing. The combined circuit configuration turns out to be the same as that generally used with bipolar transistors, but its operation and design are quite different.

Three Basic Circuits

Let's **examine** three basic common-source circuits that can be used to establish a FET's operating point (**Q-point**) and then see how two of **them** can be combined to provide greatly improved performance. The three basic biasing schemes are:

- Constant-voltage bias, which is most useful for rf and video amplifiers employing small dc drain resistors.
- Constant-current bias, which is best suited to lowdrift dc amplifier applications such as source followers and source-coupled differential pairs.
- Self bias (also called source bias or automatic bias), which is a somewhat universal scheme, particularly valuable for ac amplifiers.

The Qpoint established by the intersection of the load line and the $V_{GS} = -0.4$ V output characteristic of Figure I provides a convenient starting point for the circuit compariscn: The load line shows that a drain supply voltage, V_{DD} , of 30 V and a drain resistance, R_D , of 39K Ω are being used.

The quiescent drain-to-source voltage, V_{DSQ} , is 15 V, allowing large signal excursions at the drain. Maximum input signal variations of ± 0.2 V will produce output voltage swings of ± 7.0 V – a voltage gain of 35.

Reprinted From ELECTRONIC DESIGN, May 24, 1970, June 7.1970.

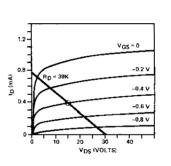


Figure 1. A large dynamic range is provided by the operating point at $V_{DSQ} = 15 \text{ V}$. I_{DQ} = 0.39 mA and $V_{GSQ} = -0.4 \text{ V}$. The output characteristics are for a typical 2N4339.

The constant-voltage bias circuit (Figure 2) is analyzed by superimposing a line for V_{GG} = constant on the transfer characteristic of the FET.

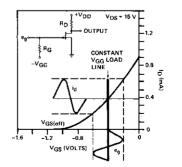


Figure 2. constant-voltage bias is maintained by the V_{GG} supply as shown on this typical 2N4339 transfer curve. Input signal e_g moves the load line horizontally.

The transfer characteristic is a plot of $I_D vs V_{GS}$ for constant V_{DS} . Since the curve doesn't change much with changes in V_{DS} , it is quite useful in establishing operating bias points. In fact, it is probably more useful than the output characteristics because its curvature clearly warns of the distortion to be expected with large input signals. Furthermore, when a bias load line is superimposed, allowable signal excursions become evident and input voltage, gate-source signal voltage, and output signal current calculations may be made graphically.

The heavy vertical line at $V_{GS} = -0.4$ V establishes the Qpoint of Figure 1. No voltage is dropped across resistor R_G because the gate current is essentially zero. R_G serves mainly to isolate the input signal from the V_{GG} supply.

Excursions of the input signal, e_g , combine in series with V_{GS} so that they add algebraically to the fixed value of -0.4 V. The effect of signal variation is to instantaneously shift the bias line horizontally without changing its slope. The shifting **bias line** then develops the output signal current as shown in Figure 2.

The constant-current bias approach (Figure 3) for establishing the Q-point of Figure 1 requires a 0.39-mA current source. For an ideal constant-current generator, input signal excursions merely shift the bias line horizontally and produce no resultant gate-source voltage excursion. This bias technique is therefore limited to source followers, source-coupled differential amplifiers, and to ac amplifiers where the source terminal is bypassed to ground at the signal frequency.

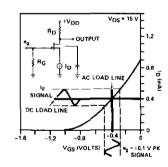


Figure 3. Constant-current bias fixer the output voltage for any R_D . Hence, input signals cannot affect the output unless the current source is bypassed.

If an ac ground is provided by a bypass capacitor across the current source, a vertical ac bias line will be established. Input signal variations will then translate the ac bias line horizontally, and signal development will proceed as with constant-voltage biasing (Figure 3).

Should the bypass capacitor not provide a sufficiently low reactance at the **signal** frequency, the ac bias line will not be vertical. It will still intersect the transfer **curve** at the Q-point but with a slope equal to $-(1/X_C) = -\omega C$ (Figure 4).

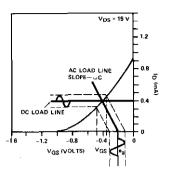


Figure 4. Partial bypassing of the current source (Figure 3) lowers the circuit gain by tilting the ac load line from the vertical. The capacitor drop subtracts from $e_{\rm g}$.

This will lower the gain of the amplifier because of signal degeneration at the source. The input signal, e_g , is reduced by the drop across the capacitor:

$$\mathbf{v}_{gs} = \mathbf{e}_g - \mathbf{v}_S = \mathbf{e}_g - \mathbf{i}_S \mathbf{X}_C \tag{1}$$

It is clear from Figure 4 that the input signal only shifts the operating point by an amount equal to V_{gs} , the effective input signal. As the signal frequency is decreased, the slope of the ac bias line decreases, causing the effective input signal to approach zero.

Self Bias Needs No Extra Supply

The self-bias circuit (Figure 5) establishes the Q-point by applying the voltage dropped across the source resistor, R_S , to the gate. Since no voltage is dropped across R_S when $I_D = 0$, the self-bias load line passes through the origin. Its slope is given by $-1/R_S$. Therefore, the desired Q-point is established by setting $-1/R_S \approx I_{DO}/V_{GSO}$.

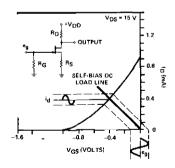
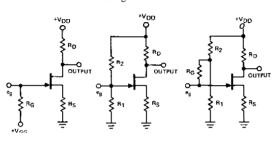



Figure 5. The self-bias load line passes through the origin with a slope $-1/R_S.$ Bypassing R_S will steepen the slope and increase the gain of the circuit.

Signal development is the same as in the case of the partially bypassed constant-current scheme except that the load line is a dc bias line. Signal degeneration is described by Equation 1 with X_C replaced by R_S . The ac gain of the circuit can be increased by shunting R_S with a bypass capacitor, as in the constant-current case. The ac load line then passes through the Q-point with a slope – ($1/Z_S$) = –($\omega C t 1/R_S$).

The circuit is biased automatically at the desired Q-point, requires no extra power supply and provides a degree of current stabilization not possible with constant-voltage biasing.

A fourth biasing method, combining the advantages of constant-current biasing and self biasing, is obtained by combining the constant-voltage circuit with the self-bias circuit (Figure 6). A principal advantage of this configuration is that an approximation may be made to constant-current bias without any additional power supply. The bias load line may be drawn through the selected Q-point and given any desired slope by properly choosing V_{GG}. (The bias line intercepts the V_{GS} axis at V_{GG}.) The larger V_{GG} is made, the larger R_S will be and the better will be the approximation to constant-current biasing.

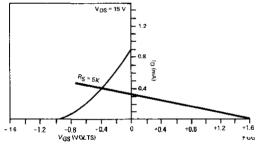


Figure 6. All three combination-bias circuits are equivalent. They add constant-voltage biasing to the self-bias circuit to establish a reasonably flat load line without sacrificing dynamic range.

All three circuits in Figure 6 are equivalent. Circuit 6(a) requires an extra power supply. The need for an additional supply is avoided in 6(b) by deriving V_{GG} from the drain supply. R_1 and R_2 are simply a voltage divider. To maintain the high input impedance of the FET, R_1 and R_2 must bath be very large.

Very large resistors cannot always be found in the exact ratio needed to derive the desired V_{GG} in every circuit application. Circuit 6(c) overcomes this problem by placing a large R_G between the center point of the divider and the gate. This allows R_1 and R_2 to be small, without lowering the input impedance.

One point of caution worth remembering is that as V_{GG} is increased, V_S increases, and V_{DS} decreases. Therefore with low V_{DD} , there may be a significant decrease in the allowable output voltage swing.

Biasing for Device Variations

The value of the combination-bias technique becomes apparent when one considers the normal production spread of device characteristics. The problem is illustrated in Figure 7

VGS≖0

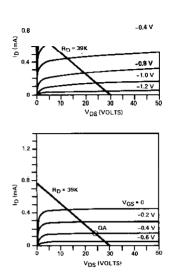


Figure 7. The wide variations in device performance shown by this pair of output characteristics make clear the disadvantages of constant-voltage biasing.

where two limiting sets of output characteristics, representing the actual min-max spread of the Siliconix 2N4339, are presented. Limiting characteristics like these are not normally available. Even if they were, however, they'd be of little help in establishing operating points suitable for all devices with output characteristics lying between the two extremes. The problem is much more easily approached by using the set of limiting transfer characteristics of Figure 8.

(See next page.)

Attempting to establish suitable constant-voltage bias conditions for a production spread of devices is practical only for circuits with very small values of dc drain resistance – for example, circuits with inductive loads. As the constant-voltage bias plot of Figure 8 reveals, constant gate bias causes a significant difference in operating I_{DQ} for the extreme limit devices. At $V_{GS} = -0.4$ V, the range of I_{DQ} is 0.13 to 0.69 mA, and V_{DSQ} for a given R_D will vary greatly for most resistance-loaded circuits. For the example of Figure 1, with $R_D = 39K \ \Omega$ and $V_{DD} = 30 \ V$, V_{DSO} varies from near saturation (5 V) to 25 V.

An apparently excellent method of biasing is the constantcurrent method of Figure 3. Biasing in this manner fixes the operating drain current for all devices and sets V_{DSQ} to V_{DD} - $I_{DQ}R_L$ for any device in the production spread. V_{GS} automatically finds a value to set the appropriate I_{DQ} = constant for all devices. For the constant-current bias plot of Figure 8, with I_{DQ} = 0.39 mA, V_{GS} would range from -0.11 to -0.67 V.

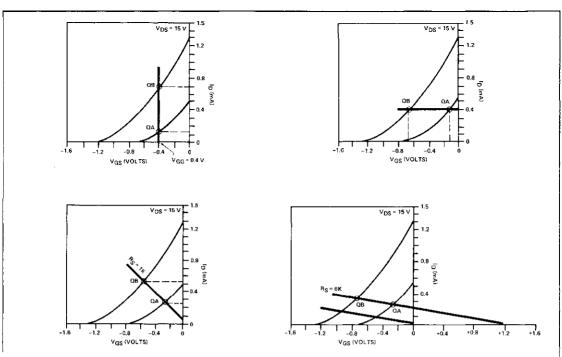


Figure 8 The advantages of combination biasing, when one is working with a spread of device characteristics, are made obvious by plotting the load liner for the various types of biasing on a pair of limiting transfer curves.

Output characteristics are not needed as long as I_{DQ} is chosen to be below the minimum I_{DSS} . With $R_D = 39K \Omega$ and $V_{DD} = 30 V$, V_{DSO} is 14.8 V for all devices.

The disadvantages of the constant-current method are that it allows nu signal to be developed unless the current source is bypassed and, as we shall see, it lacks the flexibility to provide constant gain despite variations in the forward transconductance, g_{fs} , of the devices.

The self-bias scheme is a reasonable choice for single-ended dc amplifiers and for ac amplifiers. In unbypassed or dc circuit;, some compromise must be made between the gain loss due to current feedback degeneration and the advantage of current stabilization achieved with high R_S.

An appropriate choice of I_{DQ} limits can be made by using the pair of limiting transfer curves. For example, for $R_S = IK \Omega$, the load line shown on the self-bias curve of Figure 8 is established. The maximum I_D is 0.52 mA, and the minimum I_D is 0.24 mA. The operating range of V_{DSQ} may be calculated for any value of V_{DD} and R_D . Clearly, for $R_D = 39K \Omega$. the maximum-limit device (device B) would operate with $V_{DSQ} = 9.8$ V and the minimum-limit device (device A) would operate with $V_{DSQ} = 20.6$ V. This results in fairly satisfactory operation for all devices. However, such a variation in I_{DQ} imposes severe limitations on the circuit design.

A better approach is illustrated by the combination-bias curve of Figure 8 with V_{GG} = 1.2 V. The range of I_{DQ} for

this bias condition is 0.25 mA to 0.32 mA. A similar minimum difference in I_{DQ} could be achieved with $R_S = 6K \Omega$ and $V_{GG} = 0$, (a self-bias condition) but the operating points would be pushed toward the toe of the transfer characteristics and allowable signal input would be reduced.

The upper load line allows $v_{gs} = \pm 1.8 \text{ V}$ (limited hy I_{DSSA}), while the lower line allows a v_{gs} of only $\pm 0.7 \text{ V}$ (limited by $V_{GS(off)A}$). (The subscript letters A and B refer to the minimum and maximum devices, respectively.) The combination circuit allows almost ideal operation over the full production spread of devices. Even with $R_D = 62K \Omega$, the V_{DSQ} would range only between 10 and 15 V.

For this circuit, R_D should be chosen to allow the largest output signal swing for I_{DQ} midway between the two extremes of 0.25 and 0.32 mA; namely 0.285 mA. Setting the voltage drop across R_D at one-half of (V_{DD} - $2V_{GS(off)typ}$) or 14 V, yields R_D = (14 V/0.285 mA) = 49K Ω .

It is helpful, in any design, to know the effect of temperature variations on the transfer curves and transconductance characteristics. Ideally, minimum and maximum transfer characteristics would be plotted at three temperatures: above, below, and at room temperature. Then the design would take all types of variation into account.

TA70-2

Minimize the Gain Variations

Leaving R_S unbypassed helps reduce gain variations from device to device by providing degenerative current feedback. However, this method far minimizing gain variations is only effective when a substantial amount of gain is sacrificed.

A better approach is to use the combination-bias technique with the bias point selected from the transfer and transconductance curves (Figure 9).

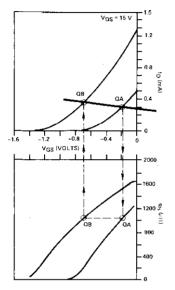


Figure 9. Gain variations are minimized when the load line is designed to intersect the pair of limiting transfer curves (top) af points of equal g_{fs} (bottom).

As Figure 9 shows, it is possible to find an R_S and a V_{GG} that will set I_{DQA} and I_{DQB} to values so that g_{fsQ} will be the same for both devices. The g_{fsQ} of all intermediate devices will be approximately equal to the limiting values. Thus, a constant, or nearly constant, stage gain is obtained even with a bypass capacitor.

The design procedure is as follows:

- Step I. Select a desired I_{DQA} below I_{DSSA}. A good value, allowing for temperature variations. is 60% of I_{DSSA}. This will allow for decreasing I_{DSS} due to temperature variation and for reasonable signal excursions in load current.
- Step 2. Enter the transfer curves st $I_{DQA} \cong$ 0.6 I_{DSSA} (0.3 mA) to find V_{GSQA} . This $V_{GSQA} \cong 0.2$ V for the 2N4339.
- Step 3 Drop vertically at V_{GSQA} to the minimum limit transconductance curve to find g_{fsQA} . The value as read from the plot is approximately 1000 μ mho.
- Step 4. Travel across the g_{fs} plot to the maximum curve to find V_{GSQB} at the same value of g_{fs} . This is $V_{GSQB} \cong -0.7$ V.

- Step 5. Travel vertically up to the maximum limit transfer curve to find I_{DQB} at V_{GSQB} . This is $I_{DQB} \cong 0.36$ mA.
- Step 6. Construct an R_S bias line through points Q_A and Q_B on the transfer curves. The slope of the line is $1/R_S$, and the intercept with the V_{GS} axis is the required V_{GG} .

As Figure 9 demonstrates, it may be somewhat inconvenient to perform Step 6 graphically. An algebraic solution can then be employed instead. The source resistance is given by

$$R_{S} = (V_{GSQA} - V_{GSQB})/(I_{DQB} - I_{DQA})$$
(2)

and the bias voltage is

$$V_{GG} = R_S I_{DQB} + V_{GSQB}$$
(3)

Care should be taken to maintain the proper algebraic signs in Equations 2 and 3. (For n-channel FETs, V_{GS} is negative and l_D is positive. For p-channel units, the signs arc reversed.)

If the transconductance curves of Figure 9 are not available, g_{fS} can be determined by simply measuring the slope of the transfer curve at the desired operating point. Just place a straight-edge tangent to the **curve** at the Q-point and note the points at which it intercepts the I_D and V_{GS} axes. The slope and g_{fS} are given by:

slope =
$$g_{fs} = I_D(intercept) / - V_{GS}(intercept)$$
 (4)

In designing a constant-gain circuit, simply set the straightedge tangent to the transfer curve of device A at point Q_A and slide it, without changing its slope, until it is tangent to the curve of device B. The tangency point is Q_B .

Designing Without Output Curves

Although the transfer characteristic has been seen to be extremely valuable in designing a bias circuit, it cannot be used to graphically establish V_{DSQ} . However, if a set of output curves is not available, V_{DSQ} can be determined or selected from the transfer curve by using the following procedure:

- Step 3. Set V_{DSQ} approximately midway between V_{DD} and 2 x $V_{GS(off)}$; lower if large output signals will not be handled.
- Step 4. Select R_D to give the appropriate V_{DSQ} . The formula is:

 $R_D = [(V_{DD} - V_{DSQ})/0.5 I_{DQA} + I_{DQB}] - R_S$

Sicosy

In the example of Figure 8, this procedure would have yielded V_{DSQ} = (30-3)/2 = 13.5 V and R_D = (30 - 13.5)/0.5 (0.52 t 0.24) mA - 1K Ω = 42.5K Ω .

Step 5. Check to ensure that with this R_D , device B is not in a saturated condition $-V_{DQB} =$ $V_{DD} - I_{DBQ} R_D \ge 2V_{GS(off)} + R_S I_{DBQ}$. Decrease R_D if this condition is not met.

An alternate method, that selects R_D to provide a specified voltage gain, follows Steps 1 and 2 above and then proceeds as follows:

- Step 3. Determine required stage gain, A, and set $R_D = A_v/g_{fsO}$.
- Step 4. Calculate V_{DSQ} to ensure that the criteria of Step 2 are not violated:

 $V_{\text{DSQ}} = V_{\text{DD}} - (R_{\text{D}} + R_{\text{S}}) I_{\text{DQ}}$ (6)

Step 5. If necessary, change 1_{DQ}, V_{DD}, A_v and/or R_D to obtain an optimum compromise.

FETSOURCE-FOLLOWER CIRCUITS

Too little knowledge of biasing methods for FET amplifiers sometimes keeps engineers from making maximum use of FETs in circuit designs. The common-drain amplifier, or source follower, is a particularly valuable configuration; its high input impedance and low output impedance make it very useful for impedance transformations between FETs and bipolar transistors. By considering 10 circuits, which represent virutally every source-follower configuration, the designer can obtain consistent circuit performance despite wide device variations.

There are two basic connections for source followers: with and without gate feedback. Each connection comes in several variations (Figure 10). Circuits 10(a) through 10(e) have no gate feedback; their input impedances, therefore, are equal to R_G . Circuits 10(f) through 10(k) employ feedback to their gates to increase the input impedance above R_G .

Before getting into the details of bias-circuit design, note several general observations that can be made about the circuits of Figure 10:

- Circuits a, d and f can accept only positive and small negative signals, because these circuits have their source resistors connected to ground. The other circuits can handle large positive and negative signals limited only by the available supply voltages and device breakdown voltage.
- Circuits c, d, e, h, j, and k employ current sources to improve drain-current (I_D) stability and increase gain.
- Circuits d, e and k employ FETs as current sources. In circuit d, Q₂ must have a lower cut-off voltage, V_{GS(off)}, and a lower zero gate-voltage drain current, I_{DSS}, than Q₁.
- Circuits e, g, h and k employ a source resistor, R_S, which may be selected to set the quiescent output voltage equal to zero.
- Circuits e and k use matched FETs. R_S is selected to set I_D near the specified low-drift operating current. The input-output offset is zero.

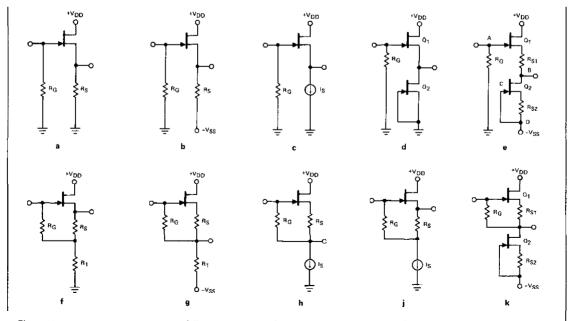


Figure 10. Virtually every practical source-follower configuration is represented in this collection of ten circuits. The configurations in the fop row do not employ gate feedback: the corresponding ones in the bottom row do.

Biasing Without Feedback is Simple

The no-feedback circuits of Figure 10 (circuits 10(a) through 10(e) use simple biasing techniques (see the earlier article). Circuit 10(a) is a self-bias configuration; the voltage drop across R_S biases the gate (whichdraws essentially zero current) through resistor R_G . Since no gate-to-source voltage, V_{GS} , can be developed when $I_D = 0$, the self-biasload line passes through the origin (Figure 11). For the 2N4339 FET, whose limiting transfer characteristics are used throughout this article, the quiescent drain current is seen to lie between about 0.25 and 0.55 mA when a IK Ω source resistor is used. The quiescent output voltage lies between +0.25 and +0.55 V.

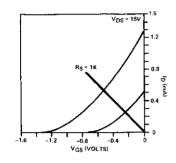


Figure 11. Self biasing (Figure 10a) user the voltage dropped across the source resistor, R_S to bias the gate. The load line passes through the origin and has a slope of $-1/R_S$.

Circuit 10(b) is another example of source-resistor biasing with a $-V_{SS}$ supply added. The advantage aver circuit 10(a) is that the signal voltage can swing negative to approximately $-V_{SS}$. Two bias lines are shown in Figure 12, one for $V_{SS} = -15$ V and the other $V_{SS} = -1.6$ V. For the first case, the quiescent output voltage lies between +0.18 and t0.74 V. For the second, it lies between +0.3 and +0.82 V.

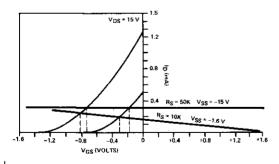


Figure 12. Adding a V_{SS} supply to the self-bias circuit (Figure 10b) allows if to handle large negative signals. The load line's intercept with the V_{GS}-axis is at V_{GS} = -V_{SS}. Bias lines are shown for V_{SS} = -15 V and V_{SS} = -1.6 V.

The bias load line for circuit 10(c) is just a horizontal h e (I_D = constant). The quiescent output voltage is between +0.15 and 0.7 V for I_D = 0.3 mA.

Circuit 10(d) is similar to 10(c) except that the $V_{GS} = 0$ output characteristic of FET Q_2 is used as a current source. As seen in Figure 13, Q_2 does not supply constant current when its V_{DS} gets very small. This technique should therefore be used only to bias FETs whore $V_{GS(off)}$ is significantly higher than the equivalent $V_{GS(off)}$ of the current-source PET diode.



Figure 13. FET Ω_2 doesn't behave like an ideal current source when its VDS gets very small (Figure 10d). Therefore, Ω_1 should haves significantly larger V_{GS}(off) than Ω_2 does.

A pair of matched FETs is used in the circuit of Figure 10(e), one as a source follower and the other as a current source. The operating drain current (I_{DQ}) is set by R_{S2} , as indicated by the load line of Figure 14. The drain current may be anywhere from 0.20 to 0.42 mA, as shown by the limiting transfer characteristic intercepts; however, $V_{GS1} = V_{GS2}$ because the FETs are matched.

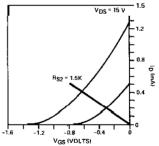


Figure 14. This load line is set by R_{S2} and Q_2 which acts as a current source (Figure 10e). If its components are properly matched, the circuit will have zero or near-zero offset.

Since $I_{D1} = I_{D2}$ and $V_{GS1} = V_{GS2}$, choosing $R_{S1} = R_{S2}$ will ensure that the voltage from point A to B equals the voltage point from point C to D (Figure 10(e)). This source follower, therefore, exhibits zero or near-zero offset. If the FETs are temperature-matched at the operating I_D , the source follower will exhibit zero or near-zero temperature drift.

Biasing With Feedback Increases Zin

Each of the feedback-type source followers (Figure 10(f) through 10(k)) is biased by a method similar to that used with the nonfeedback circuit above it. However, in each case, R_G is returned to a paint in the source circuit that provides almost unity feedback to the lower end of R_G . If R_S is chosen so that R_G is returned to zero dc volts (except in circuit 10(f), then the input/output offset is zero. R_1 is usually much larger than R_S .

TA70-

Circuit 10(f) is useful principally for ac-coupled circuits. R_S is usually much less than R_1 to provide near-unity feedback. The bias load line is set by R_S (Figure 15). The output load line, however is determined by the sum of R_S t R_1 . The feedback voltage V_{FB} , measured at the junction of R_S and R_1 , is determined by the intercept of the $R_S + R_1$ load line with the V_{GS} axis. The quiescent output voltage is $V_{FB} - V_{GS}$.

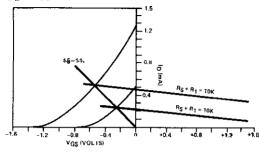


Figure 15. The bias load line is set by R_S but the output load line is determined by $R_S + R_1$ when gate feedback is employed (Figure 10f). The feedback V_{fb} is determined by the intercept of the $R_S + R_1$ load line and the V_{GS} axis.

In the circuit of Figure 10(g), R_S can be trimmed to provide zero offset. As the curves show (Figure 16), R_S will be between 670 ohms and 2.5K Ω . R_S is much less than R_1 . The source load line intercepts the V_{GS} axis at $V_{SS} = -V_{GG} = -15$ V.

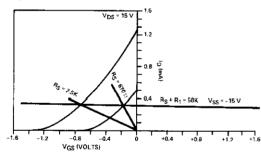


Figure 16. Rs can be trimmed to provide zero offset at some point between 670 ohms and 2.5K Ω (Figure 10g). The source load line intercepts the VGS axis at VSS = VGG = +15 V. Note that this load line is not perfectly flat. It has a slope of -1/50K, because the currant source is not perfect; it has s finite impedance.

Circuit 10(h) is almost the same as 10(g); the difference is that resistor R_1 is replaced by a current source. Since an ideal current source has infinite impedance, the bias curve of

circuit 1(h) differs from that of Figure 10(g) (Figure 16) in that the load line is perfectly flat. In Figure 16 the load line is almost, but not quite, flat; it has a slope of -1/50k.

Circuit 10(j) is similar to 10(h) except that the output is taken from the top of R_S to reduce the output impedance. R_S must be trimmed if the circuit is to work at all properly.

In Figure 17, the constant-current load line represents a 0.3-mA current source, and the effect of a 1K Ω source resistor is **shown**. The **offset** voltage is seen to lie between 0.2 and 0.75 V. The intercept of the R_S load line and the V_{GS} axis sets the voltage at the junction of R_S and the **cur**rent source (V_{FB}). For R_S = 1K Ω , V_{FB} will be between -0.1 V and +0.45 V. Since V_{FB} appears at the gate, it must be zero if the dc input impedance of the circuit is to be preserved.

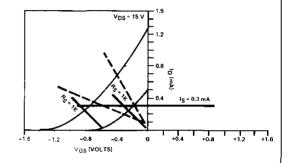


Figure 17. If R_S is not trimmed so that the load line passes through the origin. a voltage will appear at the gate causing a reduction in dc input impedance. The incremental input impedance will not be affected.

This can be done by trimming R_S , as shown dashed in Figure 17. The biasing then becomes the same as for circuit 10(h).

Biasing for circuit 10(k) is identical to that far circuit 10(e) (Figure 14) except that feedback is added to raise the input impedance...

REFERENCES

- Sherwin, J.S., "How, Why and Where to Use FETs," Electronic Design, May 17, 1966, p. 94.
- (2) Sherwin, J.S., "Knowing the Cause Helps to Cure Distortion in FET Amplifiers," *Electronics*, Dec. 12, 1966, pp. 99-105.

APPLICATION NOTE

Don't Trade Off Analog Switch Specs. VMOS – A Solution to High Speed, High Current, Low Resistance Analog Switches

Walt Heinzer

INTRODUCTION

Siliconix

For analog switches, Vertical MOS (VMOS) transistors give you a nearly ideal combination of characteristics-without the tradeoffs required by the more conventional components. These devices are now available from two American suppliers: Siliconix and its licensee, Semtech.

Unlike the commonly used N-channel JFETs. VMOS chips that handle mare than a few hundred milliamps are also small enough for economical production. Smaller chips lead to lower inherent capacitances. Moreover, the basic VMOS structure provides lower ON resistance.

Some analog switches use relays, bipolar transistors and even triacs. Although electromechanical relays offer the lowest ON resistance initially, their ON resistance will vary with current and degrade with use. Also, relays suffer from mechanical limitations.

Bipolar transistors require base-drive current that causes offset in the switched analog signal. Triacs are only suitable fur switching raw power; for analog switching, they introduce too much offset and non-linearity although they easily handle high power.

VMOS Offers High Performance

VMOS devices aren't limited by any of these disadvantages. They can switch 10 W, linearly, **aver** a wide dynamic range. In addition, VMOS input impedance is **very** high, and only input voltage (no current) turns the transistors OFF or ON. And since the drain-to-source channel is purely resistive while ON, you get low distortion.

VMOS transistors in analog switches offer several more advantages, including

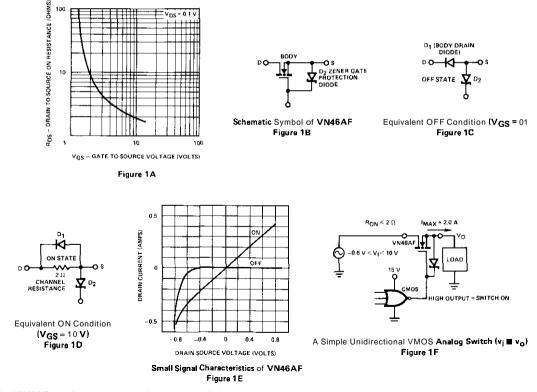
- 1.8 Ω ON resistance, which results in low insertion loss in low-impedance systems
- 20 A DC current capability-paralleling three VMOS devices increases this capability to 6.0 A and unlike other devices. paralleled VMOS do not require powerwasting ballast resistors
- 3 A peak current, which makes VMOS super for driving capacitive lines and quickly charging and discharging capacitors in high speed A/D converters, sample and hold circuits, and integrators
- 60 dB isolation at 10 MHz and 500 nA DC leakage in the OFF state
- Enhancement-mode operation with a 0.8 to 2.0 V threshold, which gives VMOS direct compatibility with CMOS and TTL. And the logic gates aren't loaded by the VMOS.
- Linear ON resistance, which results in low total harmonic and intermodulation distortion

What's more, all these capabilities come. in a TO-202AA package.

6

Siliconix

Examine the output characteristics of a low resistance VMOS device like the Siliconix VN46AF. A look at the transfer characteristic in Figure 1A reveals that varying the gate-to-source voltage from 0 to +10 V switches the VN46AF from OFF to ON-with a 3 Ω ON resistance. From the curve you can see that the device turns OFF well before zero volts, which eases interfacing with logic.


In the VN46AF schematic in Figure 1B, note that the body and source are internally connected. Figure 1C and 1D, respectively, show simplified models of the VN46AF's OFF and ON states. Diode D₁ is the body-to-drain PN junction. When the VN46AF is OFF, its drain current vs drain-tosource voltage characteristics (Figure 1E) is essentially the curve for D₁.

The breakdown for D_1 is 40 V, and the diode exhibits forward conduction for drain-to-source potential as low as 0.6 V. This diode therefore constrains the analog voltage, which a simple switch (one VMOS transistor) can handle, to between -0.6 and t 40 V. When the VN46AF is ON, a 2 Ω resistance is in parallel with D₁. Maximum continuous current in either direction is 2.0 A, even though the diode is forward-biased for currents over 0.5 A.

One VMOS Device Makes an Analog Gate

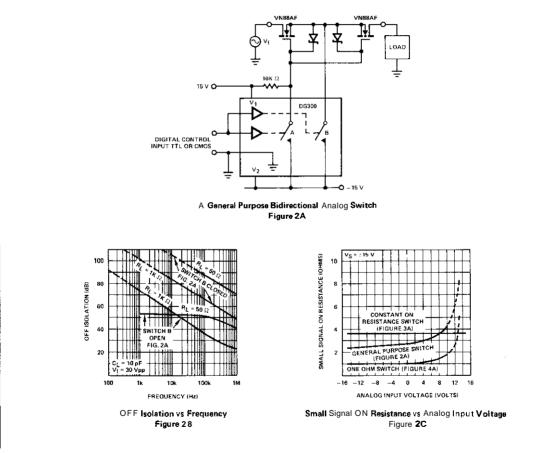
VMOS characteristics are put to good use in the analog switch of Figure IF. In the ON state, the gate of the VN46AF is positive with respect to the source. In the OFF state, the gate-to-source voltage is zero. The 2.0 A capability and the 3 Ω ON resistance of the VMOS transistor can be fully exploited in this circuit. The input signal, however, is restricted to positive voltages and must always be greater than the output voltage. Otherwise, OFF isolation is impaired.

Both ON and OFF switching takes 200 ns; charge feedthrough during the ON-to-OFF transition is 80 pC with a 50 Ω load. Charge transfer is, of course, especially important in sample and hold systems. For example, 80 pC into 0.01 μ F causes an offset of 8 mV.

The VN46AF switches from OFF to ON with a 3 Ω drain-to-source resistance, when its gate-to-source potential swings from 0 to +10 V. The device turns OFF at about 1 VIAI. Soma VMOS transistors (B) carry an an-board zener diode that protects the gate-to-source junction. A VMOS transistor is equivalent to two diodn in the OFF ruts (C), when the gate-to-source voltage is less than the threshold value. The equivalent diode, D1 is shunted by 3 Ω when the VMOS device is ON (D), with the gate-to-source potential at +10 V. The small signal drainto-mums voltage vs current characteristic (E) is essentially determined by the body-to-drain diode. The input is restricted to positive voltages in the single-VMOS analog gate (F).

Figure 1

In Series, They Switch Both Polarities


To increase the switch's dynamic range, connect two VN88AF's in series (Figure 2A). In the ON state, both halves of the DG300 analog switch are open, so the gates of both VN88AF's are pulled to ± 15 V through the 10K Ω resistor. The ON resistance of this analog switch is twice as high as the drain-to-source resistance of a single VN88AF. The maximum current that this two-transistor switch can handle is the same as that for a single-transistor switch (2.0 A).

The switch is turned OFF by shorting the gates to the negative supply, thereby reducing the gate-to-source voltage to less than the threshold of 0.8 V. The second section of the DG300 adds 30 dB OFF isolation by shunting the signal-leakage path (through both sources) to the negative

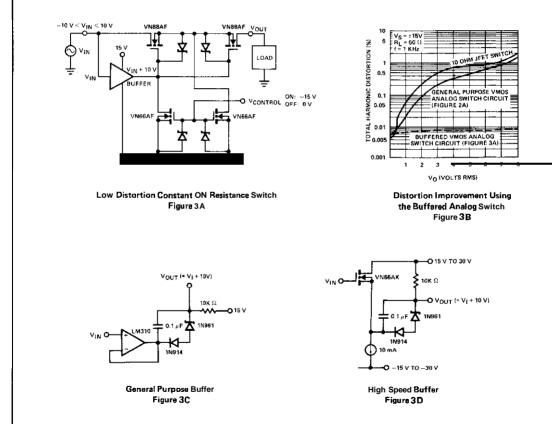
supply. OFF-isolation curves (Figure ZB) show that the DG300 raises the circuit's isolation and that decreasing the load resistance increases isolation.

Since the two transistors are back-to-back, one body-todrain diode is always reverse-biased. This eliminates the OFF-state problem caused by forward-biasing the diode.

Since the bidirectional switch's gate drive is referenced to a fixed supply, its ON resistance varies with the input analog voltage (Figure 2C). This variation introduces distortion when you're driving low-impedance loads such as speakers or transmission lines. For constant ON resistance, use the circuit in Figure **3A**.

ON resistance is doubled in the two-VMOS switch (A), but inputs of both polarities are handled without losing isolation. The DG300 analog gate (B) raises the circuit's isolation by 30 dB. Decreasing load resistance also improves isolation. With the gate drive referenced to a fixed voltage (C), the ON resistance varies undesirably with the input, and generates distortion, especially with law impedance loads like speakers and transmission lines.

Figure 2


Bootstrapping Adds Linearity

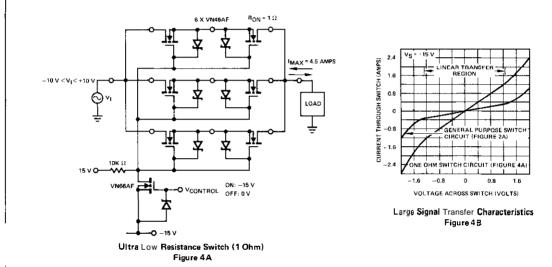
In the ON state, a bootstrap voltage that tracks the input drives the gates of the VN88AF's. This bootstrapping keeps the VMOS's gate-to-sourcevoltage constant and independent of the input signal. So, changes in the input-signal level do not modulate the ON resistance of the switch.

The buffer circuit reduces the computed total harmonic distortion from 1.5% to 0.005%, for 8 Vrms at 1 kHz into 50 12 (Figure 3B). The papular 10 12 DG186 JFET analog switch generates a higher total harmonic distortion of about 2%.

The two buffer circuits shown in Figures 3C and 3D isolate the input signal and employ a zener diode to provide a fixed gate-to-source voltage. The general-purpose buffer of Figure 3C has a flat frequency response of up to 300 kHz and accepts inputs ranging between ± 15 V. The buffer of Figure 3D, VN66AK source follower, has its frequency response extended to 50 MHz and, when operated from ± 30 V supplies, increases the signal range to ± 30 V.

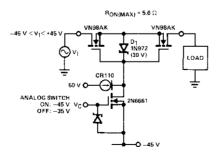
The VN66AK and VN88AF do not have on-board zener diodes like the VN66AF transistor. At the expense of the diode protection, the VN66AK and VN88AF gain lower capacitance from gate-to-source and reduced DC "see through" from driver to signal path. Bootstrapping the switch's gate circuits with a buffer permits the switch to operate with low distortion even as the signal amplitude comes close to the positive supply voltage.

Bootstrapping the gate and input cuts distortion by holding the ON resistance constant (A). The buffered bootstrap circuit (A) distorts less than either a JFET or a nonbootstrapped VMOS analog switch (B). A general-purpose buffer (C) using the LM310 op amp is suitable for low speed switches, but when you need a fast analog switch, use the VN66AK buffer (D). In addition to speed, this buffer gives you increased isolation.


Figure 3

VMOS Devices Parallel Without Padding

Paralleling devices lowers the total ON resistance. For example, three paralleled legs, each with two VN46AF's in series, make a 1 Ω switch (Figure 4A). Because VMOS devices are immune to current hogging, no ballast or balance resistors are needed. Negative tempcos, a VMOS feature, cause these devices to draw less current as they heat up. As a result, excess current is automatically shared by paralleled VMOS devices.


Paralleling three VN46AF's not only decreases ON resistance, but also increases the current capability to 6.0 A and extends the linear range of the large signal transfer characteristic from 0.3 to 1.2 A (Figure 4B).

The voltage range of the basic analog switch can also be increased. Simply use a higher breakdown VMOS unit (Figure 5). The VN98AK's have a 90 V breakdown, which allows up to ± 40 V of voltage swing capability. However, these higher voltage devices do carry a penalty the ON resistance is higher: 3.5 12 vs 3.0 Ω for the VN46AF. Zener diode D₁ limits the gate-to-source potential to 30 V, and thereby prevents a possible gate-oxide rupture. Diode CRI 10 limits the current from the 50 V gate-bias supply.

No ballast or balance resistors are needed when VMOS devices are paralleled (A) because negative tempcos immunize them from current hogging. Paralleling extends the linear range from 0.3 to 1.2A (B) as it decreases the ON resistance of the analog switch to 1 n and increases its current-handling capability to 4.5 A.

Figure 4

90 V Peak to Pssk Analog Switch

You pay for 90 V breakdown in the VN98AK with 3.0 Ω ON resistance, which allows swings of \pm 40 V. The zener diode limits the gats to-source potentials to 30 V.

Figure 5

For the Ultimate in Switching Speed

The high power RF switch shown in Figure 6A performs very well up to 50 MHz-with tom-ON and turn-OFF times of 50 ns. At 10 MHz, isolation is 60 dB with a 20 V pk-pk input signal. Insertion loss is only 1 dB with a 50 Ω load (Figure 6B). The gain vs input power curve in Figure 6C shows that the RF analog switch using VN66AK's can put 1 W into a 50 Ω load at 14 MHz. The two-tone, third order, intermodulation product curves show a 42 dB

intercept point with i dB of gain compression at 25 dBm input power.

Turn-ON time of the switch (Figure 6D) is determined by the passive pull-up resistor combined with the capacitance at the gates of the VN66AK's. The negative turn-OFF transient is caused by charge-coupling to the output through the output capacitance of the VN66AK.

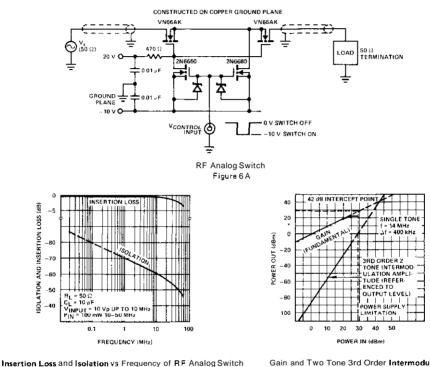
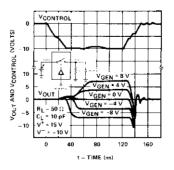
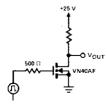



Figure 68

Gain and Two Tone 3rd Order Intermodulation Figure 6C

Switching Response of RF Switch info 50 Ohm Load Figure 6D

The VN66AK switches high power at RF (A). At 10 MHz. a 20 V pk-pk signal is attenuated by 60 dB and the insertion loss is only 1 dB info 50 Ω and 10 pF (B). Third-order intermodulation distortion is given by the 42 dB intercept point, and 1 dB gain compression occurs at 25 dBm input tor 14 MHz (C). The negative turn-OFF transient (D) is caused by charge-coupling to the output through the output capacitance of the VN66AK.


APPLICATION NOTE Driving VMOS Power FETs

INTRODUCTION

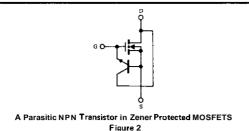
H Siliconix

Using VMOS Power FETs you can achieve performance never before possible—if you drive them properly. This article describes circuits and suggests design methods to be used in order to obtain the performance from VMOS that you need.

When designing with VMOS there are some facts that must be kept in mind in order to get optimum results with every circuit. The first fact is that VMOS is a very high frequency device. The cut-off frequency fur all VMOS FETs is several hundred megahertz. Most power designers are not used to designing with extremely high frequency devices because with bipolars the frequency response decreases as the Dower increases. The very high frequency response of VMOS is the basis for many of its advantages but it must be kept in mind while designing. With improper circuit design VMOS can oscillate. This oscillation can be eliminated, though, by exercising two simple precautions. First, minimize lead and trace lengths whenever possible, especially leads associated with the gate of the FET. If it is not possible to have short leads to the gate place a ferrite bead on the gate lead or a small resistor in series with the gate. The ferrite bead or the resistor must be very close-to the gate. Second, because of the extremely high input impedance of VMOS (in excess of $10^{12} \Omega$) drive circuits may be designed which are very high impedance. Under these conditions it is possible for the gate node to get enough positive feedback from the gateto-drain capacitance or just from stray fields in the circuit to cause oscillation. This must be kept in mind in the design of the circuit.

A Typical VMOS Switching Circuit Figure 1 Dave Hoffman January 1979

When driving VMOS it must be kept in mind that the dynamic input impedance is very different than the static input impedance. The input of a VMOS device is capacitive. The DC input impedance is very high but the AC input impedance varies with frequency. Because of this effect. the rise and fall times of VMOS are dependent on the output impedance of the circuit driving it. The first approximation of the rise or fall time is simply

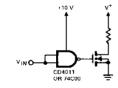

$$t_{\rm r} \, {\rm or} \, t_{\rm f} = 2.2 \cdot {\rm R}_{\rm OUT} \cdot {\rm C}_{\rm iss} \tag{1}$$

where R_{OUT} is the output impedance of the drive circuit. This equation is valid only if the drain load resistance is much larger than R_{OUT} . Knowing this fact, along with the fact that there is no storage or delay time with VMOS, it is very easy to calculate the rise and fall times and set them to any desired value. For example, if you wanted to calculate the 10% to 90% rise or fall time for the circuit shown in Figure 1 using Equation 1 the rise time is equal to:

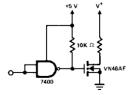
 $t = (2.2)(500)(50 \times 10^{-12}) = 55$ nsec

The dynamic input characteristics of VMOS are covered very thoroughly in Siliconix' application note AN79-3.1

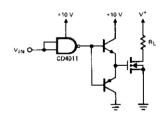
A last thing to remember when you are driving VMOS is the input protection zener diode. When putting a positive voltage on the gate with respect to the source, the maximum voltage rating of the zener diode should not be exceeded. It is more important, however, that you do not forward bias the zener diode by putting a negative voltage on the gate while the VMOS is operating in a circuit. The reason for thii is most easily explained by referring to Figure 2. As can be seen in the figure, the zener diode is actually the base-emitter junction of a bipolar transistor. If a negative voltage greater than 0.6 V is placed on the gate, the base-emitter junction of the bipolar will be forward biased which will turn on the bipolar transistor. When the bipolar is turned on, cur. rent will flow from the drain through the bipolar and out the gate. This operating condition is very likely to be destructive. If negative voltages must be placed on the gate it is recommended that you use a VMOS part that does not have an input zener diode. Non-zenered equivalents are available for most of Siliconix' zenered devices.

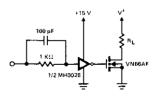


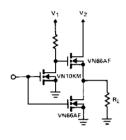
Of all operating modes the common-source configuration is the simplest to drive. Because of the high input impedance of VMOS it can be driven directly from many logic families. When driving from a CMOS gate as shown in Figure 3, rise and fall times of about 60 nsec can he expected due to the limited source and sink currents available from the CMOS gate ² If faster rise and fall times are required there are several ways to obtain them. One easy way is if there are extra gates in the package that is driving the VMOS simply put the extra gates in parallel with the gate already being used. The additional current available will cut down the rise and fall times. If no extra gates are available an emitter-follower buffer can be used as shown in Figure 4. With this circuit the current available to the VMOS will he the output current of the CMOS multiplied by the beta of the bipolars. Because the bipolars are operating as emitter-followers there will still be no storage time to worry about and the frequency limit will be determined by either the CMOS gate or the f_{τ} of the bipolars, whichever comes first.


VMOS can also be driven directly from TTL gates. Because the output voltage of TTL is limited, the output current of the VMOS will be limited to some value less than its maximum rated current. The output current that can be **ex**pected can be determined from the transfer characteristic of the device being used. For example, if a TTL gate is driving VN46AF the minimum output current of the VMOS will be approximately 250 mA. This value was obtained by using the minimum output voltage of the TTL gate (3.2 V) for a high level output and referring to the transfer characteristic for the VNAZ which is the VMOS geometry used in the VN46AF. If more than 250 mA is required the output of a standard VMOS gate can be pulled up to the 5 V rail as shown in Figure 5. With a full 5 V on the gate the VN46AF will typically sink 600 mA.

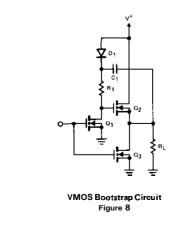

For very high speeds a capacitive driver such as the MH0026 can be used as shown in Figure 6. With this drive configuration typical rise and fall times are less than 10 nsec.


When operated in the common-drain mode VMOS is somewhat more difficult to drive than when in the common-source mode. Because of VMOS' high input impedance, though, it is considerably easier to drive commondrain than a bipolar would be when operated common collector. Common-drain circuits can be used when the load needs to be connected to ground, when an active pull-up and pull-down is required (totem pole circuit), or in bridge type circuits. For the purpose of this discussion all examples will be shown with totem pole circuits.

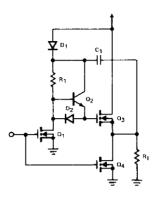

Driving VMOS with a CMOS Gats Figure 3

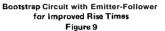


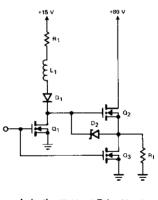
An Emitter-Follower Circuit Will Decrease VMOS Rise and Fall Times Figure 4

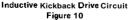


The difficulty with common-drain circuits occurs because an the voltage across the load increases the enhancement voltage of the common-drain device decreases. Referring to Figure 7, as the voltage across R_1 approaches V_2 the enhancement voltage for the upper VN66AF decreases. If V_1 is not greater than V_2 then the voltage across RL can never reach V2. For this reason whenever a common-drain circuit is used it is always necessary to have or to generate a voltage that is greater than the voltage which is desired to be impressed across the load. The amount the voltage has to be above the desired drain voltage is dependent upon the current the VMOS must source and can be determined from the transfer characteristic of the VMOS being used. If no supply voltage is available other than the one the load is to be pulled up to, one can be generated. This can be done very easily because of the very low drive current requirements of the VMOS.

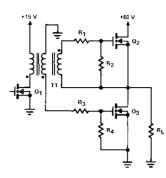



VMOS in Totem-Pole Configuration Figure 7


One way of generating the required gate voltage is the boutstrap circuit shown in Figure 8. In the circuit, when Q_1 and Q_3 are on, C_1 is charged to the supply rail through D_1 . When Q_1 and Q_3 are turned off, the gate voltage on Q_2 goes to the supply mil. As the source of Q_2 begins to pull R_L up, the voltage across C_1 will be maintained, therefore, the gate-tosource voltage of Q_2 will be maintained. The size of C_1 should be large enough so that when it charges the gate capacitance of Q_2 a minimum voltage ' equal to the required enhancement voltage of Q_2 will be



maintained across it. A good rule of thumb is to make C_1 equal to ten times the C_{iss} of the FET. Figure 9 shows the same bootstrap circuit with some added components to improve the rise and fall times. In the circuit Q_2 acts as an emitter-follower to increase the peak gate current to Q3. D_2 will be forward biased when Q_1 turns on and serves as a low impedance path to discharge the pate of Q3.



Another method to drive a common-drain VMOS FET is shown in Figure 10. Rather than charging a capacitor and then feeding a signal back from the output as was done in the bootstrap circuit, this circuit stores the required charge in an inductor. When Q_1 is turned off a flyback voltage is generated across the inductor. This voltage is used to maintain an enhancement voltage equal to the voltage of zener diode D_2 across the VMOS FET. Once the Q_2 has been fully turned on and the voltage on R_L in at the rail a negligible amount of energy is required to keep Q_2 on. Q_2 will remain on until Q_1 is turned on. or until the leakage currents of Q_1 and D_2 discharge the gate capacitance of Q_2 .

AN79-4

Another method that can be used to drive a commondrain VMOS is transformer drive. A transformer drive circuit is shown in Figure 11. In this circuit the transformer is used in the flyback mode when turning on the upper FET. R_1 and R_3 are used to suppress ringing and R_2

Transformer Drive Circuit for VMOS Figure 11 and R4 are used to assist with turn-off of the FETs. When driving with a transformer, care must be taken to design the transformer so that the secondary inductance in con. junction with the input capacitance of the FET does not create ringing of oscillation problems.

SUMMARY

The very high input impedances of VMOS Power FETs greatly simplify the drive requirements as compared to bipolars. The input drive requirements for both commonsource and commondrain configurations were discussed in detail. With common-source circuits the requirement that needs to be kept in mind is the rise and fall time required. With common-drain circuits a method of maintaining an adequate enhancement voltage must be considered in addition to required rise and fall time requirements.

REFERENCES

- 1. A. Evans, D. Hoffman, "Dynamic Input Characteristics of a VMOS Power Switch" AN79-3.
- D. Hoffman, L. Schaeffer, "VMOS A Breakthrough in Power MOSFET Technology" AN76-3

Publications Index

Document				
Number	Title			
Application Notes				
AN70-1	FET Cascode Circuits Reduce Feedback Capacitance			
* AN70-2	FETs for Video Amplifiers			
AN71-1	A High Resolution CMRR Test Method			
'AN721	FETs in Balanced Mixers			
* AN72-2	FETs as Analog Switches			
AN73-1	FETs as Voltage Controlled Resistors			
AN73-2	IC Multiplexer Increases Analog Switching Speeds			
AN73-3	Switching High-Frequency Signals With FET			
AN73-4	Junction FETs In Active Double-Balanced Mixers			
AN73-5	Driver Circuits for the JFET Analog Switch			
* AN73-6	Function/Application of the L144 Programmable Micro-Power Triple Op Amp			
• AN73-7	An Introduction to FETs			
* AN74-1	Function/Application of the LD110/LD111 3% Digit A/D Converter Set			
AN74-2	Analog Switches in Sample and Hod Circuits			
AN74-3	Designing Junction FET Input Op Amps			
* AN74-4	Audio-Frequency Noise Characteristics of Junction FETs			
	CMOS Analog Switches-A Powerful Design Tool			
	Measuring High Frequency S-Parameters an the Dual Gate MOSFET			
* AN76-2	Function/Application Problem Solving with the DF215 Dual Set Point Timer			
* AN76-3	VMOS—A Breakthrough in Power MOSFET Technology			
* AN76-4	Function/Application of the LD110/LD114 31/2 Digit A/D Converter Set			
* AN76-5	Function/Application of the LD130 ± 3 Digit converter			
* AN76-6	DG300 Series Analog Switch Applications			
* AN76-7	Function/Application of the L161 Industry's First Programmable Micropower Comparator			
* AN77-1	Function/Application of the LD120/LD121 4½ Digit A/D Converter Set in Measurement Systems			
* AN77-2	Don't Trade off Analog Switch Specs. VMOS-A Solution to High Speed, High Current. Law Resistance Analog Switches			
* AN77-3	Function/Application of the LD120/LD121 4% Digit AD Converter Interfaced with an 8080A Microprocessor			
• AN77-4	Function/Application of the DF331/DF332 New Companding Converter Chip Set			
* AN79-1	A 500 KHz switching Inverter for 12 V Systems			
* AN79-2	Stepping Motor Controller			
* AN79-3	Dynamic Input Characteristics of VMOS Power Switch			
* AN79-4	Driving VMOS Power FETs			

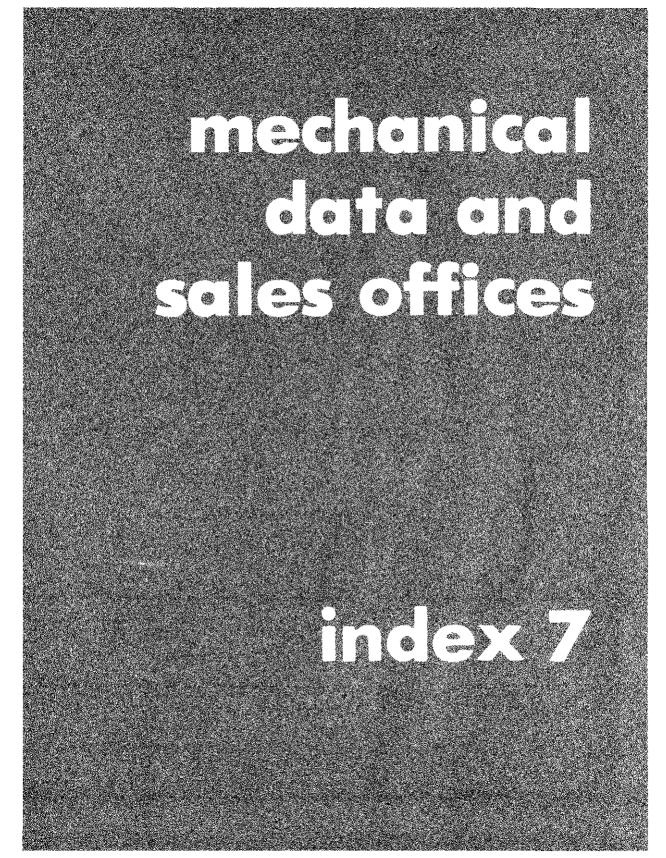
	Document Number	Title
		Design Aids
	' DA74 1	Design Aid of the LD110/LD111 3½ Digit DVM Demonstrator Board
	• DA76 1	The VMOS Power FET Audio Amplifier
	* DA76-2	Design Aid of the LD130 ±3 Digit DVM Demonstrator Board
1	DA76-3	Design Aid of the LD130 \pm 3 Digit Auto-Ranging DMM
ļ	* DA77-1	Design Aid to Build a Portable 0 to 99.9 °F LCD Display Thermometer using the DF411
1	• DA77 2	Design Aid of the LD120/LD121 41/2 Digit DVM
	* DA77-3	Design A d to Build a Smoke Alarm Demonstrator with the SM110 Detector IC
	* DA77-4	Design Aid to Build a Piezoelectric Smoke Alarm Demonstrator with the SM110 Detector IC
1	• DA77-5	Design Aid far a Versatile Darkroom Timer using the DF215
	* DA78-1	Design A d to Build a CODEC Evaluation Demonstrator with the DF331/DF332/DF334
	• DA78-2	Considerations for the Filtering of Analog Signals in DF331/DF332/DF334 CODEC Converter Applications
	DA78-4	Desgn Aid to Build a Smoke Detector with the SM110 IC

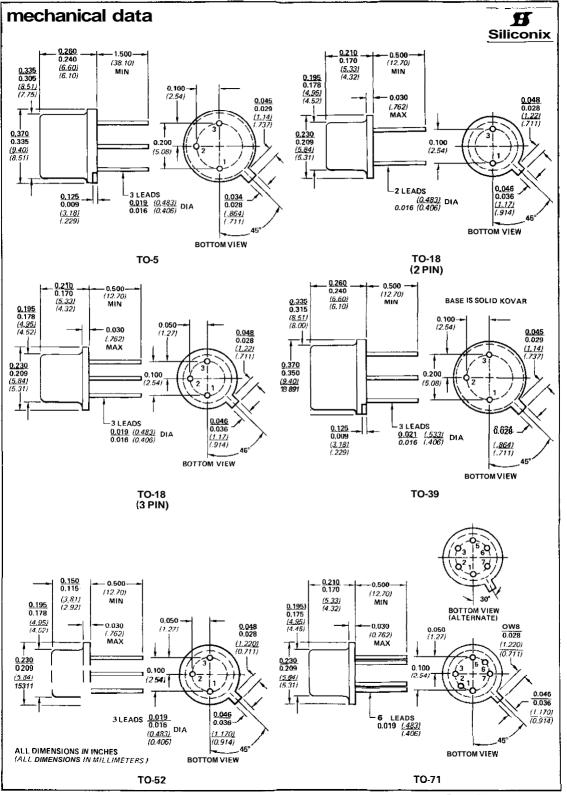
Design Ideas

DI71-1	The FET Constant Current Source
DI71-4	Wideband Mixer Preamplifer Using FETs
DI71-5	A FET Frequency Doubler
DI71-6	Using FETs in Selective VHF Amplifiers
D171-8	Using JFETs in Ultra Wideband UHF Amplifiers
* DI71-9	Wideband UHF Amplifier with High Performance FETS
* DI73-2*	High Performance FETs in Low Nose VHF Oscillators

Technical Articles

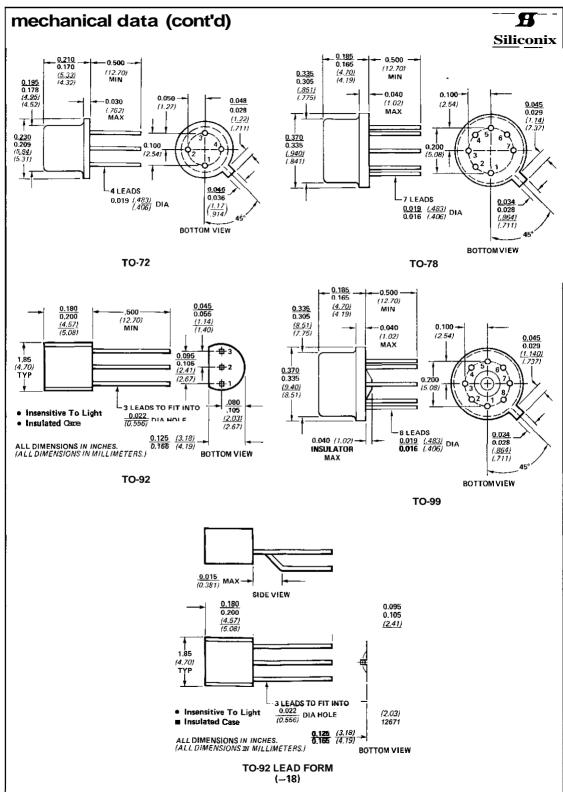
TA70-1	High Frequency Junction FET Characterisation and Application
• TA70-2	FET Biasing
* TA73-1	Multiplexer Adds Efficiency To 32 Channel Telephone System
• TA73-2	Designing with Monolithic FET Switches
* TA76-1	VMOS Power FETs in your next Broadband Driver
* TA76-2	A New Technology: Application of VMOS Power FETs for High Frequency Communications
* TA78-1	Designing with CODECs: Know your A's and #S
• TA78-2	Designing a VMOS 250 Watt Off-Line Inverter


Document Number	Title	Document Number Title
	<section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header>	


glossary of terms and abbreviations

- 1. Upper care letters indicate DC voltages and currents.
- 2 Lower care letters indicate AC voltages and currents.
- 3. Subscripts can refer to the terminals used in the measurements, i.e., $V_G \approx$ Gate Voltage; α simply help define the symbol, i.e., $t_f =$ Fall Time. $t_r =$ Rise Time.
- 4. Triple subscripts are used for terminal references only. The first subscript is the object terminal. The second subscript is the common terminal. The third giver the condition of the remaining terminal(s). S = Short, 0 = open and X = neither open nor short [refer to the test conditions]. Example: BVGSS = Breakdown Voltage from gate to source with the drain shorted to the source.

bfg	= Common-Gate Forward Susceptance	C _{rss}	= Common-Source Reverse Transfer Capaci- tance
b _{fs}	= Common-Source Forward Susceptance	C	
b _{igs}	= Common-Gate Input Susceptance	C _{sb}	= Source-Body Capacitance
b _{iss}	= Common-Source Input Susceptance	C _{sd}	= Source-Drain Capacitance
b _{ogs}	= Common-Gate Output Surceptance	C _{sgo}	= Source-Gate Capacitance
b _{oss}	= Common-Source Output Susceptance	D	=Drain
b _{rg}	= Common-Gate Reverse Susceptance	ēN	 Equivalent Short Circuit Input Noise Volt- age
b _{rs}	= Common-Source Reverse Susceptance	f _m	= Figure of Merit
₿V _{DGO}	= Drain-Gate Breakdown Voltage	G	= Gate
BVDSS	= Drain-Source Breakdown Voltage	9fg	= Common-Gate Forward Transconductance
BVSDX	= Drain-Source Breakdown Voltage	9fs	= Common-Source Forward Transconduc- tance
BVG1G2	= Gate-Gate Breakdown Voltage	g _{fso}	= Common-Source Forward Transconduc-
BVG1SS	= Gate 1 to Source Breakdown Voltage		tance $@V_{GS} = 0$
^{B∨} G2SS	=Gate 2 to Source Breakdown Voltage	9fs1/9fs2	= Common-Source Forward Transconduc- tance Ratio
BVGBS	= Gate-Body Breakdown Voltage	9ig	= Common-Gate Input Conductance
BVGSS	= Gate-SourceBreakdown Voltage	9is	= Common-Source Input Conductance
BVSDS	= Source-Drain Breakdown Voltage	9og	= Common- Gate Output Conductance
BVSGO	= Source-Gate Breakdown Voltage	9os	= Common-Source Output Conductance
Cdb	= Drain-Body Capacitance	g _{oss}	= Common Source Output Conductance @ $V_{GS} = 0$
C _{dgo}	= Drain-Gate Capacitance	9os1-9os2	= Differential Output Conductance
Cgb	= Gate-Body Capacitance	Gpg	= Common-Gate Power Gain
Cgd	= Gate-Drain Capacitance	Gps	= Cammon-Source Power Gain
Cgs	= Gate- Source Capacitance	¹ D(off)	= Drain Cutoff Current
Ciss	= Common-Source Input Capacitance	ID(on)	= Drain ON Current
Coss	= Common-Source Output Capacitance	IDGO	= Drain-Gate Leakage


	glossary of ter	ms and	abbreviations (cont'd)
IDSS	=Saturation Drain Current	^t d(on)	= Turn-On Delay Time
IDSS1/IDSS	2 = Saturation Drain Current Ratio	^t f	= Fall Time
۱ <u>۴</u>	= Forward Current	т _ј	=Junction Temperature
۱ _G	= Gate Operating Current	'off	= Turn-Off Time
IG1G2	=Gate to Gate Leakage Current	'on	= Turn-On Time
G1 ⁻ G2	= Differential Gate Operating Currents	ТΙ	≂ Lead Temperature
IGBS	= Gate to Body Leakage Current	tr	= Rise Time
IG(f)	=Gate Forward Current	T _{stg}	=Storage Temperature
IGSS	=Gats Reverse Current	v _B	= Body Voltage
¹ G1SS	=Gate 1 to Source Leakage Current	V _{BB}	= Body Supply Voltage
IG2SS	= Gate 2 to Source Leakage Current	VĐ	= Drain Voltage
IG1SSR	=Gate 1 to Source Reverse Leakage Current	V _{DD}	= Drain Supply Voltage
IG2SSR	=Gate 2 to Source Reverse Leakage Current	V _{DS(on)}	= Drain-Source ON Voltage
 'n	■ Equivalent Open-Circuit Noise Current	VG	=Gate Voltage
 Гр	≃ Pinch-Off Current	V _{GG}	=Gate Supply Voltage
NF	= Noise Figure	V _{GS}	= Gate-Source Voltage
	= Noise Figure	VGS1-VGS2	= Differential Gate-Source Voltage
PD	= Continuous Power Dissipation	∆V _{GS}	= Differential Gate-Source Voltage
Pov	=Peak Operating Voltage	∆ V _{gs1} -V _{gs2}	= Differential Gate-Source Voltage Change
rds(on)	= Drain-Source ON Resistance	ΔΤ	with Temperature
rDS(on)	=Static Drain-Source ON Resistance	V _{GS(f)}	= Gate-Source Forward Voltage
Re (Y _{fg})	= Common-Gate Forward Transconductance	V _{GS(th)}	=Gate Threshold Voltage
Re (Y _{fs})	≈ Common-Source Forward Transconduc-	VGS(off)	= Gate Source Cutoff Voltage
Re (Y _{ig})	tance = Common-Gate Input Conductance	VG1S(off)	= Gate 1 to Source Cutoff Voltage
Re (Y _{is})	= Common-Gate Output Conductance	V _{G2S} (off)	= Gate 2 to Source Cutoff Voltage
Re (Y _{os})	= Common-Source Output Conductance	vs	= Source Voltage
Re (Y _{rg})	= Common-Gate Reverse Transconductance	v _{ss}	= Source Supply Voltage
Re (Y _{rs})	 Common-Source Reverse Transconduc- tance 	Zd	
rGS	= Common-Source Input Resistance	–a Z _k	=Dynamic Impedance = Knee AC Impedance
S	= Source	-κ θι	- Current Temperature Coefficient
td	≈ Delay Time	θ _J _A	= Junction to Ambient Thermal Resistance
td(off)	= Turn-Off Delay Time	θ _{J-C}	= Junction to Care Thermal Resistance

Siliconix

7

Siliconix

© 1979 Siliconix incorporated

iales Offices

Sales Offices

U.S. Sales Offices

Eastern

Siliconix incorporated 401 Broad Hollow Rd., Rt. 140 Expwy Plaza, Suite L120 Melvilla, L. J., NY 11747 (516)654-8474 Twx: 510-224-6508

Siliconix incorporated 395 Totten Pond Rd Waltham, MA 02154 (617)890-7180 Twx: 710-324-1783

Central

Siliconix incorporated 1040 S. Milwaukee, Suite 117 Wheeling, PL 60090 (312)541-0131 Twx: 910-576-2778

Siliconix incorporated 4615 W. Streetsboro Rd Richtleid, OH 44286 (216)659-9305 Twx: 810-427-2978

Northwestern

Siliconix incorporated 2201 Laurelwood Rd Santa Clara, CA 95054 (408)988-8060 Twx: 910-338-0227

Southwestern

Siliconix incorporated 1525 E. 17th St., Suite L Santa Ana, CA 92701 (714)547-4474 Twx: 910-595-2643

Sales Representatives

ALABAMA, Huntsville (35803) Rep. Inc 11527 S. Memoriai Pkwy (205)8819270 Twx 610-726-2102

ARIZONA, Phoenix (85034) Ouatra Incorporated 2430 South 20th Street (602) 252-5865 Twx: 910-951 1369

CALIFORNIA, Cupertino (95014) Costar Incorporated 10080 North Wolfe Rd. Sune SW3 175 (408)446-9339 Twx 910 338-0206

CALIFORNIA, trvine (92714) Cettec Company 18009 Sky Park Cr. Suite B (714)557-5021 Twx: 910-595-2512

CALIFORNIA, San Diego (92111) Getec Company 7867 Convoy Cf Suite 312 (714529-7961 Twx 910-3351512

CALIFORNIA, Sherman Oaks (91403) Celter Company 15335 Morrison Street Suite 215 (213783-0620 Twx 910-495-2008

COLORADO, Littleton (80122) Quatra Incorporated 2275 E Arapahoe Road Suite 217 (303) 795-3187 Twx 910-935-0874

CONNECT(CUT, Ridgefield (06877) Phoenix Sales Company 399 Main Street (203)438 5964 Twx: 710-467-0562

FLORIDA, Ft. Leuderdaie (33318) Perroti Associates P Ø Box 1999 (305)792211 Twx 510.055.9831

FLORIDA, Largo (33540) Perrolt Associates 511 Rosery Rd NE (813)585-3327 Twx. 810-866-0328 FLORIDA, Orlando (32807) Perroll Associates 1607 Forsyth Road (305) 275 1132 Twx 810-650-0103

GEORGIA, Tucker (30084) Rep Inc 1944 Cooledge Road (404)9384358

ILLINOIS, Northfield (60093) Electron Marketing Corp 500 Centrel Ave (312)4417477 Twx 910-992-0686

(NDIANA, Carmel (46032) Rich Electronic Marketing 599 Industrial Dr. (317)844-8462 Twx 810-260-2533

INDIANA, Fort Wayne (45804) Rich Electronic Marketing 3448 W Taylor SL (219)432-5553 Twx 810-332-1404

KANSAS, Shawnee Mission (66212) BC Electronics P O 60x 12485 (913)888-680 Twx 310.749-6414

KANSAS, Wichita (67207) BC Electronics

5405 E Kellogg Suite 14 (316)684-0051

MARYLAND, Baltimore (21227) 5255Pairt Drogreit, Inc. (301)247-4646 Twx: 710-236-9011

MASSACHUSETTS, Reading (01867) Kanan Associates 100 Main Street (617)944.8484 Twx 710-393-6552

MICHIGAN, Bioomfield Hills (48013) Enco Marketing Inc 860 West Long Lake Road (313)642-0203 Twx: 810-232-1669 MINNESOTA, Minneepolis (55435) KELCOM 5200 West 73rd Street (512835-6242 Twx 910-576-2740

MISSOURI, Hazelwood (63042) BC Electronics 300 Broakes Dr. Suite 206 HMY 310 752 0600

NEW YORK, Syracuse (13206) T^{*} Electronics 4054 New Court Ave (315) 463-8592 Twy 710-531-0554

NEW YORK, Victor (14564) T² Electronics 2 E Main St. (716)924-9101 Twx 510-254-8542

NORTH CAROLINA, Cary (27511) Montgomery Marketing POB 520, 1212 Lane Br. (919)407-6319 Twx 510-920-0634

OHIO, Dayton (45414) Lyons Corporation 4812 Frederick, Suite 101 (513)278-0714

OHIO. Highland Heights (44143) Lyons Corporation 615t Wilson Mill Rd. Suite 101 (216)461 8288

PENNSYLVANIA, Erdenheim (19118) GCM 1014 Bethlehem Place (216) 203-46(0) Twx 516-661-9170

TENNESSEE, Jefferson City (37760) Rep Inc POB 287 (615)475-4105 Twx 810-570-4203

TEXAS, Houston (77022) Semiconductor Sales Associates 4101 N. Freeway, Suite 202 (713)561-0581 TEXAS, Richardson (75080) Semiconductor Sales Associates P.O. Box 2618 (214)231-6181

VIRGINFA, Charlottesville (22901) Coulbourn DeGreif Inc 1616 Inglewood Or (8041977-0031 Twr, 730-238-9611

WASHINGTON, Seattle (96107) Blar Hirsh Co 4013 Leary Way NW (206)783-3423

WISCONSIN, Milwaukee (53220) JM Sales 6522 W Forest Home Ave (414)546-0040 Twx 910-576-2778

Canada

ONTARIO, Etobicoke (M9C 1E7) R FO, Ltd 385 The West Mall Suite 209 (416)626 1445 Twx 610-492-2540

QUEBEC, (H9G 2HB) R.F.O. Ltd P.O. Box 213. Doltard Des Ormeaux (514)694-5724 Tix: 05821762

U.S. Chip Distributor

FLORIDA, ORLANDO (32807) Chip Inc. 1607 Forayih Road (305) 275-3810 Tix: 810-850-0103

© 1979 Siliconix incorporated

International Sales Offices

European Sales Offices

FRANCE FINANCE Siliconix S A R L 70-72 Avenue du General de Gaulle Echat 660 94022 Creteil Cedex Tel 377.12.51 TIX SILCONY 230389F

WEST GERMANY Siliconia GmbH Poslfach 1340 Johannesstrasse 27 D 7024 Filderstadt-1 Tel (0711)702066 Tix 7 255 553

UNITED KINGDOM Siliconix Ltd Brook House Northbrook Street Newbury Barks RG13 1AH Tel (0635)64846 Tix 849357

Shitonix Ltd Morriston Swansea United Kingdom SA6 6NE Tel (0792)74681 Tix 48197

European Distributors/Representatives

AUSTRIA

Ing. Ernst Steiner A 1130 Wien Geylinggasse 16 Tel 222/822674 T 135026

RELIGIEM Ritro Electronics BV 172 Prantin en Moretusle B 2000 Antwerpen B Tel: 031-353272 Tix. 33637

DENMARK Outz Schweitzer A.S. Vallensbaekvej 41 DK-2600 Grostrup Tel: (01)45-30-44 Tix: 33257

FINLAND

Oy Findip AB Teollisuustie / PO 8, 34 SF 02700 Kauniaine Te: 90 502255 Tix 12-3129

FRANCE Aimex 48 Rué de L'Aubepiné 92160 Antony Tel: 666 21 12 Tix: 250067

Airodis 40 Rue Villon 69008 Lyon Tel. (78) 695952 Tix, 330174

Aquitaine Composants 30 Rue Dentert Rochereau 33400 Talence Tel: (56) 80 24 70

A Baltzinger 18-25 Route du General de Gautle 67300 Schiltigheim Tel: (88) 331852 Tix 870952F

Ouest Composants 5 rue Lesage 3500 Hennes Tel: (99) 360058 Tix, 730004

Sanelec Electronique 7 Rue de la Couture 2 1, de la Pilatene 59700 Marcq-en-Barceuit Tel: (20) 98-92-13 fila: 160 143F

SCAIB 80 Rue d'Arceui/ Z Silic 137 z allic 137 Rungis, 94523 Cedex Tel: 687-23-13 Tix: 204 674F

GERMANY

Ditronic GmbH IM Asemwaid 48 7000 Stuttgari 70 Tei (07*1) 724844 Tix, 07 255638

Ing Buro K.H. Dreyer Fiensburger Strasse 3 2380 Schleswig fel: (04621) 23121 Tix: 02:21334

EBV Elektronik GmbH Gabriel-Max Strasse 72 8000 Munchen 90 Tel. (089) 644055 Tix 05 24535

BRAZIL

INDIA

ISRAEL

Cosele LTDA Rua da Consolacao 867-Ci 22

667-CJ 22 01310 Sao Paulo Fel 257-3535 or 258-4325 Tha 1130869 CSEL BR

Zenth Electronics 541 Panchratna Mama Parmanand Marg Bombay 400004 Tet 384214 Tix 01: 3152

Talviton Electronics Ltd 9 Billmore St Tet Aviv

Tei 44 45 72 Tix Vitko 33400

EBV Elektronik GmbH Alexanderstrasse 42 7000 Stuttgart 1 Tel: (0711) 247481 Tix: 07-22271

EBV Elektronik GmbH Ostrasse 129 4000 Dusseldorf Tel. (0211) 84846/7 Tix: 08-587267

EBV Flektronik GmbH In de: Meineworth 9A 3006 Burgwedel 1/Hannover Tel. (05139) 4570 Tix: 09-23694

EBV Elektronik GmbH Myliusstrasse 54 6000 Frankfurt 1 Tal: 0611/7204 16/7 Tix: 04 13590

iv-electronic iv-electronic Klaus Vessermann Kg Bachstrasse 30a 6380 Bad Homburg V D H Te- 106172) 23061 5 11x 0415864

Ultrationik GmbH Munchner Strasse 6 8031 Gboralting-Seeletid Te: (08152: 7774 Tix: 05.27832

Un Tronic Schluter GmbH Jr. Co. KG Mańskestrasse 29 3160 Lerne Tel: (S5125 53001 19: 09 22084

GREECE

General Electronics, Ltd. 209 Thevon St Nikala, Piraeus 77 Tel. 361-8145 Tix: 212949 GELT GR

Far East Sales Officer

HONG KONG Seleconix (H. K.) Ltd. 5/6/7th Floors Liven House 61 63 King Yip Street Kwun Tong Kowloon, Hong Kong Tel 3-427 151 Tix 74449 SILX HX

JAPAN Siliconix DISC Japan Branch 101 Dargo Tanaka Bidg 4-4 lidabashi 3-Chome Chiyoda-Ku, Tokyo Japan 102 Tel 03-262-4777 Tix J23411

> HOLLAND Datron BV PO Box 75 12432H S-Grave-and-NL Tel 035 60834 Tix 4 3943

Fittro Electronics BV Geneweg 22 Postbox 123 3770 AC Barneveld-NL Tel: 03420-5041 Tix, 40553

ITALY

Adelsy Via Domenichino 12 20149 Milano Tel. (02) 4985051 Tix. 33 2423

Cott. Ing. Giuseppe DeMico Via Manzoni 31 2012 i Milano Tel: 653131 T(x: 102) 312035

NORWAY

A S Kjell Bakke Postbox 143 2010 Stiommen, Nygaton 48 Tel. (02) 71 18 72 71 53 50 T-x 19407

SPAIN ATAIC Enrique Larrela (CY12 Madrid 16 Tel, 733 05 62 or 733 37 00 Tix 27249

SWEDEN

Kompunentbolage1 NAXAB Box 4115 S 17104 Soina Tel. 06 985140 Tix: 17912 KOMP

Other International Distributors/Representatives

ARGENTINA

Corte & Cia SRL San Juan 1301 Buenos Aires Tel 27-0101 Tix 012-1992

EMSE Electronica S A Dw Semiconductores Ayacucho No 311 1025 Buenos Aires Tel 40-2071

AUSTRALIA

Siliconix

STC Cannon Components PTY_LTD 249 Wickham Road_PO_Box 62 Moorabbin Victoria 3169 Australia Tel Melbourne 6A 30877 Cable CANNONLEC - MELBOURNE

JAPAN

Telijin Advanced Products Corp 11 Uchisawai-cho 2:Chrome Chiyoda:Ku Tokyo 100 Tel (03):506 4670 Tix J 23548

KOREA Yeonil & Co Ltd KPO Box 1112

Tel 65-0461 The K24123

MEXICO

Mexel Tiacoquemecati No. 139-401 Mexico 12. D.F Tel: 575-78-68, y 575-79-24 Tix: MEXEL 0177. 3197

NEW ZEALAND

Electronic Component Services Div of Airspares NZ Ltd P O B 1048 Palmerston North Tel 77-407 Tix NZ3766

SOUTH AFRICA

Electrolink (Pty) Ltd PO Box 1020 Capetowo PO Box road Capetown Tel 457656/7 Tix 57 7320

TAIWAN

Don Business Corp No 265 Chang Chung Ad Taipei Tel 571-2911 Cable DONEC TAIPEI

TAIWAN Siliconix (Taiwan) Ltd Nantze Export Processing Zone Keohsiung Tel 362010, 362019 Tix 785 712 35

SWITZERLAND

Kontron Electronic AG Bernerstrasse Sud 169 6048 Zutrich Tel: 01-62-82-82 Tix: 58836

UNITED KINGDOM

Dage Eurosein Ltd High Street Pinper MIDOLESEX Tel (11.868-0028 Tix 24506

Linburg Electronics Ltd Hillerd Industria: Estal+ Dunfermling SCOTLAND el (0383) 823222 * 727438

Macro-Marketing Lto 395 Bath Road Slough Bers Tel (05286) 4422 Tix 847945

Semiconductor: Specialists (UK) Ltd. Premier House, Fairfield Road Yiewsley, West Draylon MIDDLESEX Tel: (08954) 45522 Tix: 21958

Weatley Components Ed Tudor Road, Broadheath ind Est Altrincham, ChESHIRE WA145RZ Tel. (061941) 1911 Tix, 669735

YUGOSLAVIA

Belram S.A. 83 Avenue des Mimosas 1150 Brussels, Beigium Tel. 734 33 32 734.26 19 7-x. 21790

VENEZUELA

IBARS & CIA, S.A Centro Ciudad Commercial Tamanaco Nivel C2, Local 53-C-03 Chuao-Caracas Apartado 68493 Caracas 106 Tel 928053 Tix 21795 Telenpos a/c IBARS Cables IBARS-CARACAS

B Siliconix

MANUFACTURING FACILITIES

UNITED STATES

Siliconix Incorporated 2201 Laurelwood Rd. Santa Clara, CA 95054 Tel: (408) 246-8000 Tlx: 910-338-0227

HONG KONG

Siliconix (HK) Ltd. 5/6/7th Floors Liven House 61-63, King Yip Street Kwun Tong, Kowicon Hong Kong Tel: 3-427151 Tlx: 74449SILXHX

UNITED KINGDOM

Siliconix Ltd. Morriston SWANSEA SA6 6NE Tel: (0792)74681 Tix: 48197

TAIWAN

Siliconix (Taiwan) Ltd. Nantze Export Processing Zone Kaohsiung Tel: 362010, 362019 Tix: 78571235